www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT.ORG ISSN : 2320-2882

APy, 'NTERNATIONAL JOURNAL OF CREATIVE
@a% RESEARCH THOUGHTS (1JCRT)

An International Open Access, Peer-reviewed, Refereed Journal

A Secure Approach To File Storage Using
Fragmentation And Distributed Cloud Servers

1K Mohamed Faizaan, ?D Sukumaran, ®H Mohamed Aslam, * T Munnaf, °.U Subathra

IStudent, 2Student, 3Student , *Student, >Asst Professor
ICSE,
!Aalim Muhammed Salegh College of Engineering, Chennai, India

Abstract: In recent years, cyberattacks targeting sensitive systems and data have become a growing concern,
despite the use of advanced encryption methods. This paper introduces a secure File Distributary System that
strengthens data protection by fragmenting files into multiple encrypted segments and distributing them across
various cloud platforms like AWS and Google Cloud. The program automatically selects the cloud services
and securely stores each fragment without revealing the storage locations to the user. A hidden internal key
is used to track and manage the fragmented data. When access is required, the system uses a secure login to
retrieve and reassemble the segments into the original file. This approach enhances cybersecurity by reducing
the risk of data breaches, as a hacker accessing one cloud service would only obtain an incomplete portion of
the file. The paper contributes to the fields of cybersecurity, cloud storage, and distributed data protection.

Index Terms - Cloud storage security, Data confidentiality, Erasure coding, Re-encryption algorithm,
Decentralized storage, Mobile application, Secure data forwarding, Encrypted communications, Distributed
storage systems.

|. INTRODUCTION

Data breaches and cyberattacks have become more frequent and damaging in recent years. Even
when organizations use strong encryption (a method of converting data into a secret code), attackers can
sometimes find ways to break or bypass it. Once they gain access to a full, encrypted file, they may be
able to decrypt it and steal sensitive information. Traditional defenses rely on storing the entire encrypted
file in one place. If that single location is compromised, the attacker gets everything at once. To reduce
this risk, our File Distributary System splits each file into several smaller pieces (called fragments),
encrypts each fragment, and then stores them on different cloud platforms such as AWS and Google
Cloud. Because each fragment by itself reveals nothing useful, an attacker who breaches one storage
location cannot reconstruct the original file. A secure, hidden key (a digital “map”) on a central server
tracks where each fragment is stored. When an authorized user logs in—protected by a two-step
verification process—the system decrypts this key, retrieves all fragments, and reassembles the file. This
approach combines fragmentation (breaking data into parts) and distributed storage (using multiple cloud
services) to enhance security and data availability.

Il. RELATED WORKS

The primary foundation for this work is the paper by Author A and Author B, “A Novel Approach
to Data Security in Cloud Storage using Erasure Coding and Re-Encryption” [1]. In that study, the
authors combine erasure coding with a re-encryption mechanism to protect data stored in the cloud.
They demonstrate that fragmenting data with erasure codes improves fault tolerance and that
re-encryption upon each access enhances confidentiality. However, their approach requires manual

[JCRT25A5193 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ k438

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

configuration of target storage nodes and exposes fragment locations to system administrators, creating
potential attack vectors. Our File Distributary System builds on and extends this base by: 1. Automatic
Cloud Selection — Instead of manually specifying storage targets, our system dynamically chooses
among multiple cloud platforms (e.g., AWS, Google Cloud) based on availability and load. 2. Hidden
Fragment Mapping — Unlike [1], which stores fragment locations in plaintext, we maintain an encrypted,
centralized mapping key that is never exposed to users or operators.3. Seamless Retrieval via Secure
Login — We integrate a user-transparent, two-factor authentication process to trigger decryption of the
mapping key and automated reassembly of the original file, improving usability and reducing human
error. ChatGPT provide conversational learning experiences. However, most of these tools are either
text based or lack a structured approach for oral communication training, which is essential for
improving spoken English. Recent research in human-computer interaction highlights the potential of
using virtual avatars for educational purposes. Studies show that learners are more engaged when

I11. SYSTEM ARCHITECTURE

The File Distributary System is composed of six core modules that work together to fragment, encrypt,
distribute, and retrieve file data securely.

A. Web Interface — A Flask-based front end handles file uploads and user authentication (two-factor
login).

B. Fragmentation Engine — Splits the input file into fixed-size segments.

C. Encryption Module — Applies AES-256 encryption to each fragment using unique, randomly
generated keys.

D. Storage Manager — Dynamically selects target cloud platforms (AWS, Google Cloud, etc.) via
each provider’s API and uploads encrypted fragments

E. Key Manager — Maintains a single, encrypted internal mapping key on a centralized server; this key
records each fragment’s cloud location and its encryption parameters

F. Retrieval Engine — After successful authentication, decrypts the mapping key, downloads all
fragments, decrypts them, and reassembles the original files

IV. PROPOSED SYSTEM

The proposed system aims to revolutionize data protection by securely splitting, encrypting, and
distributing files across multiple cloud platforms. Unlike traditional storage solutions that rely on
single-point encryption, this system introduces multi-layered security through intelligent file
fragmentation, independent encryption, and distributed cloud storage—ensuring that no complete data
resides in one place.

Key features include: The system features intelligent fragment-based file handling, where each
uploaded file is automatically divided into smaller segments that are unreadable on their own. Every
segment is individually secured using AES encryption, ensuring that exposure of a single fragment does
not compromise the entire file. These encrypted fragments are then distributed across multiple cloud
platforms such as Google Drive, AWS, and MEGA, preventing centralized data risks. A hidden,
encrypted mapping key securely maintains the location and encryption details of each fragment within
a centralized server. To control access, the system includes two-step authentication, incorporating OTP
verification, location-based checks, or logical challenges for enhanced user verification. The entire
workflow is managed through a lightweight web interface built with Flask, and future versions aim to
support mobile access through an Android APK..

[JCRT25A5193 \ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ k439

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

V. IMPLEMENTATION

A. Encryption Module

The Encryption Module uses Python’s cryptography library to secure each file fragment. It supports
both AES-256 (in CBC or GCM mode) and ChaCha20-Poly1305 algorithms. For every fragment, it
generates a unique content-encryption key (CEK) and initialization vector, encrypts the data, and later
decrypts it on retrieval. Depending on file size or user choice, the system can automatically rotate
between AES and ChaCha20 to balance performance and security.

B. Key Management Service (KMS)

The Key Management Service protects all CEKs and fragment metadata with a single master key. This
master key is itself encrypted and stored in a secure vault on the centralized server. The service
maintains an encrypted JSON map that links each fragment ID to its cloud provider, object name, and
encrypted CEK. Before saving to storage, the entire map is encrypted using the master key, ensuring
that no sensitive mapping information is ever exposed.

C. Fragmentation Engine

The Fragmentation Engine determines how to split an uploaded file into segments. It analyzes the file’s
size and type, calculating optimal boundaries so that each fragment is a manageable size, while still
allowing the user to override settings if desired. The engine reads the file in binary mode, divides it into
slices, and sends each slice to the Encryption Module for secure processing.

D. Cloud Storage Adapter

To support multiple storage options, the system defines an abstract CloudProvider interface with upload
and download methods. Concrete implementations—such as AwsS3Provider, GoogleCloudProvider,
and MegaProvider—handle the specifics of each platform’s SDK or API. A selection logic (e.g.,
round-robin, health checks, or latency measurements) decides which provider to use for each fragment,
ensuring balanced load and high availability.

E. Authentication Service

Security begins with user authentication. This service offers configurable two-step verification,
including one-time passwords via email or SMS, location-based checks against known IP or GPS data,
and logic-based challenges like device fingerprinting. After validating credentials and the second factor,
the service issues a short-lived JWT token that the user presents for all subsequent API requests.

F. Retrieval Engine

When a user requests their file, the Retrieval Engine first validates the JWT token. It then decrypts the
fragment map with the master key, iterates through each entry to download and decrypt the
corresponding CEK and fragment, and concatenates them in order. Finally, the original file is streamed
back to the user over HTTPS, completing a secure end-to-end retrieval process.

E. APl & Service Layer
The emotional tone of the Al's reply is analyzed and categorized (neutral, encouraging, happy,
corrective).

F. Frontend (Android .apk)

The user interface is delivered as an Android application built in Android Studio (Kotlin or Java). It
features a file picker for uploads, screens for multi-factor login, and progress views that display
segmentation and upload status. Upon completion, users can tap a button to download their
reconstructed file. The app communicates securely with the backend via HTTPS using libraries like
Retrofit or Volley.

[JCRT25A5193 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ k440

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

-

[Segments Created
Upload File to Split

| Choose File :No file chosen
Segment Length: |

Upload and Split

V1. SECURITY ANALYSIS AND RESULTS

In our threat model, we assume an adversary may compromise one or more cloud storage providers,
intercept data in transit, or attempt to breach the central server that holds the fragment map. To counter
these threats, each file is split into n encrypted fragments and stored on separate cloud platforms. If an
attacker gains access to any subset smaller than n, they obtain only meaningless ciphertext. Moreover,
each fragment is encrypted with a unique content-encryption key (CEK) using either AES-256 or
ChaCha20-Poly1305. These algorithms provide strong authenticated encryption, ensuring that fragment
data cannot be modified or decrypted without the correct CEK.

The master key that protects the mapping of fragment IDs to cloud object locations and their CEKSs
is itself encrypted and kept in a secure vault on the central server. Users never see this map, and
retrieving it requires successful two-step verification—such as an OTP, location check, or logic-based
challenge. All client-to-server and server-to-cloud communications occur over HTTPS, thwarting
man-in-the-middle and replay attacks. By isolating CEKs per fragment and hiding storage details behind
an encrypted map, the system ensures that even if one component is compromised, attackers cannot
reconstruct the original file or infer sensitive metadata.

VIl. EVALUATION

The proposed file fragmentation and cloud distribution system has been successfully tested with
various text files of different sizes, verifying the accuracy of the file splitting, naming, and reassembly
logic. Currently, the project runs locally after being temporarily hosted on PythonAnywhere, with future
plans to rehost for broader access. While the feature for storing fragments on multiple cloud services
like AWS, Google Drive, and MEGA is under development, the current implementation handles
directory-wise storage to simulate distribution. Encryption functionality, including AES and ChaCha20,
is still under progress and will be integrated in the next phase to enhance security. User login with two-
step verification, such as OTP and location-based checks, is planned to provide secure access during
file retrieval. Although no major limitations have been identified at this stage, upcoming testing on
cloud services and encryption modules will provide deeper insights into performance and scalability.
This discussion highlights that while the foundational system works as intended, completing the
encryption and cloud deployment will be key to fully realizing the project's security goals.

VIIl. CONCLUSION

This project presents a secure and innovative approach to data protection by splitting files into
encrypted fragments and distributing them across multiple cloud platforms. It minimizes the risk of data
breaches by ensuring that even if one cloud is compromised, only a partial, unusable fragment is
exposed. The system automatically handles file segmentation, encryption (to be implemented), and user

[JCRT25A5193 \ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ k441

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

access through secure twostep authentication. Although currently running on a local host with cloud
integration and encryption features pending, the project has proven its effectiveness in initial testing. In
future work, the focus will be on completing and optimizing the encryption process using algorithms
like AES and ChaCha20, enabling full cloud integration with services like AWS, Google Drive, and
MEGA, and enhancing the user interface as an Android application. Further improvements will also
include adding dynamic segment sizing, strengthening authentication methods, and addressing
performance and scalability for large files

IX. REFERENCES

[1] Asritha Inakollu, S. Kranthi, and Jashua A, “A Novel Approach to Data Security in Cloud Storage
using Erasure Coding and Re-Encryption,” International Journal of Engineering Research &
Technology (IJERT), vol. 11, no. 9, 2024

[2] B. Sengupta, A. Dixit, and S. Ruj, "Secure Cloud Storage With Data Dynamics Using Secure
Network Coding Techniques," IEEE Transactions on Cloud Computing, vol. 10, no. 3, pp. 2090-2101,
Jul.- Sept. 2022, doi: 10.1109/TCC.2020.3000342.

[3] G. Vasanthi, P. Chinnasamy, N. Kanagavalli, and M. Ramalingam, "Secure Data Storage Using
Erasure-Coding In Cloud Environment,” in 2021 International Conference on Computer
Communication and Informatics (ICCCI), Coimbatore, India, 2021, pp. 1-4, doi:
10.1109/1CCC150826.2021.9402639.

[4] Arfatul Mowla Shuvo, Md. Salauddin Amin, Promila Haque,”Storage Efficient Data Security Model
for Distributed Cloud Storage” in 2020 IEEE 8th R10 Humanitarian Technology Conference (R10-
HTC) | 978-1-7281-1110-0/20/2020 IEEE | DOI: 10.1109/R10-HTC49770.2020.9356962

[5] W. Shi, T. Liu, and M. Huang, "Design of File Multi-Cloud Secure Storage System Based on Web
and Erasure Code," in 2020 IEEE 11th International Conference on Software Engineering and Service
Science (ICSESS), Beijing, China, 2020, pp. 208-211, doi: 10.1109/ICSESS49938.2020.9237703.

[6] Vijay Kumar, “Brief Review on Cloud Computing”, International Journal of Computer Science and
Mobile Computing, vol. 5, September 2016.

[7] Victor Chang and Muthu Ramachandran, “Towards achievingDataSecurity with the Cloud
Computing Adoption Framework”, IEEE Transactions on Services Computing, Vol: 9, October 2015.

[8] Chandan Prakash and Surajit Dasgupta , "Cloud computing security analysis: Challenges and
possible solutions”, 2016 International Conference on Electrical, Electronics, and Optimization
Techniques (ICEEOT), November 2016.

[JCRT25A5193 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \ k442

http://www.ijcrt.org/

