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Abstract— The rise of autonomous and semi-autonomous 

machinery in industrial settings necessitates advanced safety 

mechanisms to ensure smooth operation while preventing 

collisions and protecting nearby workers. This project 

proposes an AI-based Extreme-Edge Collision-Avoidance 

System utilizing a Temporal Convolutional Network (TCN) 

deployed on an STM32 microcontroller. The system integrates 

multiple sensing technologies, including LIDAR, Camera 

Modules, Ultrasonic Sensors, and Infrared Sensors, to 

comprehensively monitor the machine’s surroundings. At the 

system's core, the STM32 microcontroller processes real-time 

data from the sensors via a driver circuit, ensuring ultra-low-

latency response. AI-based monitoring runs on a Raspberry Pi, 

analyzing time-series sensor data using the TCN model to 

detect potential hazards in real-time. The AI algorithm 

predicts collision risks and enhances situational awareness, 

ensuring timely interventions critical for industrial safety. 

Upon detecting an obstacle, the STM32 microcontroller 

triggers immediate corrective actions, controlling machinery 

operations while engaging an alarm and alert system to notify 

nearby workers. The integration of Raspberry Pi extends 

computational flexibility, supporting data logging, 

visualization, and remote monitoring, while enabling machine 

learning model updates. The system ensures robust 

performance in noisy and dynamic industrial environments by 

leveraging sensor fusion and AI. Extreme-edge processing 

minimizes latency, optimizes energy consumption, and 

maintains a compact memory footprint. Designed for seamless 

integration into industrial applications, this real-time collision 

avoidance system significantly enhances workplace safety, 

reduces accidents, and improves operational efficiency.  

Keywords— Collision avoidance, Industrial safety, Edge 

computing, Ultrasound sensors, Temporal Convolutional 

Network (TCN), Machine learning, Low-power MCU, 

Raspberry Pi, Real-time processing, Sensor fusion, Acoustic 

noise robustness, Embedded systems, Proximity sensing, Smart 

manufacturing, Industrial automation. 

I. INTRODUCTION 

In industrial environments, the increasing complexity and 

automation of machinery present new challenges for worker safety 

and operational efficiency. The rise of smart manufacturing and 

Industry 4.0 has led to the development of interconnected and 

autonomous systems, where machines perform tasks with minimal 

human intervention. However, as industrial machinery operates in 

dynamic environments, ensuring robust, low-latency collision 

avoidance becomes crucial to safeguarding workers and preventing 

costly equipment damage. Traditional collision-avoidance systems 

often rely on centralized processing, where sensor data is 

transmitted to cloud-based platforms for decision-making. While 

effective in some scenarios, this approach introduces higher 

latencies that may compromise safety in industrial settings, where 

split-second responses are required. Additionally, industrial 

environments are characterized by high levels of acoustic and 

electromagnetic noise, vibrations, and variable lighting conditions, 

which can degrade the accuracy of many sensing technologies. 

Existing solutions must address these challenges while adhering to 

strict constraints related to power, memory, and processing 

capabilities, particularly when deployed on resource-limited 

embedded devices. 

To overcome these challenges, Edge AI offers a promising solution 

by enabling real-time computation directly at the machine level, 

reducing communication delays and dependency on external cloud 

infrastructure. Edge AI systems must be low-power, compact, and 

efficient, particularly in environments where energy efficiency and 

real-time performance are critical, such as in battery-powered or 

autonomous systems. 

In this proposed work, Temporal Convolutional Networks (TCNs) 

emerge as an ideal solution for processing time-series data 

generated by industrial sensors. Unlike traditional machine 

learning models or Recurrent Neural Networks (RNNs), TCNs 

provide several advantages: they maintain long memory, 

efficiently learn temporal dependencies, and process sequences in 

parallel, enabling faster inference. These features make TCNs 

highly suitable for real-time prediction tasks, such as collision 

avoidance, where rapid decision-making is essential. Furthermore, 

TCNs' ability to handle noise and their efficient use of 

computational resources make them ideal for deployment in 

industrial environments. This work proposes an AI-based extreme-

edge collision-avoidance system utilizing a TCN model, deployed 

on an STM32 microcontroller, with additional computational 

support from a Raspberry Pi. The system integrates Ultrasonic 

(US) sensors, LIDAR, camera modules, and infrared sensors to 

detect potential collisions or obstacles in real-time. Ultrasonic 

sensors, in particular, are well-suited for industrial applications due 

to their ability to measure proximity accurately, even in conditions 

of low visibility or excessive noise, making them more reliable 
than vision-based systems in certain scenarios. 

The STM32 microcontroller serves as the primary real-time 

processing unit, efficiently handling sensor data and executing the 

TCN model with ultra-low latency. Meanwhile, the Raspberry Pi 

plays a complementary role, offering additional computational 
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capabilities for AI model execution, data logging, and remote 

monitoring. This hybrid approach balances energy efficiency with 

high-performance processing, ensuring that the system operates 

autonomously while remaining capable of incremental 

learning and future updates. 

A sensor-fusion dataset, collected from Ultrasonic sensors 

mounted on an industrial woodworking machine, forms the basis 

for training and refining the TCN model. By leveraging 

incremental learning, the system continuously adapts to evolving 

environmental conditions and operational nuances, improving its 

accuracy over time. This adaptability is particularly advantageous 

in industrial settings, where machinery behaviour and surrounding 

environments fluctuate due to factors such as wear and tear, 

workload variations, acoustic noise, and vibrations. By combining 

STM32 for ultra-low-latency execution, Raspberry Pi for AI-

driven processing and monitoring, and a TCN-based AI model for 

predictive analytics, this work presents a highly efficient, real-time 

collision-avoidance system. The proposed solution enhances 

industrial safety, minimizes accidents, and ensures seamless 

integration into existing manufacturing environments, marking a 

significant advancement in AI-powered edge computing for smart 
manufacturing. 

 

 

Fig 1.  Diagram of proposed work 

 

The diagram illustrates an AI-powered collision avoidance system 

designed for industrial machinery, integrating real-time object 

detection and deep learning to enhance worker safety and prevent 

accidents. The system consists of three main components: camera 

modules, an AI monitoring system, and an alarm device. Cameras 

mounted on the machinery capture real-time images of the 

surroundings and send them to the AI monitoring unit for 

processing. Using deep learning-based object detection algorithms, 

particularly a Temporal Convolutional Network (TCN) model 

deployed on STM32 and Raspberry Pi, the system identifies 

workers, obstacles, or potential hazards in the machinery’s path. If 

a collision risk is detected, the system triggers an alarm for the 

machine operator. 

Additionally, an alarm device is activated to provide sound alerts, 

ensuring that workers in the danger zone receive immediate 

warnings. This multi-modal alert mechanism helps operators and 

workers react swiftly, preventing accidents. The project aims to 

enhance industrial safety by utilizing Edge AI for ultra-low latency 

response, enabling real-time hazard detection and intelligent 

decision-making at the machine level. By deploying deep learning 

models at the edge, the system ensures faster processing and 

immediate action without relying on cloud connectivity. 

Ultimately, this AI-powered collision avoidance system improves 

safety in industrial environments, significantly reducing accident 

risks through intelligent automation and real-time alerts. 

 

II. PROBLEM STATEMENT:  

Design and Development of an AI-driven low-latency Extreme-

Edge Collision Avoidance Safety System for Industrial Machinery 

Using TCN, Sensor Fusion, and Embedded Controllers. Industrial 

machinery operates in complex and dynamic environments where 

the risk of collisions poses significant threats to worker safety, 

equipment longevity, and operational efficiency. Traditional safety 

approaches, such as manual monitoring and reactive safety 

measures, are often slow, inconsistent, and prone to human error. 

These limitations result in delayed responses to potential hazards, 

leading to accidents, costly downtime, and damage to both 

personnel and machinery. 

The primary challenge is to develop a real-time, intelligent 

collision-avoidance system that can reliably detect and prevent 

collisions with minimal human intervention. Existing solutions 

struggle in high-noise environments, have limited adaptability to 
rapidly changing industrial conditions, and often suffer from high 

latency. As manufacturing processes become increasingly 

automated and high-speed machinery dominates industrial 

workflows, there is an urgent need for low-latency, AI-powered 

safety solutions capable of instant hazard detection and prevention 

without disrupting operations. 

This project aims to leverage Artificial Intelligence (AI), Temporal 

Convolutional Networks (TCN), and sensor fusion techniques to 

create an advanced safety system that ensures continuous real-time 

monitoring and precise decision-making. By deploying AI 

inference directly at the edge using embedded controllers, the 

system minimizes processing delays, making it highly suitable for 

high-speed industrial environments. This innovation enables rapid 

hazard detection, proactive collision prevention, and seamless 

adaptability to diverse industrial settings. 

 

Significance of the Problem Statement: 
1. Clear Focus: Addresses the inefficiencies of traditional safety 

systems and emphasizes the need for AI-driven automation. 

2. Technology Integration: Highlights the role of AI, sensor fusion, 

and embedded controllers in achieving real-time safety monitoring 

and response. 

3. Impact & Justification: Demonstrates the necessity of improved 

worker protection, enhanced machine efficiency, and reduced 

industrial hazards. 

4. Success Metrics: Defines performance expectations, including 

real-time detection, ultra-low latency response, environmental 

adaptability, and robust industrial safety enhancements. 

 

Objective:  
1. Designing a retractor mechanism that can be controlled 

automatically with the help of the application. 

 2. Integrating AI to adjust retraction pressure and positioning 

dynamically based on real-time feedback. 

3. Utilizing IoT to monitor and control the retractor remotely, 

ensuring precise and consistent retraction. 

4. Testing and validating the design through simulations and 

practical trials to ensure its effectiveness and safety. 

5. Evaluating the performance of the automatic retractor in 

comparison to traditional manual methods in terms of precision, 

efficiency, and user satisfaction.  
 

Scope of the project:  

a. Designing a multi-sensor collision-avoidance system that 

integrates various sensors such as LIDAR, ultrasonic, IR, and 

camera modules for real-time monitoring and detection of 

obstacles in industrial environments. The system will be controlled 

automatically through embedded algorithms running on a 

microcontroller. 

b. Integrating AI (Temporal Convolutional Network - TCN) to 

analyze sensor data and dynamically adjust the machinery's 

response to potential hazards. The AI will help in predicting and 

preventing collisions by adapting to real-time environmental 

changes and providing low-latency responses. 

c. Utilizing IoT technology to monitor the system remotely, 

allowing for remote alerts, diagnostics, and control of the safety 

system. This will ensure continuous operation, even in complex 

industrial settings, by providing live feedback to operators and 

remote monitoring units. 

d. Testing and validating the collision-avoidance system through 

simulations and practical trials in industrial environments to ensure 

its accuracy, reliability, and safety. Validation will include testing 

in various noise and lighting conditions to confirm robustness. 

e. Evaluating the performance of the automated collision-

avoidance system against traditional safety mechanisms in terms of 

precision, latency, energy efficiency, and overall improvement in 

operator safety. The evaluation will focus on improvements in real-

time adaptability, reduction of human error, and overall system 

efficiency. 
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III. LITERATURE REVIEW 

Functional safety of electrical/electronic/programmable 

electronic safety-related systems - Part 1: General 

requirements (see Functional Safety and IEC 61508): IEC 

61508-1:2010 covers those aspects to be considered when 

electrical/electronic/programmable electronic (E/E/PE) systems are 

used to carry out safety functions. A major objective of this 

standard is to facilitate the development of product and application 

sector international standards by the technical committees 

responsible for the product or application sector. This will allow all 

the relevant factors, associated with the product or application, to 

be fully taken into account and thereby meet the specific needs of 

users of the product and the application sector. A second objective 

of this standard is to enable the development of E/E/PE safety-

related systems where product or application sector international 

standards do not exist. This second edition cancels and replaces the 

first edition published in 1998. This edition constitutes a technical 

revision. It has been subject to a thorough review and incorporates 

many comments received at the various revision stages. It has the 

status of a basic safety publication according to IEC Guide 104. 

This publication is of high relevance for Smart Grid. 
K. Cao, Y. Liu, G. Meng, and Q. Sun, ‘‘An overview on edge 

computing research,’’ IEEE Access, vol. 8, pp. 85714–85728, 

2020: Edge computing is a novel computing paradigm designed to 

address the limitations of traditional cloud computing in the era of 

the Internet of Everything (IoE). As the number of smart devices 

increases, generating vast amounts of data, issues like bandwidth 

load, slow response times, security, and privacy concerns become 

more prominent. Edge computing addresses these challenges by 

performing data processing closer to the data source, providing 

faster, real-time, and secure services. 

F. Wang, M. Zhang, X. Wang, X. Ma, and J. Liu, ‘‘Deep 

learning for edge computing applications: A state-of-the-art 

survey,’’ IEEE Access, vol. 8, pp. 58322–58336, 2020: With the 

booming development of Internet-of-Things (IoT) and 

communication technologies such as 5G, our future world is 

envisioned as an interconnected entity where billions of devices 

will provide uninterrupted service to our daily lives and the 

industry. Meanwhile, these devices will generate massive amounts 

of valuable data at the network edge, calling for not only instant 

data processing but also intelligent data analysis to fully unleash 

the potential of the edge big data. Both traditional cloud computing 

and on-device computing cannot sufficiently address this problem 

due to the high latency and the limited computation capacity, 

respectively. Fortunately, emerging edge computing sheds light on 

the issue by pushing the data processing from the remote network 

core to the local network edge, remarkably reducing the latency 

and improving the efficiency. Besides, the recent breakthroughs in 

deep learning have greatly facilitated the data processing capacity, 

enabling a thrilling development of novel applications, such as 

video surveillance and autonomous driving. 

D. L. Dutta and S. Bharali, ‘‘Tiny ML meets IoT: A 

comprehensive survey,’’ Internet Things, vol. 16, Dec. 2021, 

Art. no. 100461: The rapid growth in miniaturization of low-

power embedded devices and advancement in the optimization of 

machine learning (ML) algorithms have opened up a new prospect 

of the Internet of Things (IoT), tiny machine learning (Tiny ML), 

which calls for implementing the ML algorithm within the IoT 

device. Tiny ML framework in IoT is aimed to provide low 

latency, effective bandwidth utilization, strengthen data safety, 

enhance privacy, and reduce cost. Its ability to empower the IoT 

device to reliably function without consistent access to the cloud 

services while delivering accurate ML services makes it a 

promising option for IoT applications seeking cost-effective 

solutions. Especially in settings where inadequate connectivity is 

common, Tiny ML aims to provide on-premise analytics which 

will add substantial benefit to IoT services. In this article, we 

introduce the definition of Tiny ML and provide background 

information on diverse related technologies stating their strengths 

and weaknesses. We then show how Tiny ML-as-a-service is 

implemented through efficient hardware-software co-design. This 

article also introduces the role of 5G in the Tiny ML-IoT scenario. 

Furthermore, it touches on the recent progress in Tiny ML research 

in both academia and industry along with future challenges and 

opportunities. We believe that this review will serve as an 

information cornerstone for the IoT research community and pave 

the way for further research in this direction. 

P. P. Ray, ‘‘A review on Tiny ML: State-of-the-art and 

prospects,’’ J. KingSaud Univ. Comput. Inf. Sci., vol. 34, no. 4, 

pp. 1595–1623, Apr. 2022: Machine learning has become an 
indispensable part of the existing technological domain. Edge 
computing and the Internet of Things (IoT) together present a 
new opportunity to imply machine learning techniques at the 
resource-constrained embedded devices at the edge of the 
network. Conventional machine learning requires an enormous 
amount of power to predict a scenario. Embedded machine 
learning – The tiny ML paradigm aims to shift such a plethora 
from traditional high-end systems to low-end clients. Several 
challenges are paved while doing such a transition such as 
maintaining the accuracy of learning models, providing a train-to-
deploy facility in resource-frugal tiny edge devices, optimizing 
processing capacity, and improving reliability. In this paper, we 
present an intuitive review of such possibilities for Tiny ML. We 
first, present the background of Tiny ML. Secondly, we list the tool 
sets for supporting Tiny ML. Thirdly, we present key enablers for 
the improvement of Tiny ML systems. Fourthly, we present state-
of-the-art frameworks for Tiny ML. Finally, we identify key 
challenges and prescribe a future roadmap for mitigating several 
research issues of Tiny ML.  

IV. METHODOLOGY 

To develop an AI-based Extreme-Edge TCN-Based Low-Latency 

Collision-Avoidance Safety System, a systematic approach is 

necessary to ensure efficiency, real-time responsiveness, and safety 

in industrial environments. The methodology follows a structured 

framework encompassing system architecture, sensor integration, 

AI model development, edge computing deployment, testing, and 

optimization to enhance collision avoidance capabilities. 

System Architecture Design 

The system architecture is designed to integrate AI algorithms, 

real-time sensors, and edge computing to detect and prevent 

collisions. The essential components of the system include: 

1. Embedded Microcontroller: A low-power AI-compatible 

microcontroller (e.g., STM32, ESP32, or an ARM Cortex-based 

MCU) to perform AI inference at the edge. 

2. Sensors: A combination of LIDAR, ultrasonic sensors, infrared 

sensors, and cameras to detect objects, movements, and distances 

in industrial environments. 

3. Actuators and Alarms: Emergency braking mechanisms, visual 

indicators, and sound alarms that activate in case of a predicted 

collision. 

To enhance the accuracy and reliability of collision detection, 

multi-sensor fusion is implemented. Each sensor provides a 

different perspective of the environment, improving the system's 

ability to detect obstacles effectively. The steps involved include: 

1. Data Collection: Continuous acquisition of 

environmental data from multiple sensors. 

2. Noise Reduction: Filtering out erroneous readings using 

signal-processing techniques. 

3. Data Synchronization: Aligning sensor inputs in a 

unified format for accurate analysis. 

4. Feature Extraction: Identifying critical parameters such 

as object proximity, velocity, and movement direction. 
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Fig 3. Block Diagram of collision avoidance system 

AI Model Development Using Temporal Convolutional 
Networks (TCN): The AI model is developed using a Temporal 
Convolutional Network (TCN), which processes time-series sensor 
data to predict potential collisions. TCN is preferred over 
conventional Recurrent Neural Networks (RNNs) or Long Short-
Term Memory (LSTM) models due to its advantages in low-latency 
processing, ability to capture long-range dependencies, and efficiency 
in time-series prediction. 

AI Model Development Steps: 

Dataset Collection: Gathering real-world collision scenarios using 

industrial sensor data. Preprocessing: Normalizing sensor values, 

eliminating outliers, and labeling collision events. Feature 

Engineering: Extracting key indicators like object trajectory, 

acceleration, and risk factors. Model Training: Training the TCN 

model with supervised learning techniques on time-series data. 

Optimization: Applying quantization and pruning to minimize the 

model size for embedded system deployment. 

Edge Computing Implementation 

To ensure ultra-low latency, the AI model is deployed on an edge 
computing device, enabling real-time processing without reliance on 
external servers. This step ensures: Faster decision-making: AI 
inference is executed directly on the microcontroller, avoiding delays 
from cloud-based processing. Energy efficiency: Optimized 
algorithms reduce power consumption for prolonged operation. 
Offline functionality: The system remains fully operational even in 
network-constrained environments. 

Collision Prediction and Preventive Actions 

Once deployed, the system operates in real-time, continuously 
monitoring the surroundings and predicting possible collisions. The 
execution process follows these steps: Real-Time Data Acquisition: 
Sensors collect and transmit data at high frequency. Data Processing: 
The microcontroller preprocesses sensor inputs and runs AI inference. 
Collision Prediction: The AI model assesses time-series data and 
identifies potential obstacles. Preventive Actions: If a collision is 
predicted, the system triggers: Emergency braking mechanisms for 
machinery. Visual and audio alarms to alert nearby personnel. 
Vibration feedback systems for operator notification. 

System Testing and Validation 

To evaluate the system's performance, rigorous testing is 
conducted in both simulated and real-world industrial environments. 
The testing process includes: Accuracy Testing: Comparing AI 
predictions with actual obstacle occurrences. Response Time 
Measurement: Assessing the latency from detection to preventive 
action. Robustness Evaluation: Testing performance under varying 
environmental conditions (e.g., lighting changes, sensor interference). 
Power Consumption Analysis: Ensuring energy efficiency for long-
term industrial usage. Hardware-in-the-loop (HIL) simulations and 
real-time industrial field trials validate the system’s effectiveness in 
preventing collisions. 

Block diagram explanation:  

1. LIDAR Sensor, Camera Module, and Ultrasonic Sensor: 

The LIDAR Sensor, Camera Module, and Ultrasonic Sensor 
play a crucial role in detecting obstacles and monitoring the 
environment in real time. The LIDAR sensor provides precise 

distance measurements, the camera module captures visual 
data, and the ultrasonic sensor detects nearby objects. These 
sensors collect environmental data and send it as raw signals to 
the Driver Circuit for Sensors for further processing. 

2. Driver Circuit for Sensors:  

The Driver Circuit for Sensors is an intermediary between the 
sensors and the microcontroller. It processes the raw signals from 
the LIDAR, camera, and ultrasonic sensors, ensuring proper 
voltage levels and signal conditioning. Once processed, the 
refined sensor data is sent to the Microcontroller Circuit, which 
serves as the system’s central processing unit. 

3. Microcontroller Circuit:   

The Microcontroller Circuit is responsible for analyzing sensor 
data and making real-time decisions to prevent collisions. It 
receives inputs from the driver circuit and determines whether an 
obstacle is present. Based on the detected risk, the microcontroller 
sends control signals to the Machine Control system to adjust 
movement and avoid accidents. Additionally, it activates the 
Alarm Indication & Alert System to warn nearby workers and 
transmits real-time data to the IoT Transmitter for remote 
monitoring. 

4. Power Supply:  

The Power Supply is essential for the proper functioning of the 
entire system. It provides electrical energy to all components, 
including the sensors, driver circuit, microcontroller, alarm 
system, and IoT transmitter. This ensures stable operation and 
reliable performance. It is battery operated; a 12V dc power 
supply is used here to provide power to the entire circuit.  

5. Alarm Indication & Alert System: 

 The Alarm Indication & Alert System is designed to notify 
workers of potential hazards. It receives activation signals from 
the microcontroller whenever an obstacle is detected. Upon 
receiving the signal, the system triggers warning mechanisms 
such as buzzers, flashing lights, or voice alerts to ensure worker 
safety. 

6. IoT Transmitter to Monitoring Device:  

The IoT Transmitter to Monitoring Device enables remote 
supervision and real-time data transmission. It receives processed 
information from the microcontroller and transmits it wirelessly 
to a cloud-based dashboard, computer, or mobile application. 
This allows industrial supervisors to monitor machine operations 
and safety status remotely. 

7. Machine Control:  

The Machine Control system is responsible for adjusting the 
machine’s movements in response to potential collision risks. It 
receives control signals from the microcontroller and executes 
corrective actions, such as stopping, slowing down, or changing 
direction. This ensures that the machine operates safely without 
causing accidents. 

Role of each block:  

1.  LIDAR Sensor, Camera Module, Ultrasonic Sensor 

These sensors collect environmental data, detecting obstacles, 
distance, and movement. The output of sensor signals are sent to the 
Driver Circuit for Sensors for processing. 

2. Driver Circuit for Sensors 

It receives raw signals from LIDAR, Camera Module, and 
Sensor. Then, it sends the signals to the processor circuit and 
conditions them before sending them to the microcontroller circuit. 

3. Microcontroller Circuit 

The microcontroller receives processed sensor data from the 
driver circuit and analyzes sensor data using algorithms (TCN model) 
to detect potential collisions. The Microcontroller sends signals to the 
Machine Control for corrective actions. Activates Alarm Indication & 
Alert System for warnings. Transmits safety data to the IoT 
Transmitter to the Monitoring Device. 

4. Power Supply 

Takes a 12V DC power source. Supplies power to all system 
components, ensuring stable operation. 
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5. Alarm Indication & Alert System 

Receives activation signals from the Microcontroller Circuit when a 
collision risk is detected. Then it triggers warnings (buzzers, flashing 
lights, or voice alerts) to notify nearby workers. 

6. IoT Transmitter to Monitoring Device 

It receives processed safety data from the Microcontroller Circuit. 
And transmits real-time data wirelessly to remote dashboards, mobile 
apps, or cloud-based monitoring platforms. 

7. Machine Control 

Receives control signals from the Microcontroller Circuit in response 
to potential collisions. Executes corrective actions (stopping, slowing 
down, or changing direction) to avoid accidents. 

Let's take an example for the safety System for Crane Operations:-  

cranes play a crucial role in the heavy equipment and construction 
industry, enabling the transportation of heavy materials across 
worksites. However, crane operations come with several safety 
challenges, including the risk of collisions with structures, equipment, 
and workers. One of the most significant hazards is the presence of 
workers in the crane’s operational area, which can lead to severe 
accidents. Additionally, cranes often operate in constrained spaces 
where poor visibility, blind spots, and high wind conditions make it 
difficult for operators to maneuver safely. Load swinging due to 
sudden movements or external factors such as wind can also 
destabilize lifting operations, increasing the risk of dropping 
materials. Delayed response times in traditional crane operations 
further increase the chances of accidents, as manual control relies on 
human reflexes, which may not always be fast enough to prevent 
collisions. 

To address these challenges, an AI-based low-latency collision-
avoidance system is integrated into crane operations, utilizing a 
combination of sensors such as LIDAR, AI-powered cameras, 
ultrasonic sensors, infrared sensors, and accelerometers. The system 
continuously monitors the crane’s surroundings and detects obstacles 
in real-time. If a worker is detected in the crane’s movement path, AI 
vision and LIDAR immediately trigger an emergency stop, preventing 
accidents. If an obstacle such as a nearby building or equipment is 
detected, the system calculates a new path and adjusts crane 
movement accordingly. For load stabilization, inertial sensors and 
accelerometers detect excessive swinging and automatically adjust the 
crane’s speed to ensure balance. In cases of poor visibility due to fog, 
dust, or nighttime operations, thermal cameras enhance object 
detection, allowing the system to alert operators about potential 
hazards. 

The output of this intelligent system includes multiple preventive 
actions to enhance safety and efficiency. If an obstacle or worker is 
detected, the crane's movement is automatically halted to prevent 
accidents. In cases where excessive load swinging occurs, the system 
dynamically adjusts crane speed to stabilize the load, reducing the risk 
of material loss. Additionally, the system issues real-time audio-visual 
alerts to the operator if an obstruction is detected, allowing for quick 
decision-making. When a potential collision is identified, AI 
algorithms calculate an alternative movement path, ensuring smooth 
and safe operations. All detected incidents are logged into a cloud-
based platform for continuous monitoring and safety improvements. 

By implementing this AI-based collision-avoidance system, crane 
operations become significantly safer and more efficient. The system 
enhances worker safety by preventing fatal accidents, reduces 
downtime by avoiding machinery damage, and ensures precise load 
control for stable lifting operations. Furthermore, the optimization of 
crane movement improves operational efficiency while maintaining 
compliance with strict safety regulations. This advanced technology 
transforms traditional crane operations into a safer, more reliable, and 
intelligent process, reducing risks and increasing overall productivity 
in the construction and heavy equipment industry. 

 

 

 

 

 

 

SIMULATION OF THE CIRCUIT:  

 

Fig 4. Machine control i.e. motor driving simulation 

 

Fig 5. Machine control simulation 

 

 

Fig 6. Camera detection  simulation  

V. CONCLUSION  

The AI-based Extreme-Edge TCN Low-Latency Collision-

Avoidance System effectively enhances industrial safety by 

integrating real-time sensor fusion, AI-driven time-series 

analysis, and edge computing. The system ensures ultra-fast 

collision prediction and response, minimizing accidents and 

improving operational efficiency. By leveraging low-power 

microcontrollers and optimized AI models, it operates with 

high accuracy and reliability. Continuous monitoring and 

adaptive learning further enhance its effectiveness, making it 

a robust and scalable solution for industrial environments. 
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