

Eco-Tech Guardian: Innovation In Intelligent Pollution Mitigation

V. Thirumani Thangam¹, Dr. G. B. Santhi², Afseen Fathima M³, Monica S⁴, Subalakshmi⁵

^{1,2}Assistant Professors, ^{3,4,5}Students,

New Prince Shri Bhavani College of Engineering and Technology, Chennai

Department of Artificial Intelligence and Data Science

Abstract: This Project presents an innovative vulnerabilities inherent in traditional data management systems. This project aims to bridge data security model for environmental this gap by proposing an innovative data security monitoring, integrating blockchain technology model that integrates blockchain technology with advanced cryptographic techniques. The advanced cryptographic techniques, specifically the model incorporates the Twofish algorithm for Twofish algorithm for encryption and the RSA encryption

and the RSA algorithm for algorithm for decryption, along with the utilization decryption, ensuring a high level of data of smart contracts. Confidentiality and integrity by employing decentralized ledger, the system blockchain's One of the primary objectives is to enhance the enhances transparency and traceability in confidentiality and integrity of environmental data. Environmental data transactions. Smart With the exponential growth in data collection and contracts are integrated into the blockchain transmission in environmental monitoring systems, framework, automating processes and enforcing ensuring that sensitive information remains security protocols. The Twofish and RSA confidential and unaltered is paramount. By combination fortifies the protection of sensitive leveraging the Twofish algorithm for encryption, information, making it resistant to unauthorize the project aims to provide robust protection access and tampering. This comprehensive against unauthorized access and data breaches. Approach aims to address data security Twofish, known for its strong encryption challenges in environmental monitoring, capabilities, offers a formidable defense providing a robust and trustworthy solution. mechanism, thereby safeguarding sensitive environmental data from malicious actors and cyber threats.

Index Terms - Rivest-Shamir-Adlemen (RSA), Algorithm, Neural Network, Machine Learning, Confidentiality, Smart contracts

I. INTRODUCTION

RSA algorithm. By employing RSA for decryption, The purpose of this project is to address the authorized parties can securely access and decipher critical need for robust data security in encrypted environmental data using their private environmental monitoring systems. As keys. This not only enhances data security but also environmental concerns continue to escalate streamlines access controls, ensuring that only globally, accurate and reliable monitoring of designated personnel can decrypt and utilize the environmental data becomes increasingly crucial. information for decision-making processes. However, the integrity and confidentiality of such data are often threatened by cyber threats.

II. LITERATURE REVIEW

In 2022 O. Tayan presented Context-Aware Framework for Enhanced Smart Urban Pollution Monitoring and Control. Smart pollution monitoring approaches based on wireless sensor networks (WSNs) have progressed significantly over the past decade. More recently, intelligent computational strategies based on internet-of-things (IoT) and cloud computing (CC) have gained much momentum in the related studies. In this study, a smart context-aware environmental pollution monitoring and control scheme is presented for an urban setting to demonstrate how effective pollution mitigation and control can be achieved by the integration of known hardware and software approaches in a feedback control system. As a main contribution, this work shall describe in detail how the hardware infrastructure that consists of internet-of-things (IoT) and either cellular or non-cellular communications, is combined with machine learning (ML) software algorithms to provide informed environment control decisions/signals for dynamically and optimally updating the status of our environmentally controlled mitigation strategies. Finally, the importance of this work is clear as the framework and architecture can also be applied to other urban settings and mitigation strategies that can be optimized using intelligent and context-aware control signals.

In 2023 P. Chitralingappa, N. Shaik and B. H. Chandana presented Integrating Machine Learning for Soil Pollution Prediction And Avoidance: A Comprehensive Framework for Sustainable Land Management. Growing soil pollution endangers ecosystems and humans. The SPPA Index addresses this issue using machine learning algorithms, data integration, risk assessment, and customized mitigation. SPPA Index components and soil pollution prediction and prevention are examined. In the SPPA Index, soil data-based machine learning algorithms predict pollution. By incorporating soil parameters, pollution sources, and historical data, the index reveals complex relationships and soil pollution hotspots. Using prediction, stakeholders can avoid soil pollution. Besides prediction, the SPPA Index evaluates and reduces soil pollution risk. It detects contaminants, monitors soil quality, and designs effective mitigation solutions using real-time monitoring, decision support, and focused mitigation. The index measures industrial, agricultural, and urban soils. Issues include data quality, model interpretability, and soil environment generalization. IoT integration, remote sensing, policy frameworks, and sophisticated machine learning algorithms can boost the SPPA Index. This paper shows industrial, agricultural, and urban SPPA Index usage. These case studies show how the index can detect, reduce, and evaluate pollution. Overall, the SPPA Index seems promising for soil pollution prediction and prevention. In the SPPA Index, machine learning, data integration, and proactive techniques enhance soil management and health for future generations. Scientists, legislators, and stakeholders must collaborate.

In 2022 R. Kantikar, R. C. Balan, K. Shinde and S. Sola presented Mitigation of Air Pollution Using Pulsed Radio Waves Technology in the Ambient Environment. Air pollution poses a significant threat to human society in terms of both health and climate. Particulate matter, particularly particles with an aerodynamic diameter of less than $30 \mu\text{m}$, will get deposited in our organs through various processes. Traditional air purification technologies based on filters and fans are effective in reducing indoor air pollution. Given the effects of air pollutants on human health, there is a strong need for a technology that can work for ambient air by covering a large area of volume. Pulsed radio waves-based technology can be a strong solution for this kind of application. This Paper explains the technology and its application in detail. The technology used pulsed radio waves to create electromagnetic fields that affect the pollutants in the air to coagulate and deposit on the surface. This is how it mitigates the pollutants in the ambient environment. Testing has shown that in a controlled environment, particulate matter concentrations can be reduced by more than 65-70%. In addition, we tested in the real field and observed more than a 55% reduction in Particulate matter concentration in a month considering all external parameters, including metrological conditions.

Existing System

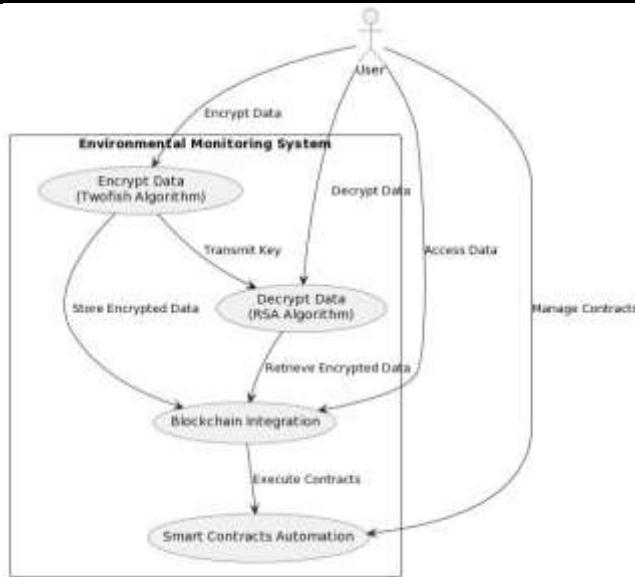
The current data security model for environmental monitoring operates within a framework that combines the Advanced Encryption Standard (AES) and the Rivest–Shamir–Adleman (RSA) algorithms, integrated into a blockchain system. This system has been deployed to address the growing concerns regarding data security and integrity in environmental monitoring, given the increasing reliance on technology for data collection, transmission, and analysis in this domain.

The AES algorithm, chosen for its robust encryption capabilities, serves as the primary method for securing sensitive environmental data. AES encryption involves the transformation of plaintext data into ciphertext using a symmetric key algorithm, ensuring that only authorized parties possess the key required for decryption. This process effectively safeguards the confidentiality of environmental data, preventing unauthorized access and data breaches.

Additionally, the RSA algorithm is utilized within the system for key management purposes.

Asymmetric in nature, RSA encryption involves the generation of public and private key pairs, where the public key is distributed widely for encryption while the corresponding private key is securely retained by authorized parties for decryption. In the context of environmental monitoring, RSA facilitates secure communication and data exchange by ensuring that only designated recipients with the corresponding private keys can access and decipher encrypted data.

Drawbacks of Existing system:


- Existing disadvantages of the current data security model in environmental monitoring include increased computational complexity due to RSA's asymmetric encryption, hindering system performance and scalability.
- RSA's key management adds overhead and complexity to the system, requiring robust protocols for secure key distribution. These challenges may impede the efficient implementation and maintenance of the system, potentially compromising its effectiveness in ensuring the confidentiality and integrity of environmental data.

Proposed System

The proposed system aims to overcome the limitations of the existing data security model by integrating the Twofish algorithm for encryption, RSA algorithm for decryption, and smart contracts within a blockchain framework. Twofish, known for its robust encryption capabilities, provides enhanced security against unauthorized access and data breaches while minimizing computational complexity compared to RSA. By leveraging RSA for decryption, secure key management is ensured, allowing authorized parties to access encrypted environmental data efficiently.

Additionally, the integration of blockchain technology enhances transparency and traceability in environmental data transactions, mitigating the risk of data manipulation or tampering. The decentralized ledger provides an immutable record of data transactions, bolstering the reliability and integrity of environmental monitoring systems. Moreover, the inclusion of smart contracts automates processes related to environmental data management, optimizing efficiency and reducing administrative overhead.

The proposed system offers a comprehensive approach to data security in environmental monitoring, addressing critical concerns such as confidentiality, integrity, transparency, and efficiency. By synergizing Twofish, RSA, blockchain, and smart contracts technologies, the system establishes a secure and transparent foundation for managing environmental data, fostering trust and reliability in critical monitoring systems.

Advantages of Proposed System:

The proposed system offers several advantages over the existing model.

Firstly, the integration of the Twofish algorithm for encryption provides robust protection against unauthorized access and data breaches while minimizing computational complexity.

Secondly, leveraging RSA for decryption ensures secure key management, facilitating efficient access to encrypted environmental data.

The use of blockchain technology enhances transparency and traceability in data transactions, bolstering the reliability of environmental monitoring systems.

III. METHODOLOGY:

1. Encryption Module:

- The Encryption Module, utilizing the Twofish algorithm, safeguards sensitive environmental data in the proposed security model by encrypting it before storage or transmission, enhancing confidentiality and preventing unauthorized access.
- Twofish is chosen for its strong encryption capabilities, including key-dependent S-boxes, a complex key schedule, and numerous encryption rounds, making it resistant to brute-force and other cryptographic attacks.
- Utilizing Twofish encryption ensures data protection for the environmental monitoring system during transit or at rest, minimizing the risk of data breaches and unauthorized disclosures, and maintaining the integrity and confidentiality of sensitive environmental information.

2. Decryption Module:

- The Decryption Module, powered by RSA algorithm, complements the Encryption Module, enabling secure decryption of environmental data. RSA's asymmetric cryptographic properties support key management in the proposed security framework.
- RSA uses a pair of keys: a public key for encryption and a private key for decryption. This asymmetric approach ensures secure communication and data exchange, as only authorized recipients with the private key can decrypt the data.
- In environmental monitoring, RSA enables secure key management, ensuring only authorized parties can decrypt data with their private keys, maintaining data integrity and confidentiality.

3. Blockchain Integration:

- The Blockchain Integration Module enhances environmental monitoring by introducing a decentralized ledger system, ensuring transparency, traceability, and data integrity. Blockchain technology, known for its immutable and distributed ledger, securely stores and manages environmental data.

- The Blockchain Integration Module improves environmental monitoring with a decentralized ledger system. Blockchain securely stores and manages environmental data with its immutable and distributed ledger.

- Blockchain's decentralized nature removes the need for a central authority, minimizing the risk of single points of failure or manipulation. This fosters trust among stakeholders and improves the reliability of the environmental monitoring system.

4. Smart Contracts Automation Module:

- Integrating blockchain records environmental data transactions transparently and tamper- resistant. Each transaction is cryptographically linked, forming an immutable chain of data blocks. Once recorded, data on the blockchain cannot be altered or deleted, ensuring data integrity and establishing a reliable audit trail.
- The Smart Contracts Automation Module utilizes smart contract technology within the blockchain framework to automate environmental data management processes. Smart contracts are self executing agreements with predefined conditions encoded into their programming.

IV. FUTURE SCOPE

In conclusion, the proposed data security model for environmental monitoring presents a robust solution to address critical security concerns. By integrating Twofish encryption, RSA decryption, blockchain technology, and smart contracts, the system ensures high levels of data confidentiality, integrity, transparency, and automation. Twofish and RSA algorithms provide strong encryption and key management, respectively, fortifying data protection against unauthorized access and tampering. The blockchain framework enhances transparency and traceability, while smart contracts optimize efficiency and automate processes. This comprehensive approach establishes a tamper-resistant ecosystem, fostering trust and reliability in environmental monitoring systems. By addressing the limitations of existing models and leveraging cutting-edge technologies, the proposed system offers a secure and transparent foundation for managing sensitive environmental data, thereby contributing to the integrity and sustainability of environment.

REFERENCES

1. O. Tayan presented Context-Aware Framework for Enhanced Smart Urban Pollution Monitoring and Control," 2022 International Conference on Emerging Trends in Computing and Engineering Applications (ETCEA), Karak, Jordan, 2022, pp. 1-5, doi: 10.1109/ETCEA57049.2022.10009678.
2. P. Chitralingappa, N. Shaik and B. H. Chandana presented Integrating Machine Learning for Soil Pollution Prediction And Avoidance: A Comprehensive Framework for Sustainable Land Management," 2023 International Conference on Computer Science and Emerging Technologies (CSET), Bangalore, India, 2023, pp. 1-5, doi: 10.1109/CSET58993.2023.10346780.
3. R. Kantikar, R. C. Balan, K. Shinde and S. Sola presented Mitigation of Air Pollution Using Pulsed Radio Waves Technology in the Ambient Environment," 2022 International Conference on Environmental Science and Green Energy (ICESGE), Shenyang, China, 2022, pp. 77-81, doi: 10.1109/ICESGE56040.2022.10180398.
4. P. C, S. K.P, D. S, B. S and A. K M presented Air pollution detection and Monitoring with the smart sensor interface on the IoT platform," 2023 Annual International Conference on Emerging Research Areas: International Conference on Intelligent Systems (AICERA/ICIS), Kanjirapally, India, 2023, pp. 1-7, doi: 10.1109/AICERA/ICIS59538.2023.10420141.
5. Y. Yang, Y. Zhang and S. Fu presented Prediction and Mitigation of PM2.5 in Coastal Ports of China," 2023 7th International Conference on Transportation Information and Safety (ICTIS), Xi'an, China, 2023, pp. 275-281, doi: 10.1109/ICTIS60134.2023.10243806.
6. B. Sudantha, M. Manchanayaka, C. -Y. Yang, C. Premachandra, M. Firdhous and K. Sumathipala presented IoT Empowered Open Sensor Network for Environmental Air Pollution Monitoring System in Smart Cities," 2023 8th International Conference on Information Technology Research (ICITR), Colombo, Sri Lanka, 2023, pp. 1-5, doi: 10.1109/ICITR61062.2023.10382893.
7. S. Salim, I. Zakir Hussain, J. Kaur and P. P. Morita presented An Early Warning System for Air Pollution Surveillance: A Big Data Framework to Monitoring Risks Associated with Air Pollution," 2023 IEEE International Conference on Big Data (BigData), Sorrento, Italy, 2023, pp. 3371-3374,

doi: 10.1109/BigData59044.2023.10386185.

- 8. M. A. Islam Rafi, M. Rahman Sohan, A. Jawad, H. R. Sourid and M. M. Hossain presented Sound Pollution Monitoring System and Awareness Creation in Modern Cities: A Case Study," 2023 International Conference on Advances in Electronics, Communication, Computing and Intelligent Information Systems (ICAECIS), Bangalore, India, 2023, pp.637-642,doi: 10.1109/ICAECIS58353.2023.10170378.
- 9. M. Sunil Kumar, M. S. M. S. Vani, M. Saikumar, G. Bharath and A. Sairam presented A Smart Air Pollution Detector Using Machine Learning," 2023 3rd International Conference on Technological Advancements in Computational Sciences (ICTACS), Tashkent, Uzbekistan, 2023, pp. 14371442,doi: 10.1109/ICTACS59847.2023.10389898.
- 10. I. E. Elmutasim, I. I. Mohamed, K. H. Bilal and M. Hassan presented Effects of Seawater Pollution on Wireless Signals: A Review," 2023 IEEE XXVIII International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), Tbilisi, Georgia, 2023, pp. 161-165, doi: 10.1109/DIPED59408.2023.10269459.
- 11. S. S. Priscila and A. Jayanthiladevi presented A Study on Different Hybrid Deep Learning Approaches to Forecast air Pollution Concentration of Particulate Matter," 2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 2023, pp.2196-2200, doi:10.1109/ICACCS57279.2023.10113037.
- 12. O. Vernik, A. Degani and B. Fishbain presented Mathematical Estimation of Particulate Air Pollution Levels by Aerosols Tomography," in IEEE Sensors Journal, vol. 22, no. 9, pp. 8274- 8281, May 1, 2022, doi: 10.1109/JSEN.2022.3158890.
- 13. S. Chandra, A. Yadav, M. Bajaj, N. K. Sharma, F. Jurado and S. Kamel presented Propitious Step for CO₂ Mitigation in University Campus boosting Clean Development Mechanism," 2022 4th Global Power, Energy and Communication Conference (GPECOM), Nevsehir, Turkey, 2022 pp. 340-343, doi: 10.1109/GPECOM55404.2022.9815778.
- 14. M. L. Thomas et al. presented A Data Integration Approach to Estimating Personal Exposures to Air Pollution," 2022 IEEE International Conference on Big Data (Big Data), Osaka, Japan, 2022, pp. 45514559, doi: 10.1109/ BigData55660.2022.10020701.

