IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Chest X-Ray-Based Tuberculosis Detection Using Deep Learning: An In-Depth Review of Current Models and Future Directions

Dr. Mohit Badla²

²Department of Computer Engineering
Gandhinagar University
Gandhinagar, India

Abstract—This Tuberculosis (TB) is still a significant global health risk, especially in middle and lowincome countries. WHO Global TB Report 2023 projected that about 10.6 million new cases of TB and 1.3 million deaths were reported in 2022 alone. Detection and correct diagnosis at an early stage are paramount to prevent the spread of TB and offer better patient outcomes. Chest X-ray (CXR) imaging is a routine TB screening because it is cost-effective with quick results. CXR is usually hampered by human factors, subjectivity, and the lack of trained radiologists, particularly in resource-poor environments. Recent developments in Deep Learning (DL) and Artificial Intelligence (AI) have raised hope towards computeraided diagnosis of TB based on CXR images. In particular, Convolutional Neural Networks (CNNs) have shown superior performance in intricate feature extraction of features and feature classification accuracy in medical image processing. This review presents a critical overview of recent DL-based approaches to detection of TB with particular focus on CNN-based models. The paper also discusses the most significant challenges including data imbalance, image quality variation, problem of generalization, model interpretability, and deployment challenges in low-resource environments. Future research directions such as developing large-scale TB-specific datasets, building explainable and lightweight models, mobile health (mHealth) solutions, federated learning, and exploiting multi-modal data are highlighted. This article attempts to enlighten researchers, medical professionals, and policymakers about the current status, challenges, and future of DL-based TB diagnosis to guide international efforts toward efficacious and accountable AI-based health care solutions.

Keywords—Tuberculosis Detection, Deep Learning, Chest X-ray (CXR) Analysis, Convolutional Neural Networks (CNN), Artificial Intelligence in Healthcare

I. INTRODUCTION

Tuberculosis (TB) is still one of the world's most fatal infectious diseases and a major global health threat. In 2022 alone, an estimated 10.6 million individuals acquired TB, and 1.3 million deaths were recorded worldwide, with most cases occurring in low and middle-income countries (WHO, 2023). The airborne

transmission of TB, coupled with social determinants of poverty, malnutrition, and crowding, has facilitated its transmission, especially in resource-constrained areas.

TB is an airborne bacterial disease, spread primarily by inhalation of droplets coughed up by persons with active pulmonary TB. Its silent spread and linkage with socio-economic conditions have rendered its control and eradication particularly difficult, especially in crowded and resource-poor environments.

Some countries and areas still have very high burdens of TB, with most of the cases being reported in LMICs in Asia and Africa. The WHO has listed a number of high TB burden countries based on cases of incidence, mortality, and multidrug-resistant TB. India, Indonesia, China, the Philippines, Pakistan, Nigeria, Bangladesh, and South Africa are some of the main drivers of the global burden of TB.

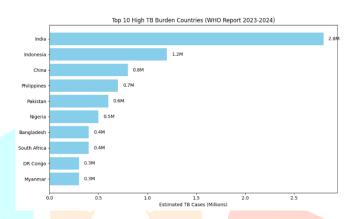


Fig. 1. Top 10 High TB Burden countries

Early detection and correct diagnosis of TB are paramount if its transmission and patient outcomes are to be enhanced. Chest X-ray (CXR) imaging is among the most widely used pulmonary TB screening methods, due to its cost-effectiveness, non-invasiveness, and rapid turnaround time [1]. However, manual interpretation of CXRs is heavily dependent on the radiologist's experience, hence likely to lead to inconsistency in diagnosis and subjective mistakes, especially in regions that face a deficit of skilled healthcare professionals [4].

The rapid developments in Artificial Intelligence (AI) and Deep Learning (DL) technologies have revolutionized medical image analysis significantly. Convolutional Neural Networks (CNNs) have shown marvelous performance in feature extraction and classification tasks of intricate medical images, like CXRs [2]. Accordingly, DL model-based Computer-Aided Diagnosis (CAD) systems have been suggested to be beneficial tools to assist radiologists and make TB screening processes more effective.

Various works have considered DL-based model utilization for the identification of TB in CXR images. Though other surveys and reviews give overall insights into general disease detection using radiography or for COVID-19 diagnosis [3,5], limited focused review papers are specifically based on DL-based detection of TB in chest radiography, and more specifically focusing on post-2020 advances [1].

A. Motivation for this Review

The following review attempts to fill this gap by reviewing systematically, classifying, and comparing the existing deep learning-based TB detection methods with CXR images. As more and more research is being conducted in this area, an in-depth examination is necessary to determine the strengths and limitations of different DL approaches along with their future prospects.

B. Research Objectives

This survey paper is structured with the following aims:

- To classify and compare recent deep learning architectures employed for TB detection from chest X-ray images.
- To point out current challenges, limitations, and research gaps in this area.
- To provide recommendations for future directions for researchers, developers, and healthcare professionals working on automated TB diagnosis systems.

C. Organization of the Paper

The rest of the paper is structured as follows: Section 2 describes the research approach used for literature collection and analysis. Section 3 gives a background on TB illness and the application of CXR imaging. Section 4 gives an overview of deep learning methods used in medical imaging. Section 5 classifies and examines the recent TB detection methods using DL models. Section 6 addresses the limitations, challenges, and open research problems. Lastly, Section 7 presents the future research directions, and Section 8 concludes the study.

II. RESEARCH METHODOLOGY

This part describes the research methodology followed for systematically selecting, identifying, and surveying suitable literature regarding deep learning-based techniques for the detection of Tuberculosis (TB) using chest X-ray (CXR) images.

A. Literature Search Strategy

A systematic literature review was performed for gathering the relevant studies on detection of tuberculosis (TB) using deep learning methods applied to chest X-ray (CXR) images. The search was made on reliable scientific databases like IEEE Xplore, SpringerLink, Scopus, PubMed, MDPI, and Google Scholar. The search strategy was performed on the basis of the use of the combined keywords: ("Tuberculosis" OR "TB") AND ("Chest X-Ray" OR "CXR") AND ("Deep Learning" OR "CNN"). In addition, the reference lists of included articles were manually screened to find other relevant studies that were not captured in the initial search.

B. Inclusion and Exclusion Criteria

To maintain the quality and relevance of the selected literature, predefined inclusion and exclusion criteria were applied as follows:

Inclusion Criteria	Exclusion Criteria
Publications from 2017	Articles published in
to 2025	languages other than
	English
Studies focusing on TB	Studies focusing on CT
detection using Deep	Scan, MRI, sputum, or
Learning and CXR	other modalities
Research articles,	Non-technical articles
conference papers,	like editorials,
book chapters	commentaries, or
	reviews without

TABLE I. PAPER CRITERIA

technical depth

III. PAPER SELECTION FLOW

The selection process of literature for this survey was done systematically using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. Performing an initial search on six main scientific databases — IEEE Xplore, SpringerLink, Scopus, PubMed, MDPI, and Google Scholar — using carefully defined keywords produced 254 records. Following the exclusion of the duplicate records, 212 articles were available for further screening. Following title and abstract screening, 150 articles were deemed potentially relevant. Then, 85 full-text articles were carefully screened for eligibility according to the inclusion and exclusion criteria. Lastly, 34 high-quality and relevant studies on deep learning-based TB detection from chest X-ray images were included for detailed review and analysis in this survey.

A. Overview of Tuberculosis (TB)

Tuberculosis (TB) continues to be a major cause of infectious disease deaths globally. As reported by the World Health Organization (WHO), an estimated 10.6 million individuals got sick with TB in the world in 2022, with an estimated 1.3 million deaths among HIV-negative individuals and 167,000 deaths among HIV-positive individuals (WHO, 2023). TB is caused in most cases by the bacterium Mycobacterium tuberculosis, which mainly infects the lungs but also has the capacity to infect other organs.

B. Symptoms and Diagnosis of TB

TB signs are normally chronic cough, fever, weight loss, sweats at night, and chest pain. Early and correct diagnosis is critical for preventing the spread of TB, particularly in a high disease burden setting [1]. The conventional diagnostic methods for TB include sputum smear microscopy, culture, molecular tests (such as GeneXpert), and radiological examination. Among them, chest X-ray (CXR) is still one of the most popular screening methods because it is easily accessible and quick.

C. Use of Chest X-Rays in TB Identification

Chest X-ray imaging is of vital significance during primary screening and diagnosis of pulmonary TB. It facilitates visualization of the abnormalities such as cavitations, nodules, infiltrates, and fibrosis in lung tissues [2]. CXR performs particularly well within population-based screening for TB as well as a helpful diagnostic in detecting active and latent infections of TB.

D. Limitations in Manual Chest X-ray Diagnosis

Despite the use of CXR in TB diagnosis, manual radiological interpretation is threatened by a variety of problems, primarily in low-income nations:

- Radiologist shortage: Low- and middle-income countries lack a sufficient number of radiology professionals to provide solutions to the large volume of CXR tests [1].
- Inter-reader Variability: Human reading of CXRs tends to be subjective and susceptible to inter-reader variability, thus resulting in unreliable diagnoses [4].
- Latent TB Detection: Subtle radiographic manifestations might be observed in early-stage or latent cases of TB, hence difficult detection with precise instruments without sophisticated tools [5].

IV. DEEP LEARNING IN MEDICAL IMAGE ANALYSIS

A. Introduction to Deep Learning

Deep Learning (DL), a branch of Artificial Intelligence (AI), has come to be a revolutionary technology in the field of medical image analysis. DL models, especially multi-layer neural networks, have proved to outperform others in the identification of intricate patterns out of very large data sets. DL models can learn hierarchical features from raw data automatically without much manual intervention, which makes them very appropriate for medical imaging applications [3].

B. The Function of Convolutional Neural Networks (CNNs)

Among different DL structures, Convolutional Neural Networks (CNNs) have also attracted tremendous attention because of their strong ability to handle and examine visual data like medical images. CNNs are particularly applied in the identification of spatial hierarchies of images due to their layer-based architecture made up of convolutional, pooling, and fully connected layers [1]. CNNs have extensively been applied in TB detection from Chest X-Rays (CXR) due to their precision in identifying faint patterns of the disease, which human eyes are not easily able to detect.

C. Shared Workflow in Deep Learning-Based Medical Imaging

The shared workflow in DL-based detection of TB from CXR includes a few major phases, which are illustrated below [1, 5]:

- a) Image Preprocessing: Preprocessing enhances the quality of input images and normalizes them. Preprocessing techniques like resizing, removal of noise, contrast stretching, and normalization of pixel intensities are common.
- b) Feature Extraction: CNNs are trained to automatically extract image features at various levels like edges, textures, and high-level patterns. CNNs are discriminative and descriptive in contrast to human-crafted features employed in typical Machine Learning (ML) techniques.
- c) Classification: Extracted features are passed on to dense layers or classifiers like Softmax in order to classify the input image as TB-positive or TB-negative. Advanced models may also utilize segmentation masks in order to identify specific lung regions for improved accuracy [3].

D. Advantages of Deep Learning over Traditional Machine Learning

DL methods have various benefits over traditional ML methods in medical imaging applications [2, 6]:

- Automatic Feature Learning: Contrary to conventional ML, which uses hand-engineered features, DL models learn the features relevant to the problem from the input data automatically.
- High Accuracy: DL models are capable of learning complex and nonlinear patterns within the data, thus resulting in better diagnostic accuracy.
- Scalability: DL models can be scaled and retrained on updated data to enhance their generalization power.
- Reduction in Human Bias: Automatic feature learning decreases reliance on domain-specific knowledge and human intrusion.

E. Significance of Explainability in Clinical Diagnosis

Though DL models are highly accurate, their "black-box" characteristic is a matter of concern from the point of trust and transparency in clinical usage. Explainable AI (XAI) methods, including Gradient-weighted Class Activation Mapping (Grad-CAM), Local Interpretable Model-Agnostic Explanations (LIME), and SHapley Additive exPlanations (SHAP), have been progressively used to interpret model decisions and identify areas of interest on CXR images [5, 7]. The use of XAI guarantees that DL models do not just execute well but also give understandable and reliable outputs for clinicians.

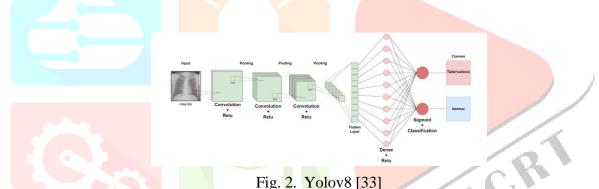
Recent work introduces numerous deep learning methods for computerized Tuberculosis (TB) detection from Chest X-Ray (CXR) images. These methods can be widely classified according to the model architecture, learning method, or methodological advancement utilized. The succeeding sub-sections elaborate on these categories.

V. CATEGORIZATION OF TB DETECTION APPROACHES

CNN-Based Architectures: CNN-based models have been the most used method for TB detection because of their strong feature extraction ability from medical images. Primary CNN models include convolutional layers, pooling layers, and fully connected layers that aid in extracting textural and spatial features from CXR

images. Experiments such as Sidume et al. (2024) used CNN models coupled with methods like Dropout to prevent overfitting and Batch Normalization to improve training speed. Techniques such as rotation, flipping, and adjustment of contrast are generally used for dataset limitation bypassing. These models serve as a basic guideline for TB classification, especially for early DL research. Several recent studies have explored the application of Deep Learning (DL) techniques, namely Convolutional Neural Networks (CNN), for early and precise Tuberculosis (TB) detection through Chest X-ray (CXR) images. Researchers have achieved significant improvements in diagnostic accuracy, sensitivity, and specificity, with some models achieving accuracy levels higher than 96% and outstanding AUC values higher than 0.97. These advances provide promising aid tools for medical clinicians to enable faster and more accurate TB screening, especially for resource-limited settings [6].

Transfer Learning Methods: Transfer Learning (TL) has been considerably successful in detecting TB, particularly in cases with limited labeled medical data. Through this method, pre-trained models like VGG, ResNet, DenseNet, and InceptionV3, initially trained on extensive datasets like ImageNet, are utilized again for feature extraction or fine-tuned for TB-related tasks. [2, 6] showed that TL-based models were more efficient and precise than regular CNNs. Feature extraction is from learned features without modifying pretrained weights, and fine-tuning modifies model layers based on CXR images for more personalized learning. CNNs have been found to hold much promise in detection of Tuberculosis (TB) from Chest X-ray (CXR) Transfer learning. and also automatic feature images. extraction. CNNs minimize human interaction and maximize precision. Research has shown TB detection accuracy rates between 80% and 97%, which reflects that CNNs are an effective and valuable medical classification, and early detection of TB, tool [27].



Hybrid & Attention-Enhanced Models: Hybrid frameworks integrate CNN frameworks with other smart methods such as fuzzy logic or attention mechanisms to improve detection precision. [5] fuzzy-enhanced CNN framework that works well in dealing with uncertainty and noise during CXR images. Hybrid frameworks have also integrated attention mechanisms such as Attention Gates and Spatial Attention into CNN models to allow the model to selectively pay attention to lung areas possibly infected with TB. [9] emphasized that attention modules help in more accurate feature localization, which leads to more interpretable and accurate predictions. Pulmonary Tuberculosis (TB) is a major health issue in developing countries. Early detection through Chest X-ray (CXR) imaging is crucial to its containment. A CBAM-ResNet model with a two-stage warmup-to-finetuning (W2F) method for improving the accuracy of TB detection is proposed by this study. The model, using data augmentation and SGD with gradient centralization, had an accuracy of 91.1% on the Shenzhen dataset and 86.4% on the Montgomery dataset. The technique provides an important tool to assist early diagnosis of TB and support healthcare personnel [28].

Segmentation-Assisted Classification: Segmentation approaches have been incorporated into TB detection systems to separate lung areas from the background, making classification more accurate. Mask R-CNN and U-Net are widely used segmentation models that aid in drawing attention to important areas in CXR images. [11, 14, 15, 17] segmentation-assisted classification approach where segmented lung areas were fed into a classifier, filtering out noise and unnecessary features. The Proposal Networks (RPN) are used in order to make efficient localization of unusual regions before final classification [13, 16].

k612

Lightweight & Mobile Models: For remote or low-resource environments, light models such as EfficientNet and MobileNet are increasingly popular as they use less computation and provide quicker inference times. [8, 10, 12] highlighted the use of these models for real-time screening through portable devices or mobile-based healthcare. These models guarantee deployment viability in underdeveloped regions with limited medical facilities. Deep learning has proved to be an effective discriminator in the detection of TB, breaking the limits of conventional manual processes. Lite-YOLOv8, an optimized light-weight model, obtained a mean average precision (mAP) of 86.3% in detecting Tubercle Bacilli from sputum samples with considerably less parameters and computational cost. Similarly, CNN models implemented on chest X-ray (CXR) images have proved to be extremely accurate for diagnosing TB with reduced human errors and increased speed of detection. While some models provide better accuracy, their computation costs render them resource-intensive in resource-constrained settings where real-time use could be hindered [24, 31, 32].

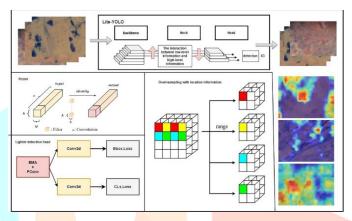


Fig. 2. Yolov8 [32]

Explainable AI (XAI) in TB Detection: XAI techniques have been vital in medical imaging to assure transparency in decision-making. Visualization methods like Grad-CAM, SHAP, and LIME have been used to create heatmaps or plots of feature importance, assisting radiologists in understanding the model's attention regions during TB detection.

Grad-CAM visualization to demarcate lung abnormalities in CXR images, improving clinical trust and AI system acceptance. This paper is concerned with the detection and diagnosis of various airway diseases such as pneumoconiosis, pulmonary embolism, Covid-19, tuberculosis, and lung cancer through deep learning techniques [3]. Different CNN models such as InceptionResNetV2, MobileNet, Xception, ResNet152, EfficientNetV2M, and DenseNet169 were utilized on chest X-ray images and CT scan images. Sharpening techniques such as sharpening techniques were utilized for sharpening images to enhance image quality for appropriate feature extraction. Among all models, InceptionResNetV2 achieved a highest accuracy of 99.15% along with high precision, recall, and F1-score [29, 30, 34].

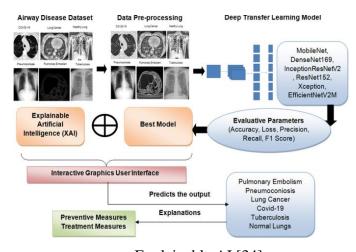
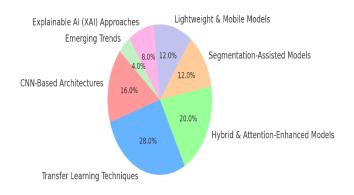


Fig. 3. Explainable AI [34]

TABLE II. SUMMARY OF TB DETECTION APPROACHES

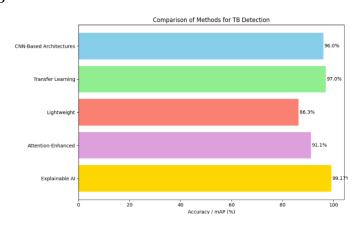


Approach	proach Models/Techniques		
ripproden	Used	Key Advantages	
CNN-Based	Basic CNN,	Strong	
Architectures	Dropout, Batch	baseline,	
(Sidume et al.,	Normalization	Robust feature	
2024)		extraction	
Transfer	VGG, ResNet,	Efficient	
Learning	DenseNet, training, Better		
Techniques	InceptionV3 accuracy		
(Singh et al.,		limited data	
2024; Godbin			
et al., 2025)			
Hybrid &	Fuzzy CNN,	Focused	
Attention-	Attention Gates,	learning,	
Enhanced	Spatial Attention	Handles	
(Ieracitano et		uncertainty	
al., 2022;		//	
Sanida et al.,			
2024)		/ 1 1 1	
Segmentation-	U-Net, Mask R-	Better	
Assisted	CNN, RPN	localization,	
Models		Noise	
(Sharma et al.,		reduction	
2022)			
Lightweight &	EfficientNet,	Real-time	
Mobile	MobileNet	detection, Low	
Models		computational	
(Sidume et al.,		load	
2024)			
Explainable AI	Grad-CAM, SHAP,	Interpretability,	
(XAI) (Sharma	LIME	Clinician trust	
et al., 2022)			

Fig. 4. Deep Learning Techniques for TB detection

SUMMARY TB DETECTION APPROACHES TABLE III.

Method	Model/Tec hnique	Advantages	Accur acy/A
	Used		UC
			Achiev
			ed
CNN-	Basic CNN	Strong	Accura
Based	with	feature	cy=
Architec	Convolution	extraction,	96%,
tures	al, Pooling,	handles	AUC =
	Fully	textural &	0.97
	Connected	spatial	
	Layers +	features,	
	Dropout &	prevents	
	Batch	overfitting	
	Normalizati		
	on	_	
Transfer	Pre-trained	Effective Effective	Accura
Learning	Models like	with small	cy 80%
(TL)	VGG,	dat <mark>asets,</mark>	- 97%,
	ResNet,	automatic	High
	DenseNet,	fe <mark>ature</mark>	AUC
-	InceptionV3	extraction,	
		faster	
		convergenc	
		e, h <mark>igher</mark>	_
		precision	
Lightwei	Rotation,	Reduces	mAP=
ght	Flipping,	overfitting,	86.3%
- 15	Contrast	expands	
	Adjustment	dataset	
		variability	
Attentio	SGD,	prevents	Accura
n-	warmup-to-	overfitting	cy=
Enhance	finetuning		91.1%
d			
Explaina	Sharpening	higher	ACC=
ble AI	techniques,	precision	99.17%
	feature	•	
	extractor		



Comparison of TB detection methods

A. Emerging Trends in TB Detection

Current studies reveal some emerging directions of DL-based TB detection:

TABLE IV. EMERGING TRENDS

Trend	Descrpition
Self-	Utilizes unlabelled data to pre-
Supervised	train models before fine-tuning
Learning	on limited TB datasets
Multi-modal	Combines CXR images with
Fusion	clinical data (e.g., patient
	history, symptoms) for
	improved predictions.
Federated	Distributed model training
Learning	across multiple locations
	ensuring patient data privacy
	without data sharing.

These advancements show promising potential for developing more accurate, efficient, and privacy-preserving TB diagnostic tools.

VI. CHALLENGES AND LIMITATIONS IN APPLYING DEEP LEARNING TECHNIQUES TO TB DETECTION

Although there has been continuous success with Deep Learning (DL) methods in medical image analysis, there are some limitations and challenges in successfully applying them to detect TB from Chest X-ray (CXR) images [20]. The constraints stretch across data-level, model-level, and deployment-level.

A.Data Imbalance & Annotation Scarcity:

One of the primary challenges in TB detection with DL is the data imbalance problem. The majority of the publicly available TB CXR datasets have a significantly larger number of non-TB (normal) images than TB-positive images. This imbalance usually results in biased learning, where the model starts learning better for normal images while not learning rare TB cases as efficiently [25, 26].

Moreover, there is a serious shortage of annotations. Highly expert radiologists or pulmonologists are needed for accurate TB lesion annotation in CXR images, and manual labelling is not only time-intensive but also costly. This constrains the prevalence of well-labelled datasets essential in training supervised DL models.

B. CXR Dataset Variability & Quality:

CXR images employed to detect TB vastly differ in image quality based on variations in:

- Radiography machinery
- Imaging protocols
- Posture of the patient
- Noise and artifacts
- Illumination and contrast problems

This kind of variability tends to lead to deterioration in the performance of DL models when they are tested on unexpected data from new clinical environments or locations [11, 12]. Besides, poor quality or out-of-focus images, commonly found under low-resource setups, also make it challenging to achieve precise feature extraction and categorization.

IJCR

C. Issues of Generalizability Across Population & Device Types

Deep learning models that are trained on individual datasets (frequently from a single hospital or region) do not necessarily generalize to heterogeneous populations because:

- Anatomical variation between ethnic groups
- Varying rates of TB sub-types in different regions
- Variation in imaging conditions across devices and hospitals

This is a domain shift problem that restricts the robustness of TB detection systems in actual multi-center settings [18, 19].

E. Interpretability of Deep Learning Models

DL models, particularly CNN-based models, have been popularly criticized as black boxes. Clinicians require models not just to be precise but also explainable in order to facilitate clinical decision-making. The lack of explanations by models for their predictions lowers the confidence of clinicians in adopting models, which affects acceptance [21, 22, 24].

Visualization methods such as Grad-CAM, LIME, and SHAP provide certain levels of interpretability but should become more improved and streamlined for use in medicine.

F. Deployment in Low-resource **Settings**

TB is predominantly found in low- and middle-income countries (LMICs), where access is limited to:

- Sophisticated computing infrastructure
- Internet connectivity
- Cloud storage
- Expert IT professionals

It is often the case that most cutting-edge DL models demand excessive computational resources for both training and prediction, thus rendering their deployment difficult in distant or rural settings [23]. The requirement for GPU-based systems restricts it to widespread use in low-resource environments.

G. Ethical & Privacy Concerns

Utilizing patient imaging data raises significant privacy and ethical concerns:

- Ensuring patient data privacy
- Proper handling of sensitive health data
- Compliance with data protection law like GDPR or HIPAA
- Challenges of misuse or data loss

Moreover, using publicly available CXR datasets seldom offers insight into patient consent or data-sharing principles, which is an ethical issue [21, 25].

VII. FUTURE DIRECTIONS

To tackle the current challenges and fill the gaps in TB detection with Deep Learning (DL), many prospective future directions are being energetically explored. These directions are meant to improve model robustness, fairness, explainability, and real-world usability, especially in diverse and resource-scarce settings.

A. Creating Large Multi-center TB-specific Datasets

One of the greatest future needs is the creation of large-scale, multi-center, and TB-specific Chest X-ray (CXR) datasets. The majority of current datasets are small in size, low in diversity, and lacking in representativeness. Hospitals, government health departments, and international research centers must work together to produce datasets that cover:

- Multiple geographic locations
- Diverse patient populations (age, gender, ethnicity)
- Variations in TB strains and disease stages
- Different imaging equipment and acquisition settings

Such datasets will make sure that DL models are not biased against a particular population and can generalize well across different clinical settings. These datasets also need to prioritize standardized annotation protocols with TB specialists and radiologists to ensure high-quality labels.

B. Lightweight & Explainable Model Development

The future of TB detection models must strike a balance between interpretability and accuracy and computational efficiency. Lightweight models can be obtained using techniques like:

- Model Compression
- Removal of redundant layers or neurons
- Quantization for smaller memory usage

Explainability is similarly crucial for medical applications. Adding Explainable AI (XAI) tools such as Grad-CAM, LIME, and SHAP will allow clinicians to identify why a model produces certain predictions. This is essential to generate trust and transparency in computer-aided TB diagnosis systems, particularly upon deployment in clinical practice or rural health delivery.

C. Integration with Mobile Health (mHealth) Applications

The increasing smartphone and mobile technology penetration in the healthcare sector presents a special opportunity to incorporate DL-based TB detection into mobile health (mHealth) applications. The apps can:

- Enable point-of-care TB screening
- Offer rapid analysis independent of internet connectivity
- Empower non-specialist staff and community health workers
- Support early-stage TB detection in remote and underserved regions

Subsequent studies need to concentrate on creating easy-to-use, light-weight mobile apps to process CXR images through on-device DL models with high accuracy and reliability.

E. Cross-region Adaptation using Federated Learning & Transfer Learning

Data privacy issues tend to restrict sharing of sensitive healthcare images between institutions. Federated Learning (FL) solves the problem by enabling collaborative model training without sharing raw data. Model updates are shared instead to ensure data protection [23].

Further, Transfer Learning would be utilized for tailoring pre-trained models for detecting TB into the unique locations or populations of patients where minimal local data exist. Mixing FL with Transfer Learning would assist in building even more generalizable and privacy-enabled TB diagnosis models around the world by various locations.

F. Model Standardization & Benchmarking Frameworks

A significant research lacuna exists in the lack of uniform protocols for testing and benchmarking DL models for TB detection. Urgently, there is a need to develop:

- Uniform benchmarking datasets
- Standardized performance metrics such as Accuracy, Sensitivity, Specificity, AUC, and F1-Score
- Clear reporting guidelines
- Open-source platforms for unbiased model comparisons

Standardization will assist the research community in comparing various TB detection models under uniform and comparable

settings, promoting scientific progress.

G. Emphasis on Latent TB Detection

Existing studies mainly focus on the detection of active TB from CXR images. Yet, latent TB infection (LTBI), which is symptom-free, is a major challenge. Future studies must focus on creating DL models that can estimate the probability of latent TB or reactivation based on:

- Subtle imaging patterns
- **Biomarkers**
- Clinical and laboratory data

Early detection of latent TB would revolutionize the face of TB control and prevention globally.

H. Multi-modal Data Use (CXR + Symptoms + Patient History)

Using more than one source of data holds a very promising future direction. Relying only on CXR images, there can be no full representation of a patient's status in all situations. Future TB detection systems must explore the following combinations:

- Radiological Data (CXR Images)
- Clinical Signs (Cough, Fever, Weight Loss)
- Patient Background (History of past TB exposure, Immunity level)
- Lab Results (Sputum analysis, GeneXpert reports)

These multi-modal DL models will lead to improved, more accurate, and patient-centric TB identification, mimicking the holistic approach employed by doctors when diagnosing patients.

VIII. CONCLUSION

Deep learning is now a cutting-edge technology for medical image analysis, particularly in detecting tuberculosis (TB) via chest X-rays (CXR). The literature reviewed here introduces a diverse array of CNN models, transfer learning techniques, combination models, and explainable AI methods that have significantly improved the accuracy of TB detection.

Nevertheless, some of the challenges remain, such as data imbalance, low image quality, low generalizability, and black-box nature of DL models. Solving these challenges needs joint efforts in constructing large-scale datasets, enhancing model explainability and guaranteeing privacy-preserving AI solutions.

In the future, responsible development of AI is critical so that TB detection systems are deployable, interpretable, and ethical in practical environments, particularly low-resource settings. Researchers and professionals need to aim for lightweight, privacy-conscious, and standardized solutions that bridge the gap between clinical practice and research.

REFERENCES

- Sidume F, Muchuchuti S, Chengetenai G, Tamukate R, Ntwaetsile K, Ntekeng P. Deep Learning Techniques for Tuberculosis Detection on Chest X-Rays in Low-Resource Settings: A Survey of Opportunities and Challenges. In2024 International Conference on Electrical and Computer Engineering Researches (ICECER) 2024 Dec 4 (pp. 1-10). IEEE.
- [2] Godbin AB, Jasmine SG, Narendranathan SK. Exploring Recent Developments in Radiographic Chest Disease Detection Through Deep Learning Models. Deep Learning and Computer Vision: Models and Biomedical Applications: Volume 1. 2025 Mar 9:181-97.
- [3] Sharma N, Saba L, Khanna NN, Kalra MK, Fouda MM, Suri JS. Segmentation-based classification deep learning model embedded with explainable AI for COVID-19 detection in chest X-ray scans. Diagnostics. 2022 Sep 2;12(9):2132.
- [4] Sanida T, Sanida MV, Sideris A, Dasygenis M. Optimizing Lung Condition Categorization through a Deep Learning Approach to Chest X-ray Image Analysis. BioMedInformatics. 2024 Sep 10;4(3):2002-21.
- [5] Ieracitano C, Mammone N, Versaci M, Varone G, Ali AR, Armentano A, Calabrese G, Ferrarelli A, Turano L, Tebala C, Hussain Z. A fuzzy-enhanced deep learning approach for early detection of Covid-19 pneumonia from portable chest X-ray images. Neurocomputing. 2022 Apr 7;481:202-15.
- [6] Singh Y, Tripathi N, Yadav S, Gupta N, Kumar AU, Ramesh JV. Transfer Learning and Chest X-ray-Based Image Processing and Modeling to Detect COVID-19. InSmart Technologies in Healthcare Management 2024 (pp. 240-263). CRC Press.
- [7] Kim TH, Krichen M, Ojo S, Alamro MA, Sampedro GA. TSSG-CNN: A Tuberculosis Semantic Segmentation-Guided Model for Detecting and Diagnosis Using the Adaptive Convolutional Neural Network. Diagnostics. 2024 Jun 1;14(11):1174.
- [8] Khan H, D'Souza M, Babu KS, Ramesh JV, Praneeth KR, Rao PL. Enhancing Tuberculosis Diagnosis and Treatment Outcomes: A Stacked Loopy Decision Tree Approach Empowered by Moth Search Algorithm Optimization. International Journal of Advanced Computer Science & Applications. 2024 Aug 1;15(8).
- [9] Sanida T, Dasygenis M. A novel lightweight CNN for chest X-ray-based lung disease identification on heterogeneous embedded system. Applied Intelligence. 2024 Mar;54(6):4756-80.
- [10] Kandasamy HP. Enhancing chest X-ray analysis: a comparative study of deep learning models with explainable AI (Doctoral dissertation).
- [11] Shafi SM. An Analysis Of Deep Learning In CXR Medical Image Processing. Journal of Pharmaceutical Negative Results. 2022 Oct 6;13.

- [12] Induri S, Durgasree MR, Sukumar B, Reddy GR, Reddy YS, Reddy JJ. Automated Tuberculosis Detection from Chest X-Rays Using a ResNet50 Architecture. Milestone Transactions on Medical Technometrics. 2025 Feb 21;3(1):133-44.
- [13] Eluri RK, Tanuja P, Rao MV, Lavanya V, Mokshagna M. Optimizing the Powerhouse: Fine-Tuning CNNs for Superior Lung Disorder Detection. In2024 First International Conference on Innovations in Communications, Electrical and Computer Engineering (ICICEC) 2024 Oct 24 (pp. 1-7). IEEE.
- [14] Arora R, Bansal V, Buckchash H, Kumar R, Sahayasheela VJ, Narayanan N, Pandian GN, Raman B. Albased diagnosis of COVID-19 patients using X-ray scans with stochastic ensemble of CNNs. Physical and Engineering Sciences in Medicine. 2021 Dec;44:1257-71.
- [15] Carlos NR. Development of a deep learning-based algorithm to predict pneumonia cases fram chest X-ray images (Master's thesis, Universidade do Minho (Portugal)).
- [16] Mittal A, Kaur N, Gupta A, Singh G. Deep residual learning-based denoiser for medical X-ray images. Evolving Systems. 2024 Dec;15(6):2339-53.
- [17] Zhang H, Lv Z, Liu S, Sang Z, Zhang Z. Cn2a-capsnet: a capsule network and CNN-attention based method for COVID-19 chest X-ray image diagnosis. Discover Applied Sciences. 2024 Apr 4;6(4):190.
- [18] Rahman T, Khandakar A, Kadir MA, Islam KR, Islam KF, Mazhar R, Hamid T, Islam MT, Kashem S, Mahbub ZB, Ayari MA. Reliable tuberculosis detection using chest X-ray with deep learning, segmentation and visualization. Ieee Access. 2020 Oct 15;8:191586-601.
- [19] Kant S, Srivastava MM. Towards automated tuberculosis detection using deep learning. In2018 IEEE Symposium Series on Computational Intelligence (SSCI) 2018 Nov 18 (pp. 1250-1253). IEEE.
- [20] Munadi K, Muchtar K, Maulina N, Pradhan B. Image enhancement for tuberculosis detection using deep learning. IEEE Access. 2020 Dec 2;8:217897-907.
- [21] Norval M, Wang Z, Sun Y. Pulmonary tuberculosis detection using deep learning convolutional neural networks. InProceedings of the 3rd International Conference on Video and Image Processing 2019 Dec 20 (pp. 47-51).
- [22] Iqbal A, Usman M, Ahmed Z. An efficient deep learning-based framework for tuberculosis detection using chest X-ray images. Tuberculosis. 2022 Sep 1;136:102234.
- [23] Lakhani P, Sundaram B. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks. Radiology. 2017 Aug;284(2):574-82.
- [24] Chithra RS, Jagatheeswari P. Severity detection and infection level identification of tuberculosis using deep learning. International Journal of Imaging Systems and Technology. 2020 Dec;30(4):994-1011.
- [25] Hwa SK, Bade A, Hijazi MH, Jeffree MS. Tuberculosis detection using deep learning and contrastenhanced canny edge detected X-Ray images. IAES International Journal of Artificial Intelligence. 2020 Dec 1;9(4):713.
- [26] Singh V, Gourisaria MK, Harshvardhan GM, Singh V. Mycobacterium tuberculosis detection using CNN ranking approach. InAdvanced Computational Paradigms and Hybrid Intelligent Computing: Proceedings of ICACCP 2021 2021 Dec 7 (pp. 583-596). Singapore: Springer Singapore.
- [27] Ahsan M, Gomes R, Denton A. Application of a convolutional neural network using transfer learning for tuberculosis detection. In2019 IEEE international conference on electro information technology (EIT) 2019 May 20 (pp. 427-433). IEEE.
- [28] Liu Y, Liu F, Tu S, Liu S, Han B. Attention enhanced residual network for automatic pulmonary tuberculosis detection on chest radiographs images. Digital Signal Processing. 2025 Apr 1;159:104975.
- [29] Patel PJ, Yevle D, Diwan D, Ranga S, Gandhi K, Dumasia S, Nayak R. Performance analysis of deep learning algorithms for classifying chronic obstructive pulmonary disease. Journal of Integrated Science and Technology. 2024;12(2):745-.
- [30] Yevle DV, Mann PS. Artificial intelligence based classification for waste management: A survey based on taxonomy, classification & future direction. Computer Science Review. 2025 May 1;56:100723.
- [31] Raziq A, Ahmed N, Khan S, Bizanjo M, Baloch R. Development of Light-Weight Convolutional Neural Network Model to Diagnose Tuberculosis. VFAST Transactions on Software Engineering. 2022 Sep 30;10(3):43-50.

- [32] Li Y, Qiu H, Xian S, Li L, Zhao Z, Deng Y, Tang J. Lite-YOLOv8: a more lightweight algorithm for Tubercle Bacilli detection. Medical & Biological Engineering & Computing. 2025 Jan;63(1):195-211.
- [33] Özkurt C. Improving Tuberculosis Diagnosis using Explainable Artificial Intelligence in Medical Imaging. Journal of Mathematical Sciences and Modelling. 2024 Mar;7(1):33-44.
- [34] Koul A, Bawa RK, Kumar Y. Enhancing the detection of airway disease by applying deep learning and explainable artificial intelligence. Multimedia Tools and Applications. 2024 Sep;83(31):76773-805.

