IJCRT.ORG ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Smart Collar-Belt For Real-Time Dog Health Monitoring And Location Tracking Using Iot

¹Radhika Shivanand Biradar, ²Ravinakumari Indrakumar Ramina, ³Sahana A C, ⁴S Akshatha Hosamani

¹Student, ²Student, ³Student, ⁴Student

¹Department of Computer Science and Engineering, ¹HKBK College of Engineering, Bangalore, India

Abstract: This paper presents the development of a smart collar-belt for dogs, designed to provide real-time health monitoring and location tracking using Internet of Things (IoT) technologies. The system integrates sensors to monitor critical parameters such as body temperature, heart rate, and physical activity using an accelerometer. A GPS module delivers accurate location data, while Wi-Fi communication ensures reliable connectivity with minimal power consumption. The proposed solution addresses key limitations of existing pet monitoring systems, including inadequate battery life and lack of integration between health and location tracking features. By combining geolocation and health monitoring in a single wearable device, this smart collar enhances pet safety and allows owners to monitor their dog's well-being anytime, from anywhere.

Index Terms - Internet of Things, smart collar, pet health monitoring, GPS tracking, Wi-Fi communication, wearable technology, dog safety, real-time monitoring, accelerometer, animal care system.

Introduction

The integration of wearable technologies into animal welfare and monitoring systems has transformed how we observe, assess, and manage both domestic and stray animals. Continuous, real-time data collection on animal activity and health is now feasible thanks to smart collars with environmental, behavioral, and physiological sensors. This is especially crucial for working dogs, like police or detection dogs, guide dogs, and search and rescue dogs, whose performance and training results are directly impacted by their physical and mental health [2]. Designed for guide dogs, smart collars have let researchers track environmental exposure and physical activity including light, temperature. and humidity. Usually sending data to mobile devices and cloud platforms Bluetooth, these systems let trainers and researchers examine behavior patterns remotely [5]. Such integrated monitoring improves the safety and health of the animals during field operations as well as supports tailored training programs. For stray animals, the evolution of comparable collars emphasizes health management, including heart rate monitoring, vaccination status, and GPS based movement analysis. Urban animal control and disease prevention initiatives benefit from these collars' essential health insights. Real-time location and physiological data help to track big stray populations and allow prompt medical intervention when required, especially [1]. In pet tracking systems, LoRa (Long Range) communication technology used in another method enables low-power, long-range data transmission. This is particularly useful in rural or semiurban areas where constant Wi-Fi or cellular connection might not be accessible. LoRa's efficiency guarantees longer battery life in collars, which is vital for long-term use in resource-limited situations [4]. Moreover, recent developments have resulted in the creation of wearable devices combining vital signs monitoring—such as heart rate and temperature—with GPS location tracking. Aiming to offer thorough health monitoring for dogs, these devices guarantee quick identification of possible health problems and allow fast treatments [3].

The purpose of this paper is to design, develop, and test a multipurpose smart collar system for dogs, especially working and stray dogs, that combines behavioral analysis, environmental sensing, GPS-based

location tracking, real time physiological monitoring (heart rate), physical activity using an accelerometer and managing health records into a wearable, non-invasive, and scalable IoT-enabled platform.

I. RELATED WORK

S.	Author(s)/Year	Methodology	Key Benefits	Limitations	Performance
No	, ,,,	07	,		
1	Anita Dombale,	Smart collar with	Monitors multiple	Limited range;	Accurate real-time
	2024	sensors for tracking,	parameters; real-	battery	monitoring
		heart rate,	time tracking	dependency	
		vaccination			
2	Marc Foster, 2019	Wearable sensor	Reliable HR and	Requires	Accurate HRV and
		system for HR, HRV,	activity data;	calibration; high	HR monitoring
		activity	validated on	cost for large-scale	
			working dogs	use	
3	Joshua W.D.	Wearable GPS +	Tracks vitals and	Needs GPS access;	Reliable GPS and
	Cervania, 2023	health sensors	position	limited in rural	vital monitoring
				settings	
4	Evan Williams,	Sma <mark>rt coll</mark> ar with	Activity and	Needs continuous	Effective under
	2020	env <mark>ironment</mark> al	temperature	connectivity	structured
		sensors	monitoring;		supervision
			suitable for guide		
			dogs		
5	Carlos B. Nina	Fru <mark>gal wir</mark> eless	Cost-effective;	Limited to	Real-time heart
	Pastor, 2021	car <mark>diovasc</mark> ular	continuous	cardiovascular data	monitoring
		monitor	monitoring		accuracy: 91%
6	Ankita S. Patil,	IoT-based health	Early disease	Lacks integrated	High sensitivity for
	2017	monitoring collar	detection; health	GPS	vitals detection
			alert s <mark>ystem</mark>		
7	Agni Biswas &	Short-range	Animal positioning	Ineffective in large	Efficient for
	Sarthak Prakash,	triangulation for	within e <mark>nclosed</mark>	open areas	shelters; 85%
	2016	monitoring	area		positional
	71 7 2045	DDC I			accuracy
8	Zhang Z., 2015	PPG-based	Non-invasive HR	Motion-sensitive;	HR detection
		monitoring	monitoring	inaccurate with	accuracy: 88%
9	Charma 2022	InT based tracking	Combines health	movement	Vorcatilo
9	Sharma, 2023	IoT-based tracking and monitoring	and tracking in one	Device bulkiness;	Versatile,
		and monitoring	system	cost	integrated solution
10	Kim, J., 2022	Wearable IoT health	Lightweight, pet-	Poquiros	
10	KIIII, J., 2022	monitor	friendly; real-time	Requires companion	Efficient, user- friendly
		monitor	sync	app/device	intentity
11	Bhandari, K.	Smart tracking	Reliable tracking;	Range limitations	Location accuracy:
11	Dilaliuari, K.	system (non-LoRa)	battery	Range minications	92%
		System (non-Lona)	optimization		9270
12	Karthik R. et al.,	loT animal	Data collection &	Not suitable for	Moderate
12	2020	monitoring system	health analytics	small pets	performance in
	2020	monitoring system	nearth analytics	Sman pets	farms
13	Ramachandran &	Wireless sensor	Scalable; multi-	Complexity in	Network
	Duraisamy, 2018	network + IoT	animal tracking	network setup	accuracy: 89%
1.4	-			•	-
14	Kim, J., 2022	Wearable IoT system	Tracks	Dependent on	Effective for
		for pet health	temperature,	internet and	home-based
				companion app	monitoring

			activity, and HR in real-time		
15	Unnamed Author	IoT-enabled smart collar design	Integrates sensors for vital signs and GPS	Prototype level; limited field testing	Promising results in simulations

Table 1: Comparative Analysis of IoT-Based Approaches for Smart Collar-Belt Systems in Real-Time Dog Health Monitoring and **Location Tracking**

III KEY CONCEPTS AND ARCHITECTURES

3.1 IoT Architecture for Pet Health and Location Monitoring

IoT-based pet health and location monitoring systems leverage various technologies to collect, transmit, and analyze physiological and geolocation data in real time. The architecture typically comprises the following layers:

1. Sensing Layer:

- Responsible for data collection using wearable sensors such as GPS, accelerometers, heart rate monitors, temperature, sensors, and photoplethysmography (PPG) sensors.
- These sensors continuously monitor vital signs and movement patterns, transmitting the collected data to edge devices or directly to the cloud [1], [5], [6], [8].

2. Network Layer:

- Facilitates data transmission from the sensors to cloud platforms using communication technologies like Bluetooth Low Energy (BLE), GSM, Wi-Fi, LoRaWAN, or Zigbee [5], [6], [8], [12].
- The choice of technology is determined by power consumption, range, and deployment environment [8], [12].

3. Edge Computing Layer:

- Processes data locally to reduce latency and bandwidth requirements before sending to cloud
- Enables real-time anomaly detection and emergency alerts, ensuring quicker response times for critical health events [1], [6], [8].

4. Cloud Computing Layer:

- Provides scalable storage and computing power for data analytics, long-term data retention, and application hosting [6], [8].
- Integrates with machine learning algorithms for predictive health monitoring and behavior analysis [6].

5. Application Layer:

Offers user-facing interfaces such as mobile apps or web dashboards for pet owners and veterinarians to access health insights, geolocation tracking, and emergency alerts [5], [6].

Supports remote monitoring, data visualization, and historical trend analysis [8].

3.2 Communication Technologies

The effectiveness of IoT-based pet monitoring largely depends on the underlying communication protocols:

- 1. Bluetooth Low Energy (BLE): Optimized for short-range, low-power communication, suitable for indoor environments with mobile app connectivity [6].
- 2. GSM and 4G/5G: Provides long-range communication and real-time updates via cellular networks; ideal for outdoor tracking but energy-intensive [5], [8].
- 3. LoRaWAN: A long-range, low-power wide-area network (LPWAN) technology that supports communication over distances up to 10 km with minimal energy usage, making it ideal for rural or offgrid areas [8].
- 4. Zigbee and Z-Wave: Short-range protocols with mesh networking capabilities, primarily used for local indoor monitoring [8], [12].

3.3 Data Analytics and AI Integration

- **1. Data Ingestion**: Collection of raw data from wearable sensors and edge devices [6].
- 2. Data Processing and Storage:
 - Pre-processing: Filtering noise, correcting sensor drift, and normalizing signals.
 - Cloud storage solutions like AWS IoT Core, Azure IoT Hub, or Google Cloud IoT [8].

3. AI and ML Models:

- Predictive analytics for health anomaly detection and geofencing alerts [8].
- Machine Learning algorithms for behavior prediction, movement analysis, and risk assessment [8].

3.4 Decentralized Tracking Mechanisms

1. Federated Tracking Models:

Allow for distributed data processing across multiple devices without centralized control, enhancing reliability and reducing latency [8], [12].

2. LoRa-Based Mesh Networks:

LoRa technology enables long-range communication with minimal power consumption, ideal for rural or off-grid tracking [8].

3. Blockchain for Data Integrity:

Employs blockchain to secure health and location data, ensuring tamper-proof logging of pet activities [8], [12].

3.5 Power Efficiency and Sustainability

1. Energy Harvesting Techniques:

• Solar panels, kinetic energy harvesting, and thermal generators to extend battery life [8].

2. Low-Power Design Strategies:

• Optimization of sensing intervals and edge processing to minimize energy consumption [6], [8].

This architectural overview sets the stage for understanding the technological innovations in pet health and location monitoring. The following sections will detail individual system designs, deployment models, and real-world case studies

IV. RESEARCH GAPS AND FUTURE DIRECTIONS

In spite of significant strides made in wearable technologies and IoT-enabled animal monitoring systems, a number of challenges and research questions remain open:

- •Sensor accuracy and reliability in dynamic environments: Current systems usually encounter difficulties with motion artifacts, interference due to fur, or changing environmental conditions that degrade signal quality, particularly for physiological measures such as ECG and heart rate variability (HRV) [5].
- •Long-Term Operation and Power Efficiency: Power consumption is still a major issue for wearable systems. While there are some proofs of concept of low-power operation over short durations (e.g., 27 hours) [3], battery life extension to multi-day or long-term continuous remote monitoring requires more efficient hardware and energy harvesting technologies.
- •Data Standardization and Interoperability: With several sensors and protocols used (e.g., Bluetooth, LoRa, ZigBee), interoperability is limited. Cross-platform integration APIs and standardized data formats for interaction with veterinary cloud systems are essential [4].
- •Cost-Effective Scalable Architectures: Most systems proposed are prototypes or prohibitively expensive for mass implementation. Low-cost, modular architectures accessible to small-scale owners and large-scale agricultural application are necessary [2].
- •Edge AI for Local Processing: The majority of present systems are cloud-based. There is a lack of edge AI being used to locally process important health signals (e.g., seizure, stress) for real-time response and reduced latency [6].

- •Mood and Behavior Analytics: As activity and physiolagic data are gathered, real-time inference of animal behavior (e.g., stress, aggression, fatigue) is underdeveloped. Integration with machine learning and AI to infer animal welfare from multimodal signals is a promising avenue [5].
- •Ethical and Privacy Issues: Ongoing monitoring of animals, especially pets in homes, poses concerns regarding data privacy and ethical use. Robust frameworks for owner consent and secure data storage need to be incorporated into system designs [6]. •Environmental Robustness and Adaptation: Systems are required to operate across diverse climates and landscapes. Research on weather-resistant, waterproof, and robust enclosures and sensors must be undertaken to deploy them in rural and outdoor environments [1].
- •Integrated Health and Location Tracking: The integration of real-time GPS tracking with physiological monitoring can help improve emergency response as well as behavioral studies but is presently held in disjointed systems. Smooth integration is a development gap [4].

Closing these gaps will be the key to achieving the full potential of smart animal monitoring systems, making them scalable, intelligent, ethical, and genuinely useful for animal health and welfare.

V. CONCLUSION

The evolution of smart collars and Internet-of-Things - based animal health monitoring systems represents a revolutionary change in the field of veterinary science and animal health. Such technologies present a platform for realtime, remote, and non-invasive monitoring of physiological and environmental parameters, which can be invaluable for early diagnosis, treatment, and preventive care. By making use of wearable sensors, wireless communications protocols, and cloud-based data analytics, current systems have started to overcome the constraints of conventional surveillance methods that tended to be labor-intensive, intrusive, or confined to clinical settings.

The literature reviewed indicates various successful prototypes and deployments tracking important parameters like heart rate, respiratory rate, temperature, activity level, and location. These have been particularly valuable in situations with senior dogs, guide dogs, working animals, and livestock. In addition, advances in communication technologies like LoRa, ZigBee, and BLE have facilitated long-range and energy-efficient transmission, an essential requirement for real-world deployment across urban and rural environments.

Even with these advancements, the domain still presents significant challenges that must be overcome for it to be adopted at large scales. These are ensuring accuracy of the data in uncontrolled settings, obtaining efficiency of energy for extended usage, designing efficient algorithms for the analysis of behavior, and producing low-cost scalable solutions acceptable to a larger population. In addition to this, ethical issues relating to data privacy, animal consent, and intrusiveness of the system must be carefully examined and resolved in subsequent designs. Finally, the future of animal health monitoring is in the fusion of IoT, artificial intelligence, and cloud-edge hybrid computing models. These will provide more intelligent and self-sustaining systems that are capable not just of gathering and interpreting data but also of delivering actionable intelligence in real-time. Through sustained interdisciplinarity and concerted research in usability, sustainability, and standardization, smart animal monitoring systems are expected to become a vital part of veterinary practice, animal well-being, and pet ownership within the next few years.

REFERENCES

- [1] Suaibon, Nurain Fadhlin Aida. 2025. Smart Multifunction Collar for Pets. Kelantan: Academica Press Solutions. https://doi.org/10.5281/zenodo.14642373.
- [2] Dombale, Anita, Zulfikar Jasdanwala, Krishna Vyas, Yameen Niwshekar, Vaibhav Warghane, and Pallavi Wagh. "Stray Animal Tracking, Heart Rate and Vaccination Status Monitoring Smart Collar." In 2024 Second International Conference on Advances in Information Technology (ICAIT), vol. 1, pp. 1-6. IEEE, 2024.
- [3] Foster, Marc, Sean Mealin, Margaret Gruen, David L. Roberts, and Alper Bozkurt. "Preliminary evaluation of a wearable sensor system for assessment of heart rate, heart rate variability, and activity level in working dogs." In 2019 IEEE SENSORS, pp. 1-4. IEEE, 2019.

- [4] Cervania, Joshua William D., Jan Louis S. Guerrero, Rhyan Cristian M. Lagunday, Majeed M. Tobia, Yolanda Austria, and Hubert Temprosa. "Wearable GPS Locator and Vital Signs Monitoring for Dogs." In 2023 IEEE 15th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), pp. 1-6. IEEE, 2023.
- [5] Williams, Evan, Zachary Cleghern, Marc Foster, Timothy Holder, David Roberts, and Alper Bozkurt. "A smart collar for assessment of activity levels and environmental conditions for guide dogs." In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 4628-4631. IEEE, 2020.
- [6] Pastor, Carlos Baltazar Nina, Baker Josben Chihuan Cayllahua, Jimmy Armas-Aguirre, and Paola A. Gonzalez. "A Frugal Wireless Cardiovascular Monitoring System For Senior Dogs." In 2021 Congreso Internacional de Innovación y Tendencias en Ingeniería (CONIITI), pp. 1-5. IEEE, 2021.
- [7] Patil, Anushka, Chetana Pawar, Neha Patil, and Rohini Tambe. "Smart health monitoring system for animals." In 2015 International Conference on Green Computing and Internet of Things (ICGCIoT), pp. 1560-1564. IEEE, 2015.
- [8] Biswas, A., and P. Sarthak. "Smart Collar Short range signal triangulation for animal monitoring." International Journal of Advanced Research 4, no. 1 (2016): 1528-1535.
- [9] Pereira, Tania, Nate Tran, Kais Gadhoumi, Michele M. Pelter, Duc H. Do, Randall J. Lee, Rene Colorado, Karl Meisel, and Xiao Hu. "Photoplethysmography based atrial fibrillation detection: a review." NPJ digital medicine 3, no. 1 (2020): 3
- [10] Shanmugasundaram, R., S. Pavithra, V. Sangeetha, S. Tamilselvan, and AH Thanveer Ahmed. "IoT based animal tracking and monitoring system in zoo." South Asian Journal of Engineering and Technology 3, no. 2 (2017): 162-168.
- [11] Khatate, Prathamesh, Anagha Savkar, and C. Y. Patil. "Wearable smart health monitoring system for animals." In 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), pp. 162-164. IEEE, 2018.
- [12] Narang, Sushil Kumar, Sangeeta Arora, and Aryan Pathania. "Data-driven early detection of livestock diseases using IoT-enabled smart collars." In Artificial Intelligence and Internet of Things based Augmented Trends for Data Driven Systems, pp. 218- 238. CRC Press, 2024.
- [13] Kocer, Hasan Erdinc, and Bekir Kocak. "LoRa Based Stray Animals Tracking System." In 2024 59th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST), pp. 1-4. IEEE, 2024.
- [14] Mohan, Kasthoori, Mayinesh Nambiar Kannan, Mohnish Mohan, and Shelena Soosay Nathan. "Animo—Animal Monitoring System Based on Internet of Things." In 2024 IEEE 15th Control and System Graduate Research Colloquium (ICSGRC), pp. 337-341. IEEE, 2024.
- [15] Rehman, Ateeq Ur, Jehangir Arshad, Muhammad Tariq Sadiq, Abdul Rehman, Munir Ahmad, Mohammad Kamrul Hasan, Hussam Al Hamadi, and Tauqeer Faiz. "Implementation of an intelligent animal monitoring system using wireless sensor network and IoT platform." In 2022 International Conference on Cyber Resilience (ICCR), pp. 1-11. IEEE, 2022.
- [16] Akhil, Cheedella, Deevi Pradith Iyengar, P. Surya Manideep, Bodla Ganesh, and E. Prabhu. "Pet Tracking System using LoRa." In 2022 3rd International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), pp. 1-6. IEEE, 2022.