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Abstract 

 Estimation of parameters say mean, variance, median and coefficient of variation etc. is necessary under 

various studies. The bias and mean square error (MSE) of the estimator reflect the appropriateness and 

usefulness of the estimator. The improvement in the efficiency of the estimator using auxiliary information 

motivates the researches to suggest new estimators. Logarithmic ratio type estimator is one of the new 

classes of estimators where improvement has been suggested by only few authors in the literature and hence 

contribution to such estimators attempted for possible improvement in the efficiency of the estimators. In 

this study, we introduced an improved logarithmic ratio type estimator for estimating the finite population 

means using auxiliary information under simple random sampling scheme. The bias and mean square error 

(MSE) expressions for the proposed estimator have been derived up to the first order of approximation. The 

theoretical efficiency comparison has been carried out with the existing estimators. Also, the MSE and 

percentage relative efficiency (PRE), results has been calculated with real data set and artificial data set 

generated by using R software with bivariate normal distribution by simulation approach.  The result shows 

that the proposed estimator performs well as compared to the other existing estimators of this class, also 

some new application areas might be explored in respect of such estimators. 

Keywords: Auxiliary information, logarithmic ratio-type estimators, Mean squared error, Bias, simple 

random sampling, Simulation Study 

1. Introduction 

In survey sampling, auxiliary information is frequently utilized to enhance the accuracy of population 

parameter estimation. Ratio estimators are typically employed when a significant positive correlation exists 

in the relationship between the study variable and the auxiliary variable is considered, especially in cases 

where the regression line intersects the origin. Similarly, product-type estimators are suitable when there 

exist a strong negative linear relationship and the regression line passes through the origin. In contrast, when 

the regression line fails to pass through the origin, regression-type estimators become more appropriate. 

Various scholars have contributed substantial and commendable work to this domain. Cochran (1940) first 

proposed the conventional ratio estimator, marking the beginning of the use of auxiliary information in 

estimation. Later, Murthy (1964) developed the classical product-type estimator. Srivastava (1967) made a 
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notable contribution by introducing a power transformation estimator that generalized both ratio and product 

estimators. Further progress was achieved by Bahl and Tuteja (1991), who proposed exponential ratio and 

product-type estimators for estimating the population mean of the study variable, based on auxiliary 

information. Further many researchers have made significant contributions to this area, several researchers, 

such as Kadilar and Cingi (2004), Khoshnevisan et al. (2007), Onyeka (2012), Chauhan and Singh (2014), 

Subramani and Ajith (2016), and Madhulika et al. (2017), have contributed to this field. The arithmetic 

mean is seen as the basic measure of a population and is more effective in yielding precise results when the 

population is homogeneous. Numerous efficient estimators for the finite population mean have been 

developed over time by various researchers under simple random sampling techniques. As an illustration, 

Singh and Tailor (2005) introduced efficient estimators that make uses of the recognized values of the 

correlation coefficient. Kadilar and Cingi (2006) presented methods integrating the coefficient of kurtosis to 

refine mean estimates, and Singh and Vishwakarma (2009) formulated a general framework for estimating 

the population mean through successive sampling. Haq and Shabbir (2013) introduced an improved family 

of ratio-type estimators, whereas Singh and Solanki suggested efficient class of estimators that utilizes 

auxiliary information. Subramani and Kumarpandiyan (2012) proposed a modified ratio-type estimator that 

utilizes the known median of an auxiliary variable. Muneer et al. (2017) developed estimators for the 

population mean under both simple and stratified random sampling frameworks, incorporating two auxiliary 

variables. Additionally, Izunobi and Onyeka (2019) introduced efficient logarithmic ratio and product type 

estimators in the context of simple random sampling. Building on this foundation, the present study aims to 

propose novel logarithmic ratio and product-type estimators that leverage auxiliary information to improve 

the estimation of the finite population mean. These log-based estimators extend beyond traditional and 

exponential forms, demonstrating superior performance when the logarithm of the auxiliary mean exceeds a 

particular value, as supported by theoretical and empirical evidence. Cekim et al. (2020) introduced a new 

family of ln-type estimators for population variance estimation under SRS, highlighting their higher 

efficiency under specific theoretical conditions. Yunusa et al. (2021) proposed a logarithmic ratio-type 

estimator for estimating the population coefficient of variation, using log transformations on both population 

and sample variances of the auxiliary variable. Further, Zaman (2023) and Adejumobi (2023) developed 

efficient logarithm-type estimators of the population mean under SRSWOR, outperforming previous 

approaches. Most recently, Qureshi et al. (2024) presented two ln-type estimators for estimating the mean of 

sensitive study variables using auxiliary information under basic probability sampling designs. 

2. Notations and terminology  

Consider a finite population 𝜓 = {𝜓1, 𝜓2, … , 𝜓𝑁}consisting of 𝑁units, from which a sample of size has been 

drawn using simple random sampling without replacement (SRSWOR). Let 𝑦𝑖and 𝑥𝑖denote the values of the 

study and auxiliary variables, respectively, with population means 𝑌̄and 𝑋̄. The coefficients of variation for 

𝑋and 𝑌are defined as 𝐶𝑥
2 =

𝑆𝑥
2

𝑋̄ 2
and 𝐶𝑦

2 = 𝑆𝑦
2/𝑌̄2, while the regression coefficient is 𝑏 = 𝑆𝑥𝑦/𝑆𝑥

2, and the 

correlation coefficient between 𝑋and 𝑌is 𝜌 = 𝑆𝑥𝑦/(𝑆𝑥𝑆𝑦). The kurtosis coefficients of the study and 

auxiliary variables are 𝜙2(𝑦)and 𝜙2(𝑥). Sample variances are given by 𝑠𝑦
2 = (𝑛 − 1)−1 ∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1 and 

𝑠𝑥
2 = (𝑛 − 1)−1 ∑ (𝑥𝑖 −  𝑥̅)2𝑛

𝑖=1  population variances by 𝑆𝑦
2 = (𝑁 − 1)−1 ∑ (𝑌𝑖 −  𝑌̅)2 𝑁

𝑖=1 and 𝑆𝑥
2 =

(𝑁 − 1)−1 ∑ (𝑋𝑖 −  𝑋̅)2𝑁
𝑖=1  

To derive the bias and mean squared error (MSE) for the proposed and existing estimators, we define the 

sampling error terms 

 𝑒0 =
𝑦̅−𝑌̅

𝑌̅
  and 𝑒1 =

𝑥̅−𝑋̅

𝑋̅
  , such that 𝐸(𝑒0) = 𝐸(𝑒1) = 0, 𝐸(𝑒0

2) = (1 − 𝑓)/𝑛 𝐶𝑦
2, 𝐸(𝑒1

2) = (1 − 𝑓)/𝑛 𝐶𝑥
2, 

and 𝐸(𝑒0𝑒1) = (1 − 𝑓)/𝑛 𝜌𝐶𝑥𝐶𝑦. 
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3. Existing Estimators 

The following discussion focuses on selected estimators from the existing literature. 

1. The finite population mean 𝑦̄may be estimated using the classical ratio estimator, whose 

variance is given by 

Var (𝑦̅𝑅)= 𝑦̅(𝜓̅ 𝑥̅⁄ ) 

 

(1) 

Var (𝑦̅𝑅)= λ𝛹̅2[ 𝐶𝑥
2 + 𝐶𝑦

2 − 2𝜌𝐶𝑥𝐶𝑦] (2) 

Where, λ=
1−𝑓

𝑛
 

2. Robson (1957) introduced the product estimator, which was subsequently modified by  

Murthy (1964) and is presented below: 

𝑦̅𝑃= 𝑦̅(𝑥̅ 𝜓̅⁄ ) (3) 

The expression for the mean squared error is formulated as: 

(𝑦̅𝑃)=λ𝛹̅2[ 𝐶𝑥
2 + 𝐶𝑦

2 + 2𝜌𝐶𝑥𝐶𝑦]. (4) 

3. The regression estimator was developed by Watson (1937) is as follows: 

𝑦̅𝑅𝐸=𝑦̅+b (𝜓̅ − 𝑥̅) (5) 

Its corresponding MSE is defined as follows: 

MSE (𝑦̅𝑅𝐸) = λ𝛹̅2𝐶𝑦
2(1-𝜌2). (6) 

4. The exponential ratio-type estimator, proposed by Bahl and Tuteja (1991), is given as 

follows: 

𝑡𝑒𝑥𝑝=𝑦̅.exp(
𝜓̅−𝑥̅

𝜓̅+𝑥̅
) (7) 

The mean squared error (MSE) for this estimator is given by: 

MSE (𝑡𝑒𝑥𝑝)= λ𝛹̅2 [𝐶𝑦
2 +

𝐶𝑥
2

4
− 𝜌𝐶𝑥𝐶𝑦]. (8) 

5. The following represents the estimator developed by Updhyaya and Singh: 

𝑦̅𝑈𝑆=[𝑦̅
(𝜓̅ 𝛽2𝑥+𝐶𝑥)

(𝛽2𝑥+𝐶𝑥)
]

(𝜓̅𝛽2𝑥)

(𝛽2𝑥+𝐶𝑥)
 

(9) 

The expression for its MSE is as follows. 

MSE (𝑦̅𝑈𝑆) =[(𝐶𝑦
2 + (

(𝜓̅ 𝛽2𝑥)

(𝛽2𝑥+𝐶𝑥)
)

2

𝐶𝑥
2 − 2 (

(𝜓̅𝛽2𝑥)

(𝛽2𝑥+𝐶𝑥)
) 𝜌𝐶𝑥𝐶𝑦]. 

(10) 
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6. Kadilar and Cingi (2004) developed new classes of ratio-type estimators employing different 

transformations of the auxiliary variable. An example of these estimators is: 

𝑌̅𝐾𝐶𝑖= [ 𝑦̅+b (𝜓̅ − 𝑥̅)]𝛼𝑖, i=1…, 5 (11) 

𝛼1= 
𝜓̅

𝑥̅
 ,   𝛼2=

𝜓̅+𝐶𝑥

𝑥̅+𝐶𝑥
  , 𝛼3=

𝜓̅+𝛽2(𝑥)

𝑥̅+𝛽2(𝑥)
  , 𝛼4=

𝜓̅𝛽2(𝑥)+𝐶𝑥

𝑥̅𝛽2(𝑥)+𝐶𝑥
  , 𝛼5=

𝜓̅𝐶𝑥+𝛽2(𝑥)

𝑥̅ 𝐶𝑥+𝛽2(𝑥)
 

is the sample regression coefficient, and the values of 𝛼𝑖are defined as follows: 

The bias and MSE of 𝑌̅𝐾𝐶𝑖 (i=1…, 5), to first order of approximation, are given by 

Bias (𝑌̅𝐾𝐶𝑖)≈ 𝜆𝑌̅𝐶𝑥
2𝛼𝑖

∗2
 , (12) 

MSE (𝑌̅𝐾𝐶𝑖) ≈ 𝜆𝑌̅2[𝛼𝑖
∗2

𝐶𝑥
2 + 𝐶𝑦

2 (1 − 𝜌2)]. (13) 

Where 𝛼1
∗=1, 𝛼2

∗= 
𝑋̅

(𝑋̅+𝐶𝑥)
 , 𝛼3

∗= 
𝑋̅

(𝑋̅+𝛽2(𝑥))
,  𝛼4

∗= 
𝑋̅𝛽2(𝑥)

(𝑋̅𝛽2(𝑥)+𝐶𝑥)
  and  𝛼5

∗= 
𝑋̅

(𝑋̅𝐶𝑥+𝛽2(𝑥))
 

7. The logarithmic ratio-type estimator, proposed by Izunobi and Onyeka (2019), is given as 

follows: 

𝑦̅𝐼𝑂= 𝑦̅ [
ln (𝜓̅)

ln (𝑥̅)
] (14) 

Its corresponding MSE can be expressed as follows: 

MSE (𝑦̅𝐼𝑂)= λ𝛹̅2 [𝐶𝑥
2 (

1

ln (𝜓̅)
)

2
+ 𝐶𝑦

2 − 2 (
1

ln (𝜓̅)
) 𝜌𝐶𝑥𝐶𝑦]. 

(15) 

8. A novel logarithmic ratio-type estimator, introduced by Zaman and Iftikhar (2023), can be 

expressed as: 

𝑦̅𝐴𝑆=𝑦̅ [
ln (𝛽2𝑥𝜓̅+𝐶𝑥)

ln (𝛽2𝑥𝑥̅+𝐶𝑥)
]. (16) 

The terms 𝛽2𝑥and 𝐶𝑥denote the kurtosis coefficient and the coefficient of variation of the auxiliary 

variable. 

Its corresponding MSE can be expressed as follows: 

MSE (𝑦̅𝐴𝑆) = λ𝛹̅2 [𝐶𝑦
2 + 𝐶𝑥

2 𝜃2

𝑘2
− 2𝜌𝐶𝑥𝐶𝑦

𝜃

𝑘
]. (17) 

4. The Proposed logarithmic Estimator: 

Motivated by the work of Zaman et al. (2023), we introduce an improved logarithmic-type estimator, 

described as follows: 

𝑡𝐴𝑀
ⱱ =[𝑘1  𝑦̅+𝑘2(𝑋̅ − 𝑥̅)][

ln(𝑎𝑋̅+𝑏)

ln(𝑎𝑥̅+𝑏)
] (18) 

            The values of 𝑘1and 𝑘2are chosen such that the mean squared error of 𝑡𝐴𝑀
𝜈 is minimized. 
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          The estimator 𝑡𝐴𝑀
𝜈 can be represented in terms of sampling errors using a first-order     approximation, 

as follows: 

𝑡𝐴𝑀
ⱱ =[𝑘1 𝑌̅ (1 + 𝑒0)+𝑘2(𝑋̅ − 𝑋̅(1 + 𝑒1)] [

ln (𝑎𝑋̅+𝑏)

ln (𝑎(𝑋̅(1+𝑒1)+𝑏)
] (19) 

After subtracting 𝑌̅ we get from both the sides, we get, 

𝑡𝐴𝑀
ⱱ − 𝑌̅=[(𝑘1 − 1) 𝑌̅ −

𝑘1

𝑘
 𝜃𝑒1𝑌̅ −

𝜃2

2𝑘
𝑘1𝑒1

2𝑌̅ + 𝑘1𝑒0𝑌̅ −
𝑘1

𝑘
 𝜃𝑌̅𝑒0𝑒1−𝑘2𝑋̅𝑒1 +

𝑘2

𝑘
 𝜃𝑒1

2𝑋̅ +

𝜃2

2𝑘
 𝑋̅𝑘2𝑒1𝑒1

2] 

(20) 

Where, 𝜃 =
𝑎𝑋̅

𝑎𝑋̅+𝑏
 and 𝑘 = 𝑙𝑛(𝑎𝑋̅ + 𝑏) 

By taking expectation on both the sides and taking the terms of maximum higher order up to degree 

2, we get expression for the bias: 

𝐸(𝑡𝐴𝑀
ⱱ − 𝑌̅ )=E[(𝑘1-1) 𝑌̅ −

𝑘1

𝑘
 𝜃𝑒1𝑌̅- 

𝜃2

2𝑘
𝑘1𝑒1

2𝑌̅+𝑘1𝑒0𝑌̅ −  
𝑘1

𝑘
 𝜃𝑌̅𝑒0𝑒1−𝑘2𝑋̅𝑒1+

𝑘2

𝑘
 𝜃𝑒1

2𝑋̅+
𝜃2

2𝑘
 

𝑋̅𝑘2𝑒1𝑒1
2] 

(21) 

Bias(𝑡𝐴𝑀
ⱱ )=[(𝑘1 −1) 𝑌̅ −  

𝜃2

2𝑘
𝑘1λ𝑌̅𝐶𝑥

2 −
𝑘1

𝑘
 𝜃λ𝜌𝐶𝑥𝐶𝑦𝑌̅+

𝑘2

𝑘
 𝜃𝑋̅ λ𝐶𝑥

2] (22) 

Now, squaring both the sides of (𝑡𝐴𝑀
ⱱ − 𝑌̅) and taking expectation, we get the expression for the 

MSE: 

𝑀𝑆𝐸(𝑡𝐴𝑀
ⱱ )=[(𝑘1 − 1)2𝑌̅2+

𝑘1
2

𝑘2
𝜃2𝑌̅2λ𝐶𝑥

2+𝑘2
2𝑋̅2λ𝐶𝑥

2 −
2𝜃

𝑘
𝑋̅𝑌̅𝑘1𝑘2λ𝐶𝑥

2 + 𝑘1
2𝑌̅2λ𝐶𝑦

2 −

2𝑘1
2

𝑘
𝜃𝑌̅2λ𝜌𝐶𝑥𝐶𝑦+2𝑘1𝑘2𝑋̅𝑌̅ λ𝜌𝐶𝑥𝐶𝑦] 

(23) 

Where, λ= (
𝟏

𝒏
−

𝟏

𝑵
) 

          𝑀𝑆𝐸(𝑡𝐴𝑀
ⱱ ) =  [(𝑘1 − 1)2𝐴 + 𝑘1

2𝐵 + 𝑘1
2𝐹 + 𝑘2

2𝐶 − 𝑘1𝑘2𝐷 + 𝑘1𝑘2𝐺] (24) 

Where, 

  A=𝑌̅2, B=
𝜃2

𝑘2
𝑌̅2λ𝐶𝑥

2, C=𝑋̅2λ𝐶𝑥
2, D=

2𝜃

𝑘
𝑋̅𝑌̅λ𝐶𝑥

2, E=A λ𝐶𝑦
2,   F=

2

𝑘
𝜃𝐴λ𝜌𝐶𝑥𝐶𝑦, G=2𝑌̅λ𝜌𝐶𝑥𝐶𝑦 

Now, 

By differentiating the above equation with respect to 𝑘1and 𝑘2and setting the derivatives to zero, the 

optimum values of 𝑘1and 𝑘2are obtained as follows: 

𝑘1
∗= 

2𝐴

2𝐴+2(𝐶+𝐸−𝐹)−
(𝐷−𝐺)2

2𝐵

    and     

𝑘2
∗=  

2𝐴

2𝐴+2(𝐶+𝐸−𝐹)−
(𝐷−𝐺)2

2𝐵

(𝐷−𝐺)

2𝐵
 

 

Using the values 𝑘1
∗and 𝑘2

∗that minimize MSE, the minimum mean squared error of the proposed 

logarithmic estimator can be expressed as: 
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Min.MSE (𝑡𝐴𝑀
ⱱ ) =

𝐴(𝜏−2𝐴)2+4𝐴2(𝐵+𝐹)+
𝐴2∆2(𝐶−2𝐵)

𝐵2

𝜏2
 

(25) 

Where, 𝝉 = 𝟐𝑨 + 𝟐(𝑪 + 𝑬 − 𝑭) −
(𝑫−𝑮)𝟐

𝟐𝑩
 

∆= 𝑫 − 𝑮 

5. Empirical Study 

This section utilizes two data sets to compare the performance of the proposed estimator with that of 

existing ones. The sources and descriptive statistics are presented as follows: 

Data set I: Singh and Chaudhary (1986) 

x=Area under wheat in 1971 

y=Area under wheat in 1974 

N=34, n=20, Ψ̅=856.4118, 𝜓̅=208.8824, 𝜌=0.4491, 𝑆𝑦=733.1407, 𝐶𝑦=0.8561, 𝑆𝑥=150.5060, 

𝐶𝑥=0.7205, 𝛽2𝑥=0.0974 

 

Data set II: Murthy (1967) 

y=output for 80 factories in a region 

x=fixed capital 

N=80, n=20, Ψ̅=51.8264, 𝜓̅=11.2646, 𝜌=0.7941, 𝑆𝑦=18.3569, 𝐶𝑦=0.3542, 𝑆𝑥=8.4062, 𝐶𝑥=0.9484, 

𝛽2𝑥=2.8664 

 

The MSE values and corresponding PRE of all estimators relative to the traditional ratio estimator are 

shown in Table 1. The calculation is given by: 

PRE=
𝑀𝑆𝐸(𝑦̅𝑅)

𝑀𝑆𝐸(𝑦̅𝑖)
 × 100 where i=𝑦̅𝑈𝑆 ,𝑦̅𝑘𝑐1, 𝑦̅𝑘𝑐2, 𝑦̅𝑘𝑐3, 𝑦̅𝑘𝑐4, 𝑦̅𝑘𝑐5 , 𝑦̅𝑘𝐼𝑂, 𝑦̅𝐴𝑆 , 𝑡𝐴𝑀

ⱱ   

Table 1. MSE values of the estimators along with PRE values. 

Estimators Data set 1 Data set 2 

MSE PRE MSE PRE 

𝑦̅𝑅 27271.90247 100 26.44515 100.000 

𝑦̅𝑈𝑆  10299.06594 264.799 42.081696 373.016 

𝑦̅𝑘𝑐1 16673.80929 163.561 95.265576 164.772 

𝑦̅𝑘𝑐2 16620.01056 164.090 81.741208 192.035 

𝑦̅𝑘𝑐3 16666.50403 163.633 77.482230 202.590 

𝑦̅𝑘𝑐4 16146.76108 168.900 84.583337 185.582 

𝑦̅𝑘𝑐5 16663.67288 163.660 76.669039 204.739 

𝑦̅𝐼𝑂 9775.684135 278.976 43.872832 357.788 

𝑦̅𝐴𝑆  9203.137592 296.332 4.701784 562.446 

𝑡𝐴𝑀
ⱱ  `8806.5678 309.6771 3.135423 844.892 

http://www.ijcrt.org/


www.ijcrt.org                                                    © 2026 IJCRT | Volume 14, Issue 1 January 2026 | ISSN: 2320-2882 

IJCRT2601159 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b347 
 

 Table1 shows for that the proposed estimator has minimum the MSE value and higher PRE value as 

compared to 𝑦̅𝑈𝑆 ,𝑦̅𝑘𝑐1, 𝑦̅𝑘𝑐2, 𝑦̅𝑘𝑐3, 𝑦̅𝑘𝑐4, 𝑦̅𝑘𝑐5 , 𝑦̅𝑘𝐼𝑂 and 𝑦̅𝐴𝑆  

6. Efficiency Comparisons 

The proposed logarithmic-type estimators have been compared with existing competing estimators, 

and the conditions for their efficiency have also been outlined. 

 Comparative analysis of the proposed logarithmic estimator 𝑡𝐴𝑀
𝜈 with the sample mean 𝑦̄𝑅: 

MSE (𝑦̅𝑅)- min.MSE(𝑡𝐴𝑀
ⱱ )>0 or,  

λ𝛹̅2[ 𝐶𝑥
2 + 𝐶𝑦

2 − 2𝜌𝐶𝑥𝐶𝑦]- [
𝐴(𝜏−2𝐴)2+4𝐴2(𝐵+𝐹)+

𝐴2∆2(𝐶−2𝐵)

𝐵2

𝜏2
]>0. 

(26) 

Which shows our proposed logarithmic ratio type estimator performs better than sample mean (𝑦̅𝑅) 

 Evaluating the performance of the proposed logarithmic estimator 𝑡𝐴𝑀
𝜈 in relation to the 

Updhyaya and Singh estimator 𝑦̄𝑈𝑆: 

MSE (𝑦̅𝑈𝑆)- min.MSE (𝑡𝐴𝑀
ⱱ )>0  

[(𝐶𝑦
2 + (

(𝜓̅ 𝛽2𝑥)

(𝛽2𝑥+𝐶𝑥)
)

2

𝐶𝑥
2 − 2(

(𝜓̅𝛽2𝑥)

(𝛽2𝑥+𝐶𝑥)
)𝜌𝐶𝑥𝐶𝑦]- [

𝐴(𝜏−2𝐴)2+4𝐴2(𝐵+𝐹)+
𝐴2∆2(𝐶−2𝐵)

𝐵2

𝜏2
]>0. 

(27) 

          Which shows our proposed logarithmic ratio type estimator performs better than the            Updhyaya 

and Singh estimator 𝑦̅𝑈𝑆 . 

 Comparison of the proposed logarithmic estimator 𝑡𝐴𝑀
𝜈 and the Kadilar and Cingi (𝑘𝑐1) 

estimator: 

MSE (𝑦̅𝑘𝑐1)- min.MSE(𝑡𝐴𝑀
ⱱ )>0  

λ 𝛹̅2 [𝐶𝑥
2+ 𝐶𝑦

2 (1-𝜌2)]- [
𝐴(𝜏−2𝐴)2+4𝐴2(𝐵+𝐹)+

𝐴2∆2(𝐶−2𝐵)

𝐵2

𝜏2
]>0. 

(28) 

Which shows our proposed logarithmic ratio type estimator performs better than the Kadilar and 

Cingi estimator (𝑘𝑐1). 

 Assessment of the proposed logarithmic estimator 𝑡𝐴𝑀
𝜈  against the Kadilar and Cingi 

estimator (𝑘𝑐2): 

MSE (𝑦̅𝑘𝑐2)- min.MSE(𝑡𝐴𝑀
ⱱ )>0  

λ 𝛹̅2 [(
𝜓̅

𝜓̅+𝐶𝑥
)

2

𝐶𝑥
2  +  𝐶𝑦

2 (1 − 𝜌2)]- [
𝐴(𝜏−2𝐴)2+4𝐴2(𝐵+𝐹)+

𝐴2∆2(𝐶−2𝐵)

𝐵2

𝜏2
]>0. 

(29) 

Which shows our proposed logarithmic ratio type estimator performs better than the Kadilar and 

Cingi estimator (kc2). 
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 The performance of the proposed logarithmic estimator 𝑡𝐴𝑀
𝜈 is analyzed relative to the Kadilar 

and Cingi estimator (𝑘𝑐3). 

MSE (𝑦̅𝑘𝑐3)- min.MSE(𝑡𝐴𝑀
ⱱ )>0  

λ 𝛹̅2 [(
𝜓̅

𝜓̅+𝛽2𝑥
)

2

𝐶𝑥
2  +  𝐶𝑦

2 (1 − 𝜌2)]- [
𝐴(𝜏−2𝐴)2+4𝐴2(𝐵+𝐹)+

𝐴2∆2(𝐶−2𝐵)

𝐵2

𝜏2
]>0. 

(30) 

Which shows our proposed logarithmic ratio type estimator performs better than the Kadilar and Cingi 

estimator (𝑘𝑐3). 

 An evaluation is made to contrast the proposed logarithmic estimator 𝑡𝐴𝑀
𝜈 with Kadilar and 

Cingi’s (𝑘𝑐4) estimator. 

MSE (𝑦̅𝑘𝑐4)- min.MSE(𝑡𝐴𝑀
ⱱ )>0  

λ 𝛹̅2 [(
𝜓̅𝛽2𝑥

𝜓̅𝛽2𝑥+𝐶𝑥
)

2

𝐶𝑥
2 +  𝐶𝑦

2 (1 − 𝜌2)]- [
𝐴(𝜏−2𝐴)2+4𝐴2(𝐵+𝐹)+

𝐴2∆2(𝐶−2𝐵)

𝐵2

𝜏2
]>0. 

(31) 

Which shows our proposed logarithmic ratio type estimator performs better than the Kadilar and 

Cingi estimator (𝑘𝑐4). 

 The effectiveness of the proposed logarithmic estimator 𝑡𝐴𝑀
𝜈 is analyzed relative to Kadilar 

and Cingi’s (𝑘𝑐5) estimator. 

MSE (𝑦̅𝐾𝑐5)- min.MSE(𝑡𝐴𝑀
ⱱ )>0  

λ 𝛹̅2 [(
𝜓̅𝐶𝑥

𝜓̅𝜌𝐶𝑥+𝛽2𝑥
)

2

𝐶𝑥
2 +  𝐶𝑦

2 (1 − 𝜌2)]-[
𝐴(𝜏−2𝐴)2+4𝐴2(𝐵+𝐹)+

𝐴2∆2(𝐶−2𝐵)

𝐵2

𝜏2
]>0. 

(32) 

 The efficiency and accuracy of the proposed logarithmic estimator 𝑡𝐴𝑀
𝜈 are compared with the 

Izunobi and Onyeka (2019) estimator 𝑦̄𝐼𝑂. 

MSE (𝑦̅𝐼𝑂)- min.MSE(𝑡𝐴𝑀
ⱱ )>0  

λ𝛹̅2 [𝐶𝑥
2 (

1

ln (𝜓̅)
)

2
+ 𝐶𝑦

2 − 2 (
1

ln (𝜓̅)
) 𝜌𝐶𝑥𝐶𝑦]-[

𝐴(𝜏−2𝐴)2+4𝐴2(𝐵+𝐹)+
𝐴2∆2(𝐶−2𝐵)

𝐵2

𝜏2
]>0. 

(33) 

Which shows our proposed logarithmic ratio type estimator performs better than the   

Izunobi and Onyeka (2019) 𝑦̅𝐼𝑂. 

 Comparison of the performance of the proposed logarithmic estimator 𝑡𝐴𝑀
𝜈 and the Zaman and 

Iftikhar (2023) estimator 𝑦̄𝐴𝑆: 

MSE (𝑦̅𝐴𝑆)- min.MSE(𝑡𝐴𝑀
ⱱ )>0 
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which shows our proposed logarithmic ratio type estimator performs superior than the Zaman and Iftikahar 

𝑦̅𝐴𝑆 . 

MSE Analysis of the Estimators with the help of Line Chart: 

MSE Analysis of the estimators (Data se-1) 

 

Fig: 1 

FInterpretation of the Line Chart: 

The chart illustrates how different estimators perform by comparing their values. 𝑦̅𝑅 has the largest 

value, indicating it could be less consistent or accurate. In contrast, 𝑡𝐴𝑀
ⱱ , having the lowest value, 

likely represents the most accurate or dependable estimator. The other estimators fall somewhere in 

between, reflecting a range of estimation qualities. 

MSE Analysis of the estimators (Data se-2) 

 

Fig:2 

Interpretation of the Line Chart: 

The chart compares the values across different estimators. 𝑦̅𝑅 Stands out with the highest value, 

suggesting it might be less reliable or more prone to error. Conversely, 𝑦̅𝐴𝑆   and 𝑡𝐴𝑀
ⱱ , having the 

lowest values, likely reflect higher accuracy or stability. The other estimators show intermediate 

results, representing moderate efficiency. 

 

 

λ𝛹̅2 [𝐶𝑦
2 + 𝐶𝑥

2 𝜃2

𝑘2
− 2𝜌𝐶𝑥𝐶𝑦

𝜃

𝑘
]-[

𝐴(𝜏−2𝐴)2+4𝐴2(𝐵+𝐹)+
𝐴2∆2(𝐶−2𝐵)

𝐵2

𝜏2
]>0. 

(34) 
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7. Simulation Study 

The aim of this simulation study is to compare how the proposed estimator performs in comparison 

with the established estimator under different distributional conditions. Simulation is an essential 

tool for evaluating estimator efficiency in a controlled environment, allowing researchers to 

experiment with different conditions and assess the estimator’s adaptability. It also sheds light on 

how the estimators might perform when real data is either not available or inappropriate. Simulated 

data drawn from a normal population is used to examine the efficiency of the proposed as well as the 

existing logarithmic ratio estimators. 

For the simulation study, we used the R program to generate a bivariate normal population of size 

1000, which was then divided into five sample sizes: 𝑛 = 100,200,300,400,500. Samples were 

drawn using simple random sampling without replacement, with population parameters 𝜇 =
(20,30) and the specified covariance matrix. 

∑ = [
𝜎𝑦

2 𝜎𝑦𝜎𝑥𝜌𝑥𝑦

𝜎𝑦𝜎𝑥𝜌𝑥𝑦 𝜎𝑥
2 ] 

           The table below presents the MSE values of the estimator for sample sizes 𝑛 =
             100,200,300,400,500, based on 5000 simulations. The MSE was calculated using the                

following formula: 

MSE (𝑡∗) = 
1

1000
∑ (𝑡∗ − 𝑌̅𝑁)21000

𝑖  

After utilizing the necessary parameters and the value of correlation coefficient 𝜌 the MSE results 

are obtained and compiled in the table-2 

Table 2: MSE of the Estimator Across Different Sample Sizes from artificially generated data  (𝒏 =
𝟏𝟎𝟎, 𝟐𝟎𝟎, 𝟑𝟎𝟎, 𝟒𝟎𝟎, 𝟓𝟎𝟎) 

n 𝑦̅𝑅 𝑦̅𝑈𝑆  𝑦̅𝑘𝑐1 𝑦̅𝑘𝑐2 𝑦̅𝑘𝑐3 𝑦̅𝑘𝑐4 𝑦̅𝑘𝑐5 𝑦̅𝐼𝑂 𝑦̅𝐴𝑆  𝑡𝐴𝑀
ⱱ (pro

p.) 

10

0 

0.1085

16 

0.0926

91 

0.1708

95 

0.1481

04 

0.1671

98 

0.0994

99 

0.1659

16 

0.0925

34 

0.0902

28 

0.06702

6 

20

0 

0.0474

57 

0.0407

86 

007483

7 

0.0650

11 

0.0732

22 

0.0439

42 

0.0726

41 

0.0407

25 

0.0397

07 

0.02375

0 

30

0 

0.0276

63 

0.0237

81 

0.0436

65 

0.0379

48 

0.0427

23 

0.0256

68 

0.0423

82 

0.0237

55 

0.0231

56 

0.02213

3 

40

0 

0.0177

39 

0.0152

46 

0.0280

25 

0.0243

57 

0.0274

20 

0.0164

73 

0.0272

00 

0.0152

36 

0.0148

47 

0.00137

2 

50

0 

0.0118

15 

0.0101

65 

0.0186

68 

0.0162

31 

0.0182

66 

0.0109

86 

0.0181

19 

0.0101

55 

0.0098

99 

0.00073

7 

Simulation results from the bivariate normal population is shown in the above table shows that the 

proposed estimation 𝑡𝐴𝑀
ⱱ  performs better as compared to 𝑦̅𝑈𝑆,𝑦̅𝑘𝑐1, 𝑦̅𝑘𝑐2, 𝑦̅𝑘𝑐3, 𝑦̅𝑘𝑐4, 𝑦̅𝑘𝑐5 , 𝑦̅𝑘𝐼𝑂 and 

𝑦̅𝐴𝑆 . 

 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                    © 2026 IJCRT | Volume 14, Issue 1 January 2026 | ISSN: 2320-2882 

IJCRT2601159 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org b351 
 

               8.   Results and Discussion 

 The analysis shows that 𝑡𝐴𝑀
ⱱ  is the most effective estimator in both data sets, achieving the lowest Mean 

Square Error (MSE) with values of 8806.57 for Data set 1 and 3.13 for Data set 2. Conversely, 𝑦̅𝑅 have the 

highest MSE values of 27271.90 and 26.45, indicating it is the least improved. The Percent Relative 

Efficiency (PRE) values further support this conclusion, with  𝑡𝐴𝑀
ⱱ  being around 310% more efficient in 

Data set 1 and exceeding 845% efficiency in Data set 2 relative to 𝑦̅𝑅. Other estimators such as 𝑦̅𝑈𝑆 , 𝑦̅𝐼𝑂 and 

the 𝑦̅𝐾𝐶  series show some gains but still lag behind  𝑡𝐴𝑀
ⱱ . These results highlight the robustness and accuracy 

of 𝑡𝐴𝑀
ⱱ , especially when the data variability is lower. 

 We have made the line chart for showing the MSE values graphically which presents a comparison of 

different estimators based on their values. The estimator 𝑦̅𝑅 shows the highest value, suggesting it may be 

less accurate or consistent. On the other hand, 𝑡𝐴𝑀
ⱱ  and 𝑦̅𝐴𝑆 which have the lowest values, are likely the most 

reliable and stable estimators. The remaining estimators fall between these extremes, indicating varying 

levels of accuracy and efficiency. 

 The simulation study indicates that all estimators become more accurate as the sample size increases 

from 100 to 500. The ( 𝑡𝐴𝑀
ⱱ  prop.) estimator consistently achieves the smallest error values, suggesting it is 

the most dependable method. Meanwhile, estimators like 𝑦̅𝑘𝑐1 and 𝑦̅𝑘𝑐3 have higher values, implying lower 

accuracy. The other estimators show performance levels between these extremes and improve as more data 

is used. 

9. Conclusions 

In this work, we develop a new logarithmic ratio estimator to estimate the population mean. by 

incorporating auxiliary information under simple random sampling scheme. Theoretical findings, supported 

by bias and MSE expressions, along with numerical analysis, showed the proposed estimator demonstrates 

superior performance compared to existing estimators in terms of both reliability and accuracy. Tests using 

real data sets revealed that the estimator delivers lower MSE and greater efficiency, making it a strong 

candidate for population mean estimation and we have performed the simulation study to validate 

theoretical and empirical results of the suggested logarithmic ratio type estimator from which we also get 

the result as our proposed estimator have lower MSE than the existing estimators.  
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