
www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882

IJCRTAF02083 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 413

Optimizing Driver-Rider Matching In a

Cab Management System :A Flutter and

Firebase Implementation

Satyam Mishra[1], Aniket Nangare[2] ,Monika Meshram[3] , Prof. Deepali Patil[4]

Computer Engineering Department[1,2,3,4]

Nutan Maharashtra Institute of Engineering and Technology, Pune, Maharashtra[1,2,3,4]

Abstract—In today's dynamic urban environments, efficient

cab management systems are crucial for seamless transportation

and passenger satisfaction. This paper presents the design and

implementation of a cab management system built with Flutter

for a mobile frontend and Firebase for a robust backend. Our

primary focus lies on optimizing the driver-rider matching

process to ensure timely cab allocation and minimize wait

times. The paper details the system architecture, outlining how

Flutter's cross-platform capabilities create a user-friendly mobile

application for both riders and drivers. Firebase's real-time

functionality is leveraged to facilitate efficient communication

and data exchange between app users and the backend system.

We delve into the core aspects of our driver-rider matching

algorithm, explaining how it considers various factors to optimize

connections. This may include factors like driver location, rider

destination, and real- time traffic conditions (if implemented). By

implementing this cab management system, we aim to

demonstrate the effectiveness of Flutter and Firebase in building a

scalable and optimized solution for matching cab drivers with

riders. The paper concludes by discussing the potential benefits of

this system for transportation service providers and riders alike,

emphasizing improved efficiency and user satisfaction.

Keywords—Cab management, Flutter, firebase,Driver-rider

matching, Optimization, Real-time communication,alability,

Efficiency, User satisfaction, Transportation

I. INTRODUCTION

The development of an Online Cab Booking Management

System aims to streamline the cab hiring process,

benefiting both customers and cab booking agencies. This

system facilitates effortless online cab reservations,

tracking of bookings, and viewing of available cabs.

Designed for convenience, it enhances the overall

customer experience within the vehicle rental

industry. The widespread reliance on cab services for

daily transportation makes this a valuable solution for

optimizing the sector.

The Cab Management App project seeks to overcome the

limitations of traditional cab services by offering a more

streamlined, technology-driven solution. Its primary

focus is on providing passengers with convenience, real-

time information, and empowering drivers with the tools

needed to make informed decisions. This project

recognizes the importance of transportation in modern life

and strives to improve the overall experience of cab

services, creating a more efficient and connected urban

environment. It's driven by the understanding that

technology can transform traditional services, making

them more responsive to the needs of both users and

service providers.

The Cab Management App project has several key

objectives aimed at delivering a comprehensive

transportation solution. A primary goal is creating a user-

friendly mobile app that allows for easy ride bookings,

location selection, and vehicle preferences, enhancing

customer experience through seamless interactions.

Additionally, the project focuses on providing drivers

with a dedicated app for managing ride requests,

navigation, and communication, facilitating efficiency

and potentially improving job satisfaction.

Furthermore, the implementation of sophisticated

algorithms (such as Dynamic Ride Matching, Dijkstra's,

and A*) is integral for optimizing routes, reducing

passenger wait times, and making driver routes more

efficient. Ensuring robust security measures is also

crucial, prioritizing the protection of user data and

fostering trust in the platform through privacy and

reliability. In essence, the Cab Management App project

aims to build a modern, customer-focused transportation

solution that benefits both passengers and drivers while

harnessing the power of technology and optimization

algorithms.

II. LITERATURE SURVEY

The rise of on-demand mobility solutions has transformed

urban transportation landscapes. Ride-sharing services offer

convenient, affordable, and potentially more sustainable

alternatives to traditional taxis and personal vehicle

ownership. At the heart of these services lies the complex task

of optimal driver-rider matching. Efficient matching

algorithms, robust real-time location tracking, and secure

user experiences are paramount for success. This literature

survey delves into the key research advancements in driver-

rider matching optimization, platform development with

Flutter, and the use of Firebase for real-time data

management within the ride-sharing domain.

Effectively matching drivers and riders lies at the core of any

ride-sharing platform. Researchers have extensively explored

various optimization techniques to enhance matching

efficiency, minimizing wait times, and maximizing system

throughput. Tong et al. propose a real-time, dynamic dial-a-

ride (DARP) algorithm that considers the joint matching of

trips and vehicles [1]. This contrasts with traditional

approaches that often perform trip and vehicle assignment

sequentially, potentially leading to suboptimal outcomes. The

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882

IJCRTAF02083 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 414

complexity of the driver-rider matching problem necessitates

the exploration of powerful optimization techniques. Bei and

Zhang directly address the trip-vehicle assignment challenge,

applying methods traditionally used for solving the Vehicle

Routing Problem (VRP) in the context of ride-sharing [11].

Beyond efficiency metrics, Ma et al. consider the uncertainty

inherent in ride-sharing scenarios, designing algorithms that

aim for matching reliability in the face of fluctuating service

requests and variable driver availability [12]. Addressing

social aspects, Tewari et al. investigate ways to incorporate

user preferences and social factors into the matching process,

moving beyond purely geographic and time-based

optimization [13].

Cross-platform development tools have become essential for

ride-sharing companies seeking to deploy apps across

multiple operating systems. Flutter, a framework by Google,

has emerged as a popular choice due to its efficient code

reusability and rapid development capabilities. Mishra et al.

discuss the design and implementation of mobile apps with

Flutter, highlighting its strengths in building visually

appealing and responsive user interfaces [5]. While Flutter

offers numerous advantages, it's crucial to address its

challenges and optimize app performance. Attia et al. dissect

common pitfalls and best practices when working with

Flutter, emphasizing strategies for efficient rendering and

state management [6].

The effectiveness of ride-sharing apps hinges on their ability

to manage Firebase, a popular cloud-based Backend-as-a-

Service (BaaS) from Google, which is widely used to build

scalable ride-sharing platforms. Pandey et al. investigate

strategies for scaling real-time mobile apps with Firebase,

particularly focusing on its NoSQL database (Realtime

Database) and push notification capabilities. Firebase's built-

in synchronization and offline support facilitate the

development of responsive and dependable mobile apps for

ride-sharing services[7].

Ride-sharing platforms collect and manage sensitive user

data, such as location, ride histories, and payment

information. Ensuring strong security and data privacy

measures is critical to building trust and protecting user

information. Liu et al. examine security considerations for

real-time applications built on Firebase, delving into best

practices for data encryption and access control mechanisms

[8]. Privacy-preserving techniques have also garnered

attention within the ride-sharing space. Ma et al. propose a

matching scheme that protects sensitive location data while

facilitating efficient ride-sharing connections [9]. The

implementation of such techniques addresses rising user

concerns surrounding data privacy. Additionally, strict

authentication and authorization controls are crucial. Butun

et al. provide a detailed investigation of authentication and

authorization mechanisms in the context of mobile

applications [10].

While ride-sharing optimization has been the focus of

substantial research, several areas offer opportunities for

further exploration:

Multi-Modal Integration: Seamlessly incorporating ride-

sharing with public transit systems can promote more

sustainable transportation networks [14]. Stiglic et al. model

and analyze the potential benefits and challenges associated

with such integration. Developing optimization algorithms

and interfaces that effectively bridge these forms of

transportation is a promising research direction.

Carpooling and Ride-Sharing: Ride-sharing platforms could

benefit from sophisticated algorithms specifically designed

for carpooling scenarios [12, 13]. Matching multiple riders

traveling along similar routes presents unique optimization

challenges.

Incentive Mechanisms: Research into designing gamification

features or dynamic pricing models that encourage ride-

sharing during peak hours or in less-serviced areas could

improve system performance. Wang et al. examine the

concept of stable matching in dynamic ride-sharing,

analyzing how pricing schemes can influence user and driver

behaviors to optimize system-wide outcomes [15].

III. METHODOLOGY

The system architecture of the Cab Management App follows

a modular design, divided into three distinct layers: the

Presentation Layer, the Application Layer, and the

Persistence Layer.

The Presentation Layer comprises the User Mobile App and

the Driver Mobile App, developed using Flutter or a similar

cross-platform framework. These apps interact with the

Application Layer through RESTful APIs, enabling

communication between the front-end and back-end

components.

The Application Layer consists of the Ride Booking Module,

which handles ride requests from users and manages the

booking process. The Driver module is responsible for

assigning rides to available drivers and facilitating

parameters: The effectiveness of metaheuristics hinges on the

proper tuning of parameters, which can require

experimentation and domain knowledge.

Convergence speed: Metaheuristics may not always

guarantee finding the absolute optimal solution within a

reasonable time frame, especially for large-scale problems.

Potential Enhancements:

Hybrid metaheuristics: Combining different metaheuristics

(ex: genetic algorithm with local search) can exploit the

strengths of multiple methods.

Parallel computing: Metaheuristics lend themselves to

parallel implementation, potentially speeding up the

optimization process and enabling handling of larger-scale

problems.

3. Traffic-Aware Route Optimization Algorithms

Concept: Traditional matching algorithms often rely on

idealized distance or travel time estimations. Traffic-aware

optimization algorithms aim to provide more realistic

matches and routes by incorporating real-time traffic

information.

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882

IJCRTAF02083 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 415

Traffic Data Integration: These algorithms leverage real-time

traffic information from sources like Google Maps, Waze, or

other traffic monitoring systems. This data can be used to

dynamically update travel time estimations based on traffic

congestion, road incidents, or other factors.

Route Optimization: When calculating potential matches,

rather than relying on static shortest-distance paths, traffic-

aware algorithms attempt to identify routes that minimize

travel time considering the current traffic situation. These

algorithms often integrate with route-planning services that

factor in real-time traffic.

Dynamic Rerouting: Even after a rider is matched with a

driver, these algorithms can continue to monitor traffic

conditions. If significant congestion develops along the initial

planned route, the system can proactively suggest alternative

routes to the driver to minimize delays and improve the rider's

experience.

Strengths:

Realistic matching: Provides a more accurate picture of travel

times, improving rider experience and reducing unexpected

wait times.

Enhanced efficiency: Helps identify routes that avoid traffic

jams, potentially leading to faster trips and improved

utilization of vehicles.

Limitations:

Reliance on traffic data: The accuracy of traffic-aware

optimization hinges on the availability and reliability of real-

time traffic data.

Computation overhead: Incorporating real-time traffic data

and dynamic rerouting can increase the computational

complexity of the matching process.

Potential Enhancements:

Predictive modelling: Leverage machine learning techniques

to forecast traffic patterns and integrate these forecasts into

route planning for further improvement.

Multi-modal routing: The combination of ride-sharing with

public transit options could be considered for more efficient

routing, especially within congested areas.ting driver-rider

matching. Additionally, the Admin module provides

administrative functionalities for managing the system.

The Persistence Layer includes the Database Server, which

serves as the central data storage component, likely utilizing

a database management system like Firebase Realtime

Database or a similar solution. The system integrates with

Third-Party APIs, which could include services like Google

Maps for location tracking, navigation, and potentially

payment gateways for processing ride payments.

The architecture separates concerns and responsibilities into

distinct components. The Presentation Layer handles the user

interface and user interactions, while the Application Layer

manages the core business logic and functionality. The

Persistence Layer is responsible for data storage and

integration with external services.

This modular design allows for scalability, maintainability,

and flexibility, as each layer can be developed, tested, and

deployed independently. The use of RESTful APIs facilitates

seamless integration and data exchange between the different

layers and components.

Overall, the architecture provides a solid foundation for the

Cab Management App, enabling efficient ride booking,

driver-rider matching, and system administration while

leveraging the capabilities of third-party services and a robust

database solution.

The system architecture follows a layered approach,

promoting separation of concerns and enabling scalability.

Each layer communicates with the others through well-

defined interfaces, ensuring loose coupling and

maintainability.

The Presentation Layer, consisting of the User Mobile App

and Driver Mobile App, is responsible for providing a user-

friendly interface for passengers and drivers. These apps are

developed using Flutter, a cross-platform framework that

allows for code reusability and rapid development across

multiple platforms, including iOS and Android.

The Application Layer houses the core functionality of the

Cab Management App. The Ride Booking Module acts as the

central hub for handling ride requests, matching users with

available drivers, and coordinating the overall ride process.

The Driver module manages driver profiles, availability, and

ride assignments, while the admin module offers

administrative tools for monitoring system performance,

generating reports, and managing user accounts.

The Persistence Layer leverages the power of Firebase

Realtime Database, a cloud-hosted NoSQL database solution

provided by Google. This database ensures real-time data

synchronization and efficient storage of ride details, user

information, and driver profiles.

Figure 1 System Architecture

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-
2882

IJCRTAF02083 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 416

To enhance the user experience and leverage external

services, the system integrates with Third-Party APIs. These

APIs may include popular mapping and navigation services

like Google Maps for providing accurate location tracking,

real-time traffic updates, and turn-by-turn navigation.

Additionally, payment gateways like Stripe or PayPal can be

integrated to facilitate secure in-app payments for completed

rides.

The modular design of the system architecture allows for

future enhancements and integrations with minimal

disruption to existing components. Each layer can be

independently scaled or upgraded as needed, ensuring the

system's ability to handle increasing user demand and

evolving requirements.

IV. ADVANTAGES AND DISADVANTAGES

A. Advantages :

1) Enhanced User Experience:

Optimized matching algorithms lead to faster

ride assignments, reduced wait times, and

improved overall satisfaction for riders. Real-

time traffic integration enables more accurate

route planning and travel time estimates,

further improving reliability for users.

2) Driver Efficiency:

Efficient driver-rider matching and route

optimization helps drivers maximize their time

on the road and potentially increase earnings.

Reduced detours and accurate travel time

estimations streamline their workflow.

3) Platform Scalability:

Firebase's real-time database and cloud-based

architecture are designed to handle large

volumes of data and user requests. This allows

the ride-sharing platform to potentially scale

rapidly without requiring major infrastructure

overhauls.

4) Rapid Cross-Platform Development:

This speeds up development, reduces costs,

and ensures a consistent user experience across

platforms.

Security: Firebase offers built-in security

features, such as authentication, authorization,

and data encryption, helping protect sensitive

user and driver information.

5) Potential for Innovation:

The flexibility of Flutter and the real-time

capabilities of Firebase create the foundation

for incorporating advanced features in the

future, such as carpooling, multi-modal

transport integration, or personalized ride

recommendations.

B. Disadvantages :

1) Flutter Learning Curve:

While Flutter is relatively easy to learn,

developers unfamiliar with it might face an

initial learning curve compared to purely native

development approaches.

Performance Limitations: In certain

performance-critical scenarios, Flutter might

have minor overhead compared to fully native

applications. Careful UI design and

optimization techniques usually mitigate this

issue.

2) Dependence on Third-Party Services:

Reliance on services like Firebase for backend

functionality and Google Maps for navigation

introduces an element of vendor lock-in and

dependence on these external services.

3) Algorithm Complexity:

Developing sophisticated matching algorithms,

especially those involving real-time traffic

integration and optimization, can be complex.

Thorough design and testing are crucial for

ensuring accuracy and efficiency.

4) Data Privacy Concerns:

Ridesharing platforms handle sensitive user

data. Implementing robust data privacy

measures and transparently communicating

these practices to users is essential to build

trust.

5) Important Considerations:

a) Cost:

While Firebase has a free tier, scaling up to

larger volumes of users and data can incur

charges. It's essential to budget accordingly and

explore cost-saving optimization strategies.

b) Maintenance:

Like any software system, a cab management app

built with Flutter and Firebase will require

ongoing maintenance, bug fixes, and feature

updates to ensure continued performance and user

satisfaction.

V. ALGORITHM

A. Optimized Driver-Rider Matching with Real-time Traffic

Integration

1) Request Handling

A user submits a ride request, specifying origin,

destination, and any preferences (e.g., car type,

estimated travel time). The system performs

geocoding to convert addresses to latitude/longitude

coordinates.

2) Initial Driver Filtering

Availability and Proximity: The system identifies all

drivers marked as available within a threshold radius

around the rider's origin. This initial filtering

reduces the pool of potential drivers.

3) Vehicle Compatibility:

If the user specified a preference (e.g., larger car for

luggage), further filter the pool based on vehicle

type.

B. Real-Time Matching with Traffic-Aware Route

Optimization

1) Traffic Data Integration:

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-
2882

IJCRTAF02083 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 417

Fetch real-time traffic data from an external source

(e.g., Google Maps Traffic API). Consider factors

like congestion, accidents, and road closures.

2) Candidate Route Generation:

For each potential driver from the filtered pool,

calculate several candidate routes to the rider's

origin point and their

estimated travel times using a routing engine that

incorporates traffic data (e.g., Google Maps

Directions API or OpenStreetMap Routing Machine

(OSRM)).

C. Potential route variations could include:

1) Joint Matching and Route Scoring:

Estimated travel time to the pickup location,

considering traffic. Detour factor: Additional

distance the driver must travel to pick up the rider

compared to continuing their current activities.

Rider preferences (weighting them if necessary).

Driver history (positive ratings could be prioritized).

Route Score: Factor in the estimated travel time

from the rider's origin to their destination, again

considering traffic conditions.

2) Optimization:

Employ a suitable optimization technique to select

the driver-route pair with the most favourable

combination of matching score and route score:

Greedy Approach: For faster matching, select the

pair with the highest overall score. Metaheuristic-

inspired Approach: If computational time allows,

use a simplified genetic algorithm or particle swarm

optimization variant to explore a wider search space,

potentially leading to better matches over time.

D. Matching Confirmation and Dynamic Rerouting

1) Notification:

Dispatch the ride request to the selected driver and

notify the rider of the estimated pickup time and

vehicle details. Travel Monitoring: Begin

monitoring the driver's progress toward the pickup

location. Re-Routing: Periodically reevaluate traffic

conditions along the route. If significant congestion

arises, proactively suggest alternative routes to the

driver using the route optimization process

described in step 3.

2) Key Improvements and Considerations:

Combination of Techniques: Blends geographical

proximity, traffic integration, and optimization

approaches, enhancing the realism and efficiency of

matches compared to using any in isolation. Rider

Preferences: Incorporates user preferences to

provide tailored matches.

3) Scalability:

Starts with an initial filtering stage to

reduce the computational load for subsequent, more

intensive calculations. Flexibility: The optimization

step could be swapped with different algorithms to

experiment and find the best performance for your

specific use case. Data Dependency: Relies on

accurate traffic data and GPS data.

VI. FUTURE SCOPE

One promising avenue is the integration with public

transportation systems, enabling users to plan multi-modal

journeys that combine ride-sharing services with buses and

trains. This approach not only enhances convenience but

also promotes eco-friendly travel options.

This could include EV charging station integration, range

estimation, and incentives for using eco- transportation

options, positioning the app as a leader in supporting

sustainable transportation initiatives.

Leveraging advanced analytics and machine learning

techniques could significantly improve various aspects of

the app's operations. Expanding the app's functionality to

include delivery and logistics services could open up new

revenue streams. Users could request pickups and

deliveries for packages, groceries, or other items,

leveraging the existing driver network and infrastructure.

As the app gains traction, international expansion could be

considered to cater to a global user base. This would

involve adapting the app to local languages, regulations,

and transportation norms in different regions or countries,

enabling the app to tap into new markets and user

segments.

VII. RESULTS

Figure 2 Location Search

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882

IJCRTAF02083 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 418

Figure 3 Driver Details

Figure 4 Types of Vehicles

Figure 5 Ride History

VIII.CONCLUSION

The development of the Cab Management App signifies a

substantial advancement in the modernization and

optimization of the transportation industry. By implementing

innovative technologies and carefully designed algorithms,

the project has effectively tackled key challenges faced by

passengers and drivers within traditional transportation

systems. The focus on providing an intuitive platform for ride

bookings, vehicle selection, and optimized route planning has

significantly enhanced the user experience, resulting in

greater convenience and satisfaction.

Moreover, the incorporation of powerful algorithms like

Dynamic Ride Matching, Dijkstra's, and A* has been

instrumental in boosting system efficiency and reliability.

These algorithms facilitate real-time route calculations,

minimize wait times, and streamline driver routes, directly

contributing to improved service quality. The strong

emphasis placed on data security and privacy measures builds

confidence among users, assuring them that their sensitive

information is protected.

The Cab Management App demonstrates significant potential

for continued growth and expansion. With ongoing

http://www.ijcrt.org/

www.ijcrt.org © 2024 IJCRT | Volume 12, Issue 5 May 2024 | ISSN: 2320-2882

IJCRTAF02083 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 419

enhancements, it has the capacity to transform how people

travel, fostering a more accessible, efficient, and sustainable

transportation landscape. As technology rapidly evolves, the

Cab Management App is well-positioned to integrate future

advancements, maintaining its role as a leader in

transportation innovation and ushering in a new era of

mobility for users across the globe.

ACKNOWLEDGMENTS

We wish to thank our parents and associates for their valuable

support and encouragement throughout the development of

the project work and we would also like to thank our guide

Prof. Deepali Patil for guiding us throughout

the project work.

REFERENCES

[1] Y. Tong, Y. Zeng, L. Zhou, L. Chen, and K. Ye, "Real-time
Ridesharing: A Dynamic Dial-a-Ride Algorithm Considering Joint
Matching of Trips and Vehicles," IEEE Transactions on Intelligent
Transportation Systems, vol. 22, no. 6, pp. 3584-3596, 2021.

[2] X. Li, W. Wu, Y. Huang, Y. Peng, H. Fu, and W. Sun, "Optimizing
Driver-Rider Matching for Ride-Sharing Services Using
Metaheuristics," in Proc.

[3] F. Rossi, R. Zhang, Y. Hindy, and M. Pavone, "Dynamic Ride-Sharing
System with Real-Time Vehicle Dispatching and Route
Optimization,"20, no. 8, pp. 3064-3077, 2019.

[4] W. Luo, P. Sun, D. Mu, and H. Zhao, "A Traffic-Aware Route
Planning Algorithm for Ride-Sharing Services," in Proc. of 2018 IEEE
International Conference on Intelligent Transportation Systems
(ITSC), 2018, pp. 2666-2671.

[5] T. Mishra, A. Kumar, and S. Satapathy, "Designing and Implementing
Mobile Applications with Flutter," in Proc. of 2021 International
Conference on Computing and Communication Systems (IC3S), 2021,
pp. 72–77.

[6] A. Attia, M. Catasta, and E. T. S. El-Masri, "Cross-Platform
Development with Flutter: Challenges and Best Practices," IEEE
Software, vol. 37, no. 4, pp. 20-28, 2020.

[7] S. Pandey, P. Gunasekaran, S. Mallidi, K. Brohi, and V. Ramasamy,
"Scaling Real-Time Mobile Applications with Firebase," IEEE Cloud
Computing, vol. 6, no. 6, pp. 26–33, 2019.

[8] H. Liu, H. Jin, C. Wu, and W. Yang, "Security Considerations for
Real-time Applications using Firebase," in Proc. of 2020 IEEE 6th
International Conference on Cloud and Big Data Computing
(CBDCom), 2020, pp. 104-108.

[9] X. Ma, H. Ma, Z. Zhao, S. Chen, and J. Wang, "Privacy-Preserving
Ride-Sharing Matching," IEEE Transactions on Dependable and
Secure Computing, DOI: 10.1109/TDSC.2022.3208337 (Early access)

[10] I. Butun, I. E. Morrar, and R. Sankar, "Authentication and
Authorization Mechanisms for Mobile Applications," IEEE Access,
vol. 8, pp. 140696-140713, 2020.

[11] X. Bei and S. Zhang. "Algorithms for Trip-Vehicle Assignment in
Ride-Sharing." AAAI Conference on Artificial Intelligence, vol. 32,
no. 1., 2018.

[12] Y. Ma, Y. Xu, and Z. Ding, "Optimizing Reliable Ride-sharing
Matching for User Requests with Multi-dimensional Uncertainty,"
IEEE Transactions on Vehicular Technology, vol. 69, no. 12, pp.
14353-14364, 2020.

[13] G. S. Tewari, B. S. Nithya, and S. G. Asha, "Optimization Technique
for Ride-Sharing Recommendation Systems," in Proc. of 2017
International Conference on Intelligent Computing and Control
Systems (ICICCS), 2017, pp. 999-1004

[14] M. Stiglic, N. Agatz, M. Savelsbergh, and M. Gradisar, "Enhancing
Urban Mobility: Integrating Ride-Sharing and Public Transit,"
Computers & Operations Research, vol. 90, pp. 12-21. 2018.

[15] X. Wang, J. Agatz, and S. Erera, "Stable Matching for Dynamic Ride-
Sharing Systems," Transportation Science, vol. 52, no. 4, pp. 850-867,
2018.

[16] Y. Zhan, J. Zhao, and Y. Zhu, "A Spatial-temporal Route Planning
Approach for Ridesharing Considering Time-dependent Traffic
Conditions and User Preferences," in Proc. of 2021 China Automation
Congress (CAC), 2021, pp. 7101-7106.

[17] R. G. Kula, N. P. Rougier, and G. D. Schmitter, "Implementing
Dynamic User Interfaces with Flutter," IEEE Computer Graphics and
Applications, vol. 41, no. 2, pp. 118-125, 2021.

[18] X. Yang, W. Song, and X. Ran, "Flutter App Performance
Optimization on Android Platform," in Proc. of 12th International
Conference on Communication Software and Networks (ICCSN),
2020, pp. 53-59.

[19] N. R. Potlapally, S. Ravi, A. Raghunathan, and N. K. Jha, "A Study of
the Energy Consumption Characteristics of Cryptographic Algorithms
and Security Protocols," IEEE Transactions on Mobile Computing, vol.
5, no. 2, pp. 128-143, 2006.

[20] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke.
"Middleware for Internet of Things: A Survey." IEEE Internet of

Things Journal, vol. 3, no. 1, pp. 70-95, 2016.

http://www.ijcrt.org/

