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Abstract: Increase in the number of potholes have serious impact on road safety and infrastructure, leading to
increased costs for vehicle repairs and accidents. Why? Even with manual inspections and sensor-based
systems, pothole detection is not an option. A real-time pothole detection system using deep learning
techniques, built on the YOLO (You Only Look Once) ONNX model is presented in this article. This involves
gathering data, generating model data and testing mobile and vehicle-mounted applications over the course
of several months. It was 92% accurate in detection and had an adequate high confidence level estimate (ROC-
AUC) score, while also maintaining proper balance between precision and recall. Other concerns we tackle
include differences in environment between samples, inaccurate data detection systems, and hardware
failures.
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1. INTRODUCTION

Transport efficiency and safety are closely linked to the development of road infrastructure. Potential
potholes can cause damage to vehicles, create accidents and increase maintenance costs. What are the
dangers? Inefficient and error-prone methods, manual inspections or basic image processing techniques are
used for traditional pothole detection. In real-time applications, deep learning-based object detection models
like YOLO (You Only Look Once) have shown greater success. Our model is optimized for efficient cross-
platform deployment through the use of ONNX (Open Neural Network Exchange). This article presents an
in-depth analysis of the effectiveness of a pothole detection system that utilizes YOLO and ONNX, which has
been developed and implemented.

YOLOQO’s real-time detection capability makes it suitable for integration into:

e Mobile applications, where users can scan roads for potholes.

e Vehicle-mounted cameras, enabling automated road condition monitoring.

e Smart infrastructure, using cloud-based pothole reporting for urban planning.
This paper presents an end-to-end Al-based pothole detection system that is:

e Accurate: Achieves over 90% detection accuracy.

e Fast: Uses ONNX Runtime for optimized inference.

e Scalable: Can be deployed on mobile devices or embedded hardware.
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2. SYSTEM DESIGN AND IMPLEMENTATION

2.1 Architecture Overview
The proposed system consists of three primary components:

1. Data Collection & Annotation — Gathering diverse pothole images and labeling them for model
training.

2. Model Training & Optimization — Using YOLO to train a pothole detection model and
optimizing it for ONNX.

3. Deployment & Real-World Testing — Integrating the model into mobile and vehicle-mounted
applications.

3. DATA COLLECTION AND PREPROCESSING
3.1 Dataset Collection
To ensure model generalization, we collected a diverse dataset of 5,000 images from various sources:
o Public datasets: Road damage datasets from Kaggle and government repositories 33.
o Dashcam images: Captured from urban, highway, and rural roads.
o Crowdsourced images: Road condition images submitted by volunteers.
3.2 Data Annotation
Each image was labeled using Labellmg, following the YOLO annotation format:
<class_id> <x_center> <y _center> <width> <height>
Example:
00.450.560.12 0.10
Here, 0 represents the pothole class, and the values define the bounding box.
3.3 Data Augmentation
To enhance model performance under different conditions, augmentation techniques were applied:
o Brightness adjustments: Simulating different lighting conditions.
e Rotation & scaling: Making the model robust to different viewing angles.

e Blurring & noise addition: Ensuring performance in low-quality images.

4. Al MODEL TRAINING AND OPTIMIZATION
4.1 Model Selection
We selected YOLOVS due to its balance between accuracy and inference speed.
4.2 Training Configuration
e Hardware: NVIDIA RTX 3090 GPU.
o Hyperparameters:
o Learning rate: 0.01

o Batch size: 32

IJCRT25A4717 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | 0632


http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882
o Number of epochs: 100

e Loss Function:
o Bounding Box Loss (IoU-based)

o Cross-Entropy Loss (for classification)

The model was trained on 80% of the dataset, with 20% reserved for validation. The training loss
and validation loss across epochs are shown in Figure 1.

Model Training and Validation Loss

—e— Training Loss
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Figure 1: Model Training and Validation Loss Curve

4.3 ONNX Model Conversion

To ensure deployment flexibility, the trained YOLO model was converted into ONNX format, which
enables execution on various platforms, including mobile devices, embedded systems, and cloud servers.

5. DEPLOYMENT AND REAL-WORLD TESTING
5.1 Mobile Deployment
We integrated the ONNX model into an Android app using:
e ONNX Runtime for Al inference.
e OpenCV for image processing.
o Flutter for UI development.
Users can capture images, run real-time pothole detection, and report findings to local authorities.
5.2 Vehicle-Mounted System

We deployed the model on a Raspberry Pi connected to a dashcam for continuous road monitoring. The
system:

o Captures real-time road images.
e Detects potholes using ONNX Runtime.

e Logs pothole GPS coordinates for future analysis.
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6. RESULTS AND PERFORMANCE ANALYSIS
6.1 Evaluation Metrics
The model was evaluated using the following metrics:
e Precision: 91.8%
e Recall: 93.2%
o mAP (Mean Average Precision): 92.0%
The Precision-Recall Curve (Figure 2) and ROC Curve (Figure 3) illustrate the model’s effectiveness.
(Demonstrating trade-off between precision and recall)

Precision-Recall Curve for Pothole Detection Model
1.0 —— YOLO Model

0.8}

o
=

Precision

o
S

0.2} 1

0.0

0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure 2: Precision-Recall Curve

(Evaluating model sensitivity and specificity)

ROC Curve for Pothole Detection Model
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Figure 3: ROC Curve

IJCRT25A4717 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | 0634


http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882

Confusion Matrix for Pothole Detection Model
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Figure 4: Confusion Matrix

6.2 Real-World Testing

In order to evaluate the pothole detection system's performance in everyday use, extensive testing was
conducted on different road types such as urban, highway, and rural roads. Two main deployments of the
model were identified:

The integration of ONNX-optimized YOLO model into a mobile application allowed users to take
road images using their smartphones through Mobile-Based Testing. By examining the images in
real-time, the app determined potholes using bounding boxes and confidence scores. The process
was quite simple. In order to evaluate the durability of the model, we conducted tests under
different weather conditions and lighting conditions.

The system was installed in a vehicle-mounted setup, where utilizing duct tape, the dashcam
recorded road footage while an Al model analyzed frames in real-time. This was run on an
embedded system so the model would continue to run smoothly even when in motion. They
recorded the results of their detection and used GPS to generate a heatmap of potholes for road
maintenance.

The model's 92% average accuracy enabled it to-accurately detect potholes in varying terrains.
The device's precision was somewhat diminished during daylight hours and in harsh weather
conditions, such as rain or fog.

In certain instances, false positives were detected where road patches, cracks, or shadows appeared
like potholes and highlighted areas that could be improved.
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The system was tested on multiple road types (Figure 5: Accuracy Comparison Chart) and Figure 6: F1-
Score Comparison shows classification performance.
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Figure 5: Accuracy Comparison Chart
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Figure 6: F1-Score Comparison
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Figure 7: Input Image
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Figure 8: Output Image

7. CHALLENGES AND FUTURE ENHANCEMENTS
7.1 Challenges
1. False Positives: Shadows and debris sometimes trigger incorrect detections.
2. Hardware Constraints: Running deep learning on mobile requires optimization.
3. Weather Conditions: Rain and low-light conditions impact detection accuracy.
7.2 Future Improvements
1. GPS-Based Pothole Mapping
2. Cloud Integration

3. Edge Al Deployment

8. CONCLUSION

A pothole detection system that incorporates deep learning and real-time implementation of YOLO
and ONNX is presented in this paper. The proposed system would be ideal for early evaluation purposes.
Despite the training required to train and optimize for road conditions, the model was able to detect potholes
with an accuracy of 92%. The system's practicality was ensured by integrating with mobile applications for
quick identification and vehicle-mounted systems for automated road monitoring, making it a highly scalable
solution for improving road safety and maintenance.
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