

Stress Detection Using Machine Learning And Image Processing

Dr.R.M.S.Parvathi¹, M.Sanjay²,P.Santhosh Kumar ³, P.Solai Murugan⁴

¹ Professor, Department of CSE, Sri Ramakrishna Institute of Technology, Coimbatore, Tamil Nadu, India

^{2 3 4} UG students, Department of CSE, Sri Ramakrishna Institute of Technology, Coimbatore, Tamil Nadu, India.

Abstract:

Stress is a critical factor that affects both mental and physical well-being and has become increasingly prevalent in modern society. Prolonged exposure to stress can lead to a range of health issues including anxiety, depression, cardiovascular problems, and decreased productivity. Traditional stress detection methods such as self-reported questionnaires and physiological monitoring are often subjective, intrusive, or require specialized equipment, making them unsuitable for real-time applications. This paper presents a novel, non-invasive approach for detecting stress using a combination of machine learning algorithms and image processing techniques. Specifically, the system employs Convolutional Neural Networks (CNNs) to analyze facial expressions, which are rich indicators of emotional and mental states. These expressions are processed in real-time using OpenCV and served through a Flask-based web application. The proposed system provides accurate emotion classification and maps these emotions to corresponding stress levels. It holds promising potential for use in various applications such as mental health monitoring, workplace wellness programs, and educational settings. The model's performance, scalability, and real-time capability make it a strong candidate for practical implementation.

Key Terms:

Stress Detection, Machine Learning, CNN, Image Processing, Emotion Recognition, Real-Time Monitoring

I.INTRODUCTION

In today's fast-paced world, stress has become a common issue that impacts individuals across all age groups and professional domains. Whether it's academic pressure, tight work deadlines, social anxiety, or personal challenges, stress manifests in numerous ways and can adversely affect one's quality of life. The negative

effects of chronic stress are well-documented, leading to conditions such as high blood pressure, insomnia, weakened immune function, and mental health disorders including depression and anxiety.

While traditional stress assessment tools like surveys and biometric sensors provide some insight, they are often limited by their dependency on user input or physical devices. Moreover, they are not always suitable for long-term, continuous monitoring. This has led to a growing interest in alternative, automated methods that can detect stress in a non-intrusive manner.

Facial expressions serve as a natural and involuntary mode of communication that can reveal an individual's emotional and mental state. As such, they provide a rich source of data for stress analysis. With the advancement of deep learning and computer vision, particularly CNNs, it is now possible to build systems that can interpret facial cues with high accuracy. In this study, we leverage CNNs for emotion recognition and map these emotions to stress indicators, creating a comprehensive stress detection system that is both accessible and effective.

II.LITERATURE SURVEY

Stress detection using machine learning and image processing has gained significant traction in recent years due to its potential to enable real-time, non-contact mental health assessment. This section reviews several

prominent studies that have contributed to this field. Rohini Hanchate et al. (2023) proposed a system that combines CNNs with image processing features like Fisher Vector and Local Ternary Patterns (LTrP) to identify depression through facial expressions. Their work emphasizes non-invasive detection and offers a scalable model suitable for workplace stress management, especially in high-demand environments like the IT industry. Yan Ding et al. (2020) explored the use of Deep Integrated Support Vector Machine (DISVM) to detect depression among college students using data from Weibo, a Chinese social media platform. By integrating deep learning with AdaBoost-enhanced SVM, their model showed improved performance over traditional classifiers. This research demonstrated how online behavioral data could be harnessed for mental health monitoring. In a study conducted by Prof. Vishal R. Shinde et al. (2021), stress detection among IT professionals was approached through real-time video analysis. Their model uses image preprocessing, Region of Interest (ROI) detection, and KNN classifiers to evaluate stress levels based on facial features. This method provides a practical solution for organizations aiming to monitor employee well-being. Soyeon Park and Suh-Yeon Dong (2020) investigated the influence of daily stress on mental state classification using functional near-infrared spectroscopy (fNIRS) signals. They found that incorporating features such as signal mean, peak, and skewness significantly improved the accuracy of stress classification. Their study supports the notion that stress indicators can enhance the reliability of mental health prediction models.

These studies form the foundation for our system, which integrates the benefits of facial

expression analysis and deep learning to create a robust, real-time stress detection solution.

III. METHODOLOGY

Our proposed system follows a structured workflow that includes data collection, preprocessing, model design and training, stress mapping, and real-time deployment. Each step is crucial for ensuring the accuracy, efficiency, and usability of the final application.

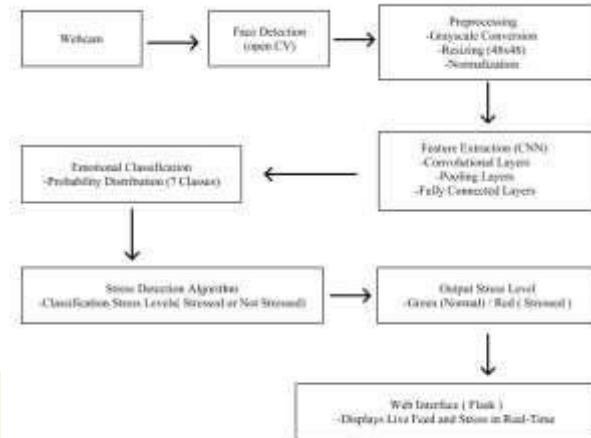


Fig.1.Methodology

1. Data Collection and Preprocessing

For the training and evaluation of our CNN model, we utilized the FER-2013 dataset. This dataset contains over 35,000 grayscale images of faces, each labeled with one of seven emotions: Angry, Disgusted, Fearful, Happy, Neutral, Sad, and Surprised. These images are collected under diverse lighting conditions and facial orientations, offering a rich and challenging dataset for training deep learning models.

The preprocessing phase includes several important steps:

Grayscale Conversion: Reduces computational load while preserving key features.

Resizing: All images are resized to 48x48 pixels to match the input requirement of the CNN.

Normalization: Pixel values are scaled to the [0, 1] range to ensure uniformity.

Augmentation: Techniques like rotation, flipping, and zooming are applied to artificially expand the dataset and improve model generalization.

2. Model Architecture

The model is built using a sequential CNN architecture. It includes:

- Multiple convolutional layers that extract spatial features from the input images
- ReLU activation functions to introduce non-linearity
- MaxPooling layers to reduce spatial dimensions and prevent overfitting
- Dropout layers to improve generalization
- A flattening layer followed by two fully connected dense layers
- An output layer with a softmax activation function to classify into one of seven emotion classes.

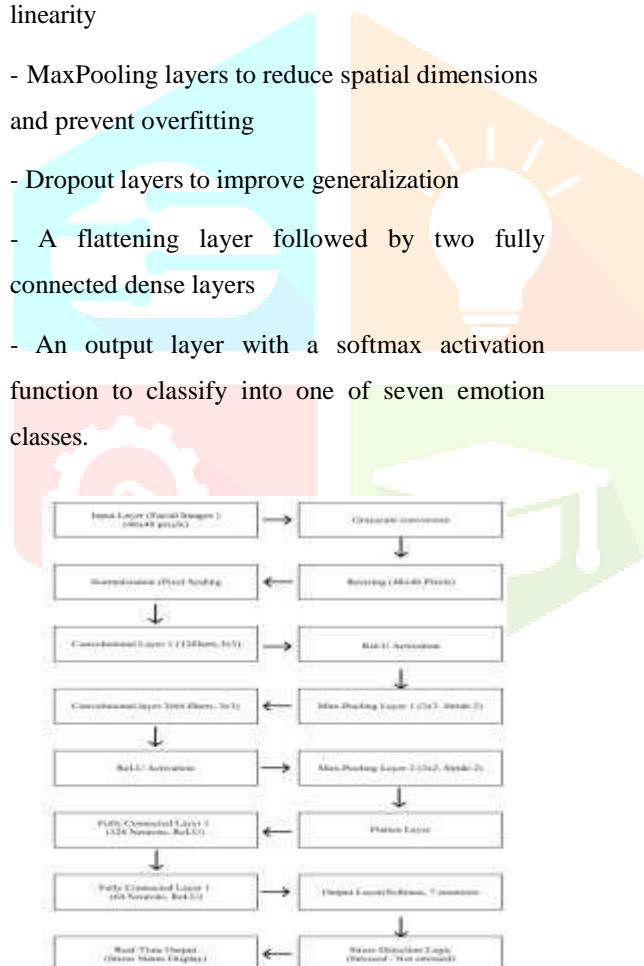


Fig.2. Model Architecture

The heart of this stress detection system lies in its deep learning model, which is built using a carefully designed Convolutional Neural Network (CNN) architecture. CNNs are particularly well-suited for image recognition tasks because they automatically learn spatial hierarchies and features directly from the raw image data, without the need for manual feature extraction.

In this project, the model is constructed using the Sequential API in Keras, which allows for building the network layer-by-layer in a logical and interpretable way. The model begins with an input layer that accepts preprocessed grayscale images of faces. These images are standardized to a fixed resolution of 48x48 pixels, which provides a balanced trade-off between performance and computational efficiency.

The first convolutional layer applies 32 filters of size 3x3, using the ReLU (Rectified Linear Unit) activation function. This layer is responsible for detecting low-level features such as edges, corners, and textures. Following this, a second convolutional layer with 64 filters is introduced to extract more abstract features. Each of these layers is immediately followed by MaxPooling layers with a pool size of 2x2, which reduce the spatial size of the feature maps and help minimize overfitting while improving computation time.

To make the model robust against overfitting and to promote generalization, Dropout layers are incorporated after key convolutional blocks. These layers randomly deactivate a portion of neurons during training, compelling the network to learn redundant paths and develop stronger representations.

The architecture then progresses to deeper convolutional layers, which apply up to 128 filters. These deeper layers capture high-level facial

features such as expressions and muscle movements, which are crucial for distinguishing emotional states.

Once the features have been thoroughly extracted, the network moves into the classification phase, beginning with a Flatten layer that transforms the multidimensional feature maps into a 1D vector. This vector is fed into a Dense layer with 128 neurons, again using ReLU activation, followed by another Dense layer with 64 neurons. These fully connected layers act as interpreters, translating extracted features into emotionally relevant classifications. A final Dropout layer is used before the Output layer, which uses Softmax activation to provide a probability distribution across seven emotion categories: Angry, Disgusted, Fearful, Happy, Neutral, Sad, and Surprised.

This architecture was trained using the Adam optimizer with a carefully tuned learning rate and categorical cross-entropy loss function. The model was trained for multiple epochs on a labeled dataset of facial expressions and validated against a separate test set to ensure its reliability. The final model delivers a balanced performance between accuracy and real-time efficiency, making it suitable for deployment in live applications. Also this architecture was fine-tuned using hyperparameter optimization techniques to strike a balance between accuracy and computational efficiency.

3. Emotion to Stress Mapping

Once the system classifies the emotional states based on the facial expressions detected, the next crucial step involves interpreting these emotions in terms of stress levels. The mapping of emotions to stress levels is essential for simplifying the emotional analysis and aligning it with practical applications. This step converts complex emotional states into a binary classification—stressed or non-

stressed—making it easier for the system to provide meaningful feedback for real-time stress assessment.

1. Non-Stressed Emotions:

These emotions represent positive or neutral states that typically indicate a lack of stress. Individuals exhibiting these emotions are generally in a relaxed, content, or neutral emotional state, and these emotions can be classified under the "non-stressed" category.

Happy: This emotion indicates a positive and cheerful mental state, where the person is generally relaxed and free from any noticeable stress. Happiness is often accompanied by facial expressions like a wide smile, relaxed eyes, and an overall sense of calm.

- Neutral: A neutral expression is typically characterized by a lack of strong emotion, showing no signs of either positive or negative feelings. It can indicate an emotionally stable state, where the person is neither stressed nor overly joyful. This state is often common during routine activities and moments when the person is not actively engaging with strong emotional stimuli.

- Surprised: Surprise is a transient emotional state that often occurs in response to unexpected or novel events. While it may lead to temporary spikes in heart rate or alertness, it doesn't necessarily correlate with chronic stress. Facial cues, such as raised eyebrows and widened eyes, typically accompany surprise, but it does not indicate sustained distress or anxiety. Therefore, surprise is categorized as a non-stressed emotion.

2. Stressed Emotions:

These emotions represent negative or intense emotional states that are commonly associated with higher levels of stress or psychological distress.

When an individual exhibits these emotions, it suggests that they are likely experiencing some form of mental or emotional strain.

Angry: Anger is a highly intense emotion typically caused by frustration, irritation, or a perceived injustice. It often results in physiological changes such as increased heart rate, heightened blood pressure, and rapid breathing—all of which are common stress responses. Facial cues like furrowed brows, clenched jaw, and narrowed eyes are associated with anger, making it a strong indicator of stress.

Disgusted: Disgust is an emotion triggered by something offensive, repulsive, or morally unacceptable. Like anger, disgust can provoke stress responses, including a physiological reaction of discomfort. Disgust is typically characterized by facial expressions such as wrinkled noses, turned-up lips, and squinted eyes. This emotion often correlates with negative stress, especially when it is related to aversion or rejection of certain stimuli.

Fearful: Fear is one of the most primal emotions and a direct response to perceived danger or threat. It activates the body's fight-or-flight response, which is physiologically associated with high levels of stress. Fear often manifests through widened eyes, raised eyebrows, and a tense posture. Chronic or prolonged fear can lead to heightened anxiety levels, making it a key indicator of stress.

Sad: Sadness typically arises from feelings of loss, disappointment, or grief. Though not as overtly intense as anger or fear, sadness can contribute to a sustained sense of emotional distress and depression. Facial expressions such as downturned lips, drooping eyes, and a lack of energy can indicate sadness, making it a strong emotional cue for stress in various contexts, especially when it is persistent.

4. Significance of Binary Classification:

The decision to map emotions into two broad categories—stressed and non-stressed—serves several purposes:

- **Simplicity and Clarity:** By categorizing emotions into just two classes, the system simplifies the emotional analysis process. This binary approach makes it easier for end users, whether they are individuals seeking personal feedback or employers monitoring employee wellness, to understand the stress levels at any given moment.

- **Real-Time Stress Monitoring:** In real-time applications, such as live monitoring of stress levels in the workplace or educational settings, a quick and clear classification system is essential. Binary classification allows the system to immediately offer actionable insights, such as recommending relaxation techniques for stressed users or suggesting a break for non-stressed individuals.

- **Scalability:** The binary classification system enhances the scalability of the application. The model doesn't require fine-grained analysis of multiple emotional states, which reduces the computational burden and allows the system to function efficiently in different environments, such as real-time video feed or webcam input.

Actionable Feedback: The binary classification also enables the system to generate actionable feedback. For instance, if the system detects stressed emotions (like anger or fear), it could recommend stress-reducing activities, such as deep breathing exercises or a short walk. Conversely, if non-stressed emotions are detected, the system can reinforce positive well-being with encouraging messages or relaxation techniques.

5. Real-Time-Implementation

Turning the trained CNN model into a real-world,

functional application involves several engineering steps to enable live video processing, real-time prediction, and user interaction. The goal of this phase is to bridge the gap between theoretical machine learning and practical usage by integrating the model into a pipeline that can analyze webcam input and provide instant feedback on stress levels.

The implementation begins with the integration of OpenCV, a widely-used computer vision library that handles the video stream. OpenCV is responsible for accessing the webcam, continuously reading video frames, and applying Haar Cascade classifiers to detect faces within each frame. Once a face is identified, the region is cropped and processed to match the CNN model's input format—grayscale, normalized, and resized to 48x48 pixels.

Each frame containing a detected face is passed through the trained CNN model, which returns a prediction in the form of a probability vector corresponding to the seven emotional states. The system selects the emotion with the highest probability as the final prediction for that frame. Based on the emotion detected, a simple mapping logic is applied:

- Emotions such as Happy and Neutral are labeled as “Non-Stressed”
- Emotions like Angry, Sad, Fearful, or Disgusted are categorized as “Stressed”

This binary stress classification simplifies interpretation and allows the system to act as a real-time emotional wellness monitor.

To ensure accessibility and usability, the system is wrapped in a Flask web application. Flask is a lightweight Python web framework that serves a responsive web page where users can view the live video feed directly in their browser. Each frame is overlaid with real-time emotion predictions and the

corresponding stress status, giving users immediate visual feedback on how their facial expressions are interpreted by the system.

One of the system's key advantages is its low-latency performance. Optimizations were made to ensure smooth operation even on standard laptop hardware, with no need for high-end GPUs. This makes the application suitable for deployment in everyday environments, including classrooms, offices, and healthcare centers.

Furthermore, the modular design of the application allows for easy future enhancements. Additional features such as stress level logging, daily tracking, or alert notifications can be integrated into the existing system. Its real-time capability, combined with non-intrusive data collection and intuitive feedback, offers a powerful tool for monitoring emotional and mental well-being in a variety of settings.

IV. RESULTS AND DISCUSSION

The trained CNN model was evaluated using a reserved portion of the FER-2013 dataset. The system showed strong performance in classifying clearly defined emotional states. Expressions like happiness and surprise were detected with high confidence due to their distinct facial features. Emotions such as fear and sadness were somewhat more challenging due to their subtler expressions and overlap with other classes.

Fig.3. Web Interface of the stress detection system

The confusion matrix and classification metrics revealed that most misclassifications occurred between negative emotions, such as fear and sadness, or anger and disgust. This is consistent with the visual similarities in these expressions and is a common challenge in emotion recognition tasks.

The real-time application tested via webcam input demonstrated the model's responsiveness. The live system was able to detect and classify facial expressions on the fly, with stress status updating in real-time. The Flask-based interface enhanced user interaction by presenting clear, real-time visual feedback on the detected emotion and stress classification. These results validate the effectiveness of using CNNs for facial emotion recognition and highlight the potential of such systems in real-world mental health applications.

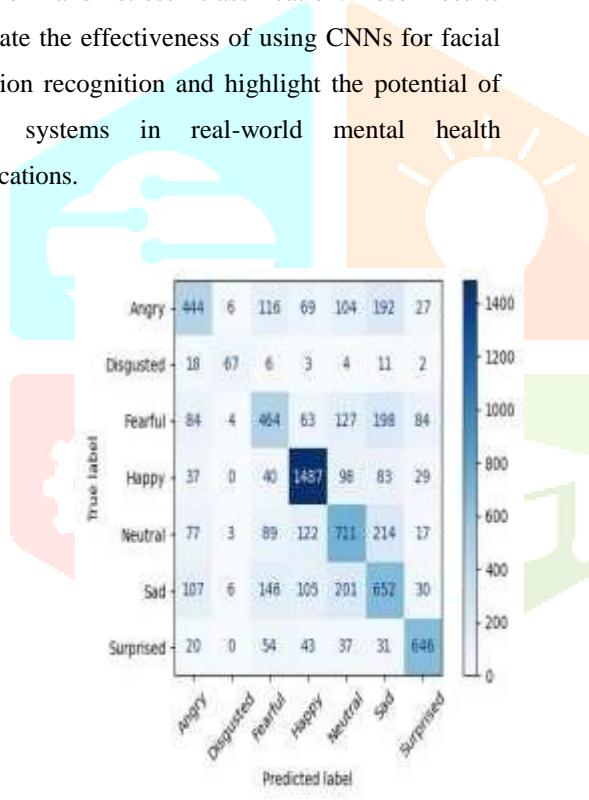


Fig.4. Confusion Matrix

V. CONCLUSION

In conclusion, this project has successfully demonstrated the feasibility of using machine learning and image processing for real-time stress detection. The CNN-based model, trained on facial

expression data, has proven effective in classifying emotions and translating them into stress indicators.

The system's ability to operate in real time and its non-intrusive nature make it suitable for a wide range of applications. From employee wellness monitoring to classroom stress analysis, the model offers a scalable, accessible solution for proactive mental health care.

Future enhancements may include incorporating temporal analysis through video sequences, combining facial analysis with other biometric inputs like voice tone or heart rate, and deploying the system in mobile environments for broader reach. With continued development, this technology has the potential to contribute meaningfully to stress management and emotional well-being in diverse settings.

VI. REFERENCES

1. Yan Ding, Xuemei Chen, Qiming Fu, and Shan Zhong, "A Depression Recognition Method for College Students Using Deep Integrated Support Vector Algorithm", (IEEE 2020).
2. Rohini Hanchate, Harshal Narute, Siddharam Shavage, Karan Tiwari., "Stress Detection Using Machine Learning", (IJSRH 2023).
3. Prof. Vishal R. Shinde, Mr. Shubham Memane, Miss. Priya Thakare, Miss. Vibha Vishe., "Stress detection in IT professional by image processing and machine learning "(IJREAM 2021).
4. Soyeon Park (Student Member, IEEE) and Suh-Yeon Dong (Member, IEEE), "Effects of Daily Stress in Mental State Classification", (IEEE 2020).
5. N Balakrishna, M B Mukesh Krishnan, B Veerabhadrudu, A Rishika, B Sruthika, Sanjay Kumar, "Facial Image Analysis for Stress Detection

in IT Professionals using Machine Learning Techniques"(IEEE 2024).

6. G. Singh, O. C. Phukan and R. Kumar, 'Stress recognition with multi-modal sensing using bootstrapped ensemble deep learning model', (Jul. 2023).

7. M. Amin et al., 'ECG-Based Driver's Stress Detection Using Deep Transfer Learning and Fuzzy Logic Approaches', (IEEE Access 2022).

8. Suresh Kumar Kanaparthi; Surekha P; Lakshmi Priya Bellamkonda; Bhavya Kadiam; Beulah Mungara, 'Detection of Stress in IT Employees using Machine Learning Technique', 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC), (IEEE Conference, 2022).

9. Rizzah Grace Llanes, Rosula S. J. Reyes, 'Stress Detection in Video Feed: Utilizing Facial Action Units as Indicators in Various Machine Learning Algorithms', (IEEE 4th Eurasia Conference 2022).

10. Akshada Kene, Shubhada Thakare 'Mental Stress Level Prediction and Classification based on Machine Learning' (2021 IEEE).

