

Medicinal Plant Identification Using Deep Learning

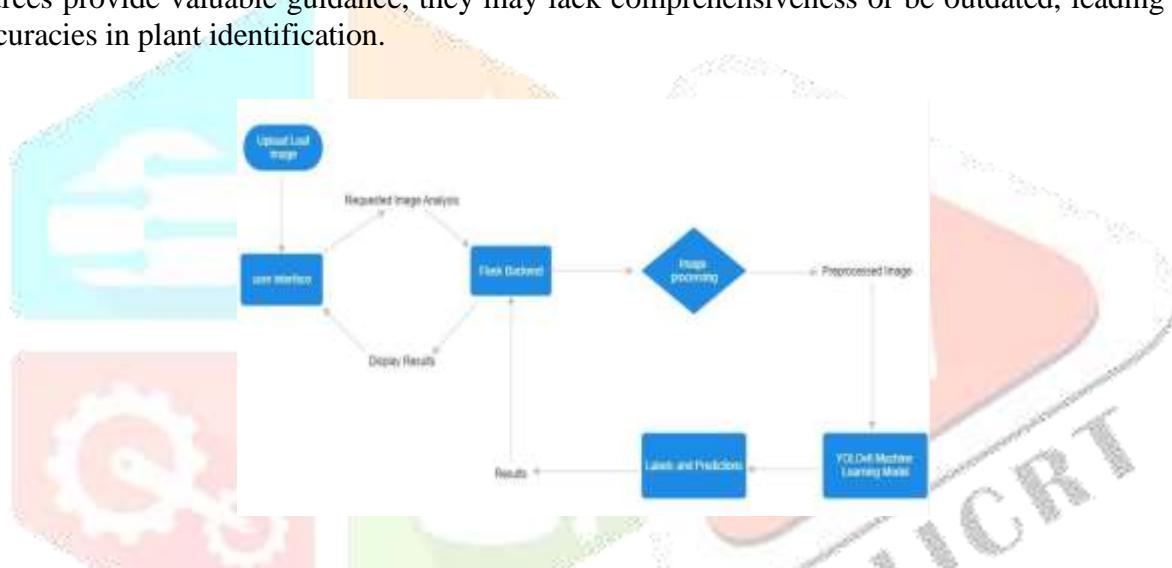
¹T. Dharanika ²Kezia H

^{1,2}Assistant Professors, Department of Computer Science and Engineering
Prathyusha Engineering College, Tiruvallur, India

ABSTRACT: The demand for authentic medicinal plants is on the rise, necessitating robust methods to ensure their integrity throughout the supply chain. In this paper, we present a novel approach leveraging machine learning, specifically YOLOv8, for the precise identification of medicinal plants. Our methodology involves the curation of a diverse dataset comprising 30 distinct species of medicinal plants, which is used for rigorous training and testing of the model. The developed web application seamlessly integrates HTML, CSS, Bootstrap, JavaScript, React.JS, and Flask, offering a user-friendly interface for plant identification. Through comprehensive evaluation, our model demonstrates commendable performance metrics, contributing significantly to the authentication and preservation of medicinal plant integrity in the supply chain. This research not only addresses existing challenges but also paves the way for future advancements in leveraging machine learning for plant identification and supply chain management.

INTRODUCTION The global demand for medicinal plants has surged in recent years due to their perceived therapeutic benefits and natural origins. However, this increased demand has also led to challenges in ensuring the authenticity and integrity of medicinal plants within the supply chain. To address these challenges, there is a growing interest in leveraging advanced technologies such as machine learning for accurate and efficient identification of medicinal plants. Machine learning algorithms, particularly convolution neural networks (CNNs), have shown promising results in various image recognition tasks. Among these, You Only Look Once version 8 (YOLOv8) stands out for its real-time object detection capabilities, making it a suitable candidate for plant identification applications.

In this paper, we proposed a novel approach to enhance the authenticity and integrity of medicinal plants within the supply chain through machine learning-based identification. We present a comprehensive methodology that involves the collection and curation of a diverse dataset comprising multiple species of medicinal plants. This dataset is utilized to train and test the YOLOv8 model, enabling precise identification of medicinal plants from images. The paper aims to develop an innovative solution using machine learning to enhance the authenticity and integrity of medicinal plants within the supply chain. This is achieved through the implementation of a web application that utilizes the YOLOv8 model for accurate identification of medicinal plant species.


A diverse dataset comprising images of 30 different species of medicinal plants is collected and carefully curated. This dataset forms the foundation for training and testing the machine learning model. The YOLOv8 model, known for its real-time object detection capabilities, is chosen as the core machine learning algorithm for plant identification. The model is trained using the collected dataset to accurately detect and classify medicinal plants from images. A web application is developed to provide a user-friendly interface for stakeholders within the medicinal plant supply chain. The application integrates HTML, CSS, Bootstrap, JavaScript, React.js, and Flask to deliver an intuitive platform for users to interact with. The trained YOLOv8 model is integrated into the web application using Flask, allowing users to upload images of

medicinal plants for identification. The model's predictions are then displayed to users, providing valuable insights into the authenticity and integrity of the plants. The performance of the machine learning model and the web application is rigorously evaluated using various metrics, including accuracy, precision, recall, and F1-score. This ensures the reliability and effectiveness of the solution in accurately identifying medicinal plants. Additionally, future considerations may include ongoing model updates, user feedback integration, and scalability enhancements to accommodate a growing user base.

Overall, this paper represents a significant advancement in leveraging machine learning technology to address the challenges faced in ensuring the authenticity and integrity of medicinal plants within the supply chain. By providing a reliable and efficient solution, the project contributes to the preservation of consumer trust and safety in the medicinal plant industry.

EXISTING SYSTEM

Existing systems for identifying medicinal plants within the supply chain primarily rely on manual processes driven by human expertise and the utilization of databases and reference materials. Human experts, typically botanists or pharmacologists, play a central role in visually inspecting and identifying medicinal plants based on their physical characteristics, including leaves, flowers, and stems. However, this manual identification process is inherently subjective and time-consuming, as it depends on the knowledge and experience of individual experts. Moreover, these systems often rely on databases or reference materials containing images and descriptions of medicinal plants to aid in the identification process. While these resources provide valuable guidance, they may lack comprehensiveness or be outdated, leading to potential inaccuracies in plant identification.

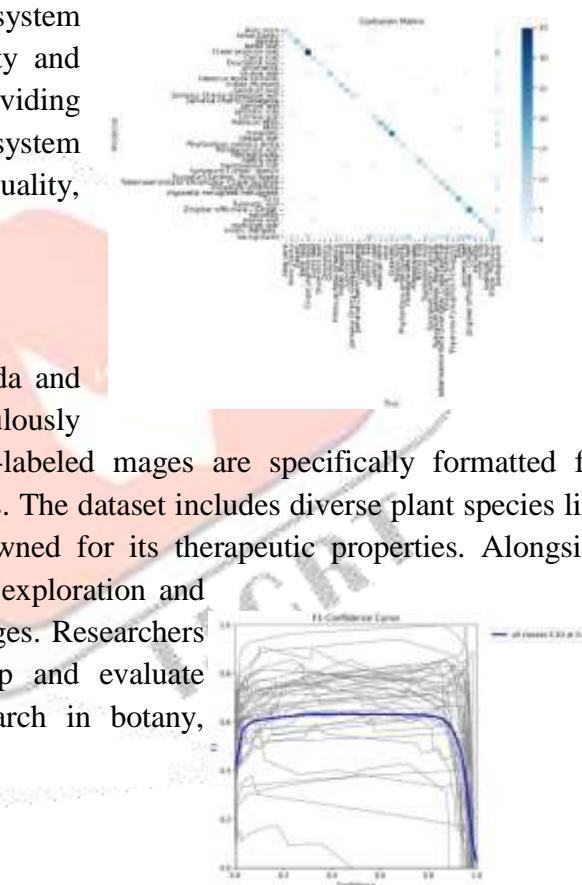
Despite the reliance on human expertise and databases, existing systems for plant identification within the medicinal plant supply chain are prone to errors and limitations. One significant issue is the subjectivity inherent in human-based identification, which can result in inconsistencies and inaccuracies across different experts or interpretations of plant characteristics. Furthermore, the comprehensiveness of databases and reference materials may be limited, with certain plant species or variations not adequately represented. This can lead to misidentification or incomplete information about certain medicinal plants, potentially compromising the integrity of the supply chain. Additionally, the manual nature of these systems makes them time-consuming, especially when dealing with large volumes of plant samples. Such inefficiencies can result in delays in the supply chain and increase the risk of errors due to human fatigue or oversight.

In summary, existing systems for identifying medicinal plants within the supply chain face challenges related to human subjectivity, database limitations, and the potential for errors and inefficiencies. These limitations underscore the need for innovative solutions that can enhance the authenticity and integrity of medicinal plants in the supply chain. By leveraging advanced technologies such as machine learning, it is possible to develop automated and accurate identification systems that mitigate the shortcomings of traditional manual processes and databases, ultimately ensuring the reliability and safety of medicinal plant products.

PROPOSED SYSTEM

The proposed system addresses the limitations of existing methods by introducing a web application empowered with machine learning capabilities for precise identification of medicinal plants within the supply chain. Leveraging a combination of HTML, CSS, Bootstrap, JavaScript, React.js, and Flask, the web application provides a user-friendly interface accessible to stakeholders involved in the medicinal plant industry. This intuitive platform allows users to upload images of medicinal plants, which are then processed by the machine learning model integrated into the system.

Central to the proposed system is the utilization of the YOLOv8 machine learning model for real-time object detection and classification of medicinal plants from uploaded images. This model has been trained and tested using a diverse dataset comprising 30 different species of medicinal plants, ensuring robust performance across various plant types. By harnessing the power of machine learning, the system offers accurate and efficient plant identification, reducing reliance on manual processes and mitigating the risk of human errors within the supply chain.


Through rigorous evaluation and validation, the proposed system demonstrates its effectiveness in enhancing the authenticity and integrity of medicinal plants within the supply chain. By providing stakeholders with a reliable tool for plant identification, the system contributes to restoring consumer trust, ensuring product quality, and a more transparent medicinal plant industry.

DATASET

The Medicinal Plant Dataset sourced from Bennor Pineda and accessible via Roboflow Universe, consists of 3104 meticulously classified images of various medicinal plants. These pre-labeled images are specifically formatted for compatibility with models such as YOLOv8 and many others. The dataset includes diverse plant species like Alugbati, Guava, Jackfruit, Oregano and more, each renowned for its therapeutic properties. Alongside labeled images, the dataset also provides scope for further exploration and classification with an additional category for Unlabeled images. Researchers can readily utilize this comprehensive dataset to develop and evaluate machine learning models, fostering interdisciplinary research in botany, pharmacology, and computer vision.

METHODOLOGY

The methodology of our concept revolves around the development of a web application designed to facilitate the identification of medicinal plants through the analysis of leaf images. The web application serves as the user interface, providing a seamless platform for users to

