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Abstract— The rise of autonomous and semi-autonomous
machinery in industrial settings necessitates advanced safety
mechanisms to ensure smooth operation while preventing
collisions and protecting nearby workers. This project
proposes an Al-based Extreme-Edge Collision-Avoidance
System utilizing a Temporal Convolutional Network (TCN)
deployed on an STM32 microcontroller. The system integrates
multiple sensing technologies, including LIDAR, Camera
Modules, Ultrasonic Sensors, and Infrared Sensors, to
comprehensively monitor the machine’s surroundings. At the
system's core, the STM32 microcontroller processes real-time
data from the sensors via a driver circuit, ensuring ultra-low-
latency response. Al-based monitoring runs on a Raspberry Pi,
analyzing time-series sensor data using the TCN model to
detect potential hazards in real-time. The Al algorithm
predicts collision risks and enhances situational awareness,
ensuring timely interventions critical for industrial safety.
Upon detecting an obstacle, the STM32 microcontroller
triggers immediate corrective actions, controlling machinery
operations while engaging an alarm and alert system to notify
nearby workers. The integration of Raspberry Pi extends
computational  flexibility,  supporting data  logging,
visualization, and remote monitoring, while enabling machine
learning model updates. The system ensures robust
performance in noisy and dynamic industrial environments by
leveraging sensor fusion and Al. Extreme-edge processing
minimizes latency, optimizes energy consumption, and
maintains a compact memory footprint. Designed for seamless
integration into industrial applications, this real-time collision
avoidance system significantly enhances workplace safety,
reduces accidents, and improves operational efficiency.

Keywords— Collision avoidance, Industrial safety, Edge
computing, Ultrasound sensors, Temporal Convolutional
Network (TCN), Machine learning, Low-power MCU,

Raspberry Pi, Real-time processing, Sensor fusion, Acoustic
noise robustness, Embedded systems, Proximity sensing, Smart
manufacturing, Industrial automation.

I. INTRODUCTION

In industrial environments, the increasing complexity and
automation of machinery present new challenges for worker safety
and operational efficiency. The rise of smart manufacturing and
Industry 4.0 has led to the development of interconnected and
autonomous systems, where machines perform tasks with minimal
human intervention. However, as industrial machinery operates in
dynamic environments, ensuring robust, low-latency collision
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avoidance becomes crucial to safeguarding workers and preventing
costly equipment damage. Traditional collision-avoidance systems
often rely on centralized processing, where sensor data is
transmitted to cloud-based platforms for decision-making. While
effective in some scenarios, this approach introduces higher
latencies that may compromise safety in industrial settings, where
split-second responses are required. Additionally, industrial
environments are characterized by high levels of acoustic and
electromagnetic noise, vibrations, and variable lighting conditions,
which can degrade the accuracy of many sensing technologies.
Existing solutions must address these challenges while adhering to
strict constraints related to power, memory, -and processing
capabilities, particularly when deployed —on resource-limited
embedded devices.

To overcome these challenges, Edge Al offers a promising solution
by enabling real-time computation directly at the machine level,
reducing communication delays and dependency on external cloud
infrastructure. Edge Al systems must be low-power, compact, and
efficient, particularly in environments where energy efficiency and
real-time performance are critical, such as in battery-powered or
autonomous systems.

In this proposed work, Temporal Convolutional Networks (TCNSs)
emerge as an ideal solution for processing time-series data
generated by industrial sensors. Unlike traditional machine
learning models or Recurrent Neural Networks (RNNs), TCNs
provide several advantages: they maintain long memory,
efficiently learn temporal dependencies, and process sequences in
parallel, enabling faster inference. These features make TCNSs
highly suitable for real-time prediction tasks, such as collision
avoidance, where rapid decision-making is essential. Furthermore,
TCNs' ability to handle noise and their efficient use of
computational resources make them ideal for deployment in
industrial environments. This work proposes an Al-based extreme-
edge collision-avoidance system utilizing a TCN model, deployed
on an STM32 microcontroller, with additional computational
support from a Raspberry Pi. The system integrates Ultrasonic
(US) sensors, LIDAR, camera modules, and infrared sensors to
detect potential collisions or obstacles in real-time. Ultrasonic
sensors, in particular, are well-suited for industrial applications due
to their ability to measure proximity accurately, even in conditions
of low visibility or excessive noise, making them more reliable
than vision-based systems in certain scenarios.

The STM32 microcontroller serves as the primary real-time
processing unit, efficiently handling sensor data and executing the
TCN model with ultra-low latency. Meanwhile, the Raspberry Pi
plays a complementary role, offering additional computational
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capabilities for Al model execution, data logging, and remote
monitoring. This hybrid approach balances energy efficiency with
high-performance processing, ensuring that the system operates
autonomously while remaining capable of incremental
learning and future updates.

A sensor-fusion dataset, collected from Ultrasonic sensors
mounted on an industrial woodworking machine, forms the basis
for training and refining the TCN model. By leveraging
incremental learning, the system continuously adapts to evolving
environmental conditions and operational nuances, improving its
accuracy over time. This adaptability is particularly advantageous
in industrial settings, where machinery behaviour and surrounding
environments fluctuate due to factors such as wear and tear,
workload variations, acoustic noise, and vibrations. By combining
STM32 for ultra-low-latency execution, Raspberry Pi for Al-
driven processing and monitoring, and a TCN-based Al model for
predictive analytics, this work presents a highly efficient, real-time
collision-avoidance system. The proposed solution enhances
industrial safety, minimizes accidents, and ensures seamless
integration into existing manufacturing environments, marking a
significant advancement in Al-powered edge computing for smart
manufacturing.
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Fig 1. Diagram of proposed work

The diagram illustrates an Al-powered collision avoidance system
designed for industrial machinery, integrating real-time object
detection and deep learning to enhance worker safety and prevent
accidents. The system consists of three main components: camera
modules, an Al monitoring system, and an alarm device. Cameras
mounted on the machinery capture real-time images of the
surroundings and send them to the Al monitoring unit for
processing. Using deep learning-based object detection algorithms,
particularly a Temporal Convolutional Network (TCN) model
deployed on STM32 and Raspberry Pi, the system identifies
workers, obstacles, or potential hazards in the machinery’s path. If
a collision risk is detected, the system triggers an alarm for the
machine operator.

Additionally, an alarm device is activated to provide sound alerts,
ensuring that workers in the danger zone receive immediate
warnings. This multi-modal alert mechanism helps operators and
workers react swiftly, preventing accidents. The project aims to
enhance industrial safety by utilizing Edge Al for ultra-low latency
response, enabling real-time hazard detection and intelligent
decision-making at the machine level. By deploying deep learning
models at the edge, the system ensures faster processing and
immediate action without relying on cloud connectivity.
Ultimately, this Al-powered collision avoidance system improves
safety in industrial environments, significantly reducing accident
risks through intelligent automation and real-time alerts.

Il. PROBLEM STATEMENT:

Design and Development of an Al-driven low-latency Extreme-
Edge Collision Avoidance Safety System for Industrial Machinery
Using TCN, Sensor Fusion, and Embedded Controllers. Industrial
machinery operates in complex and dynamic environments where
the risk of collisions poses significant threats to worker safety,
equipment longevity, and operational efficiency. Traditional safety
approaches, such as manual monitoring and reactive safety
measures, are often slow, inconsistent, and prone to human error.

These limitations result in delayed responses to potential hazards,
leading to accidents, costly downtime, and damage to both
personnel and machinery.

The primary challenge is to develop a real-time, intelligent
collision-avoidance system that can reliably detect and prevent
collisions with minimal human intervention. Existing solutions
struggle in high-noise environments, have limited adaptability to
rapidly changing industrial conditions, and often suffer from high
latency. As manufacturing processes become increasingly
automated and high-speed machinery dominates industrial
workflows, there is an urgent need for low-latency, Al-powered
safety solutions capable of instant hazard detection and prevention
without disrupting operations.

This project aims to leverage Artificial Intelligence (Al), Temporal
Convolutional Networks (TCN), and sensor fusion techniques to
create an advanced safety system that ensures continuous real-time
monitoring and precise decision-making. By deploying Al
inference directly at the edge using embedded controllers, the
system minimizes processing delays, making it highly suitable for
high-speed industrial environments. This innovation enables rapid
hazard detection, proactive collision prevention, and seamless
adaptability to diverse industrial settings.

Significance of the Problem Statement:
1. Clear Focus: Addresses the inefficiencies of traditional safety
systems and emphasizes the need for Al-driven automation.
2. Technology Integration: Highlights the role of Al, sensor fusion,
and embedded controllers in achieving real-time safety monitoring
and response.
3. Impact & Justification: Demonstrates the necessity of improved
worker protection, enhanced machine efficiency, and reduced
industrial hazards.
4. Success Metrics: Defines performance expectations, including
real-time detection, ultra-low latency response, environmental
adaptability, and robust industrial safety enhancements.

Objective:

1. Designing a retractor mechanism that can be controlled
automatically with the help of the application.

2. Integrating Al to adjust retraction pressure and positioning
dynamically based on real-time feedback.

3. Utilizing 10T to monitor and control ‘the retractor remotely,
ensuring precise and consistent retraction.

4. Testing and validating. the design through simulations and
practical trials to ensure-its effectiveness and safety.

5. Evaluating the performance of the automatic retractor in
comparison to traditional manual methods in terms of precision,
efficiency, and user satisfaction.

Scope of the project:

d. Designing a multi-sensor collision-avoidance system that
integrates various sensors such as LIDAR, ultrasonic, IR, and
camera modules for real-time monitoring and detection of
obstacles in industrial environments. The system will be controlled
automatically through embedded algorithms running on a
microcontroller.

b. Integrating Al (Temporal Convolutional Network - TCN) to
analyze sensor data and dynamically adjust the machinery's
response to potential hazards. The Al will help in predicting and
preventing collisions by adapting to real-time environmental
changes and providing low-latency responses.

c. Utilizing loT technology to monitor the system remotely,
allowing for remote alerts, diagnostics, and control of the safety
system. This will ensure continuous operation, even in complex
industrial settings, by providing live feedback to operators and
remote monitoring units.

d. Testing and validating the collision-avoidance system through
simulations and practical trials in industrial environments to ensure
its accuracy, reliability, and safety. Validation will include testing
in various noise and lighting conditions to confirm robustness.

e. Evaluating the performance of the automated -collision-
avoidance system against traditional safety mechanisms in terms of
precision, latency, energy efficiency, and overall improvement in
operator safety. The evaluation will focus on improvements in real-
time adaptability, reduction of human error, and overall system
efficiency.
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I1l. LITERATURE REVIEW

Functional safety of electrical/electronic/programmable
electronic safety-related systems - Part 1: General
requirements (see Functional Safety and IEC 61508): IEC
61508-1:2010 covers those aspects to be considered when
electrical/electronic/programmable electronic (E/E/PE) systems are
used to carry out safety functions. A major objective of this
standard is to facilitate the development of product and application
sector international standards by the technical committees
responsible for the product or application sector. This will allow all
the relevant factors, associated with the product or application, to
be fully taken into account and thereby meet the specific needs of
users of the product and the application sector. A second objective
of this standard is to enable the development of E/E/PE safety-
related systems where product or application sector international
standards do not exist. This second edition cancels and replaces the
first edition published in 1998. This edition constitutes a technical
revision. It has been subject to a thorough review and incorporates
many comments received at the various revision stages. It has the
status of a basic safety publication according to IEC Guide 104.
This publication is of high relevance for Smart Grid.

K. Cao, Y. Liu, G. Meng, and Q. Sun, ‘‘An overview on edge
computing research,”” IEEE Access, vol. 8, pp. 85714-85728,
2020: Edge computing is a novel computing paradigm designed to
address the limitations of traditional cloud computing in the era of
the Internet of Everything (I0E). As the number of smart devices
increases, generating vast amounts of data, issues like bandwidth
load, slow response times, security, and privacy concerns become
more prominent. Edge computing addresses these challenges by
performing data processing closer to the data source, providing
faster, real-time, and secure services.

F. Wang, M. Zhang, X. Wang, X. Ma, and J. Liu, ‘‘Deep
learning for edge computing applications: A state-of-the-art
survey,”” IEEE Access, vol. 8, pp. 58322-58336, 2020: With the
booming development of Internet-of-Things (loT) and
communication technologies such as 5G, our future world is
envisioned as an interconnected entity where billions of devices
will provide uninterrupted service to our daily lives and the
industry. Meanwhile, these devices will generate massive amounts
of valuable data at the network edge, calling for not only instant
data processing but also intelligent data analysis to fully unleash
the potential of the edge big data. Both traditional cloud computing
and on-device computing cannot sufficiently address this problem
due to the high latency and the limited computation capacity,
respectively. Fortunately, emerging edge computing sheds light on
the issue by pushing the data processing from the remote network
core to the local network edge, remarkably reducing the latency
and improving the efficiency. Besides, the recent breakthroughs in
deep learning have greatly facilitated the data processing capacity,
enabling a thrilling development of novel applications, such as
video surveillance and autonomous driving.

D. L. Dutta and S. Bharali, ‘““Tiny ML meets IoT: A
comprehensive survey,”’ Internet Things, vol. 16, Dec. 2021,
Art. no. 100461: The rapid growth in miniaturization of low-
power embedded devices and advancement in the optimization of
machine learning (ML) algorithms have opened up a new prospect
of the Internet of Things (10T), tiny machine learning (Tiny ML),
which calls for implementing the ML algorithm within the loT
device. Tiny ML framework in 10T is aimed to provide low
latency, effective bandwidth utilization, strengthen data safety,
enhance privacy, and reduce cost. Its ability to empower the loT
device to reliably function without consistent access to the cloud
services while delivering accurate ML services makes it a
promising option for loT applications seeking cost-effective
solutions. Especially in settings where inadequate connectivity is
common, Tiny ML aims to provide on-premise analytics which
will add substantial benefit to 10T services. In this article, we
introduce the definition of Tiny ML and provide background
information on diverse related technologies stating their strengths
and weaknesses. We then show how Tiny ML-as-a-service is
implemented through efficient hardware-software co-design. This
article also introduces the role of 5G in the Tiny ML-loT scenario.
Furthermore, it touches on the recent progress in Tiny ML research
in both academia and industry along with future challenges and

opportunities. We believe that this review will serve as an
information cornerstone for the 10T research community and pave
the way for further research in this direction.

P. P. Ray, ““A review on Tiny ML: State-of-the-art and
prospects,”’ J. KingSaud Univ. Comput. Inf. Sci., vol. 34, no. 4,
pp. 1595-1623, Apr. 2022: Machine learning has become an
indispensable part of the existing technological domain. Edge
computing and the Internet of Things (loT) together present a
new opportunity to imply machine learning techniques at the
resource-constrained embedded devices at the edge of the
network. Conventional machine learning requires an enormous
amount of power to predict a scenario. Embedded machine
learning — The tiny ML paradigm aims to shift such a plethora
from traditional high-end systems to low-end clients. Several
challenges are paved while doing such a transition such as
maintaining the accuracy of learning models, providing a train-to-
deploy facility in resource-frugal tiny edge devices, optimizing
processing capacity, and improving reliability. In this paper, we
present an intuitive review of such possibilities for Tiny ML. We
first, present the background of Tiny ML. Secondly, we list the tool
sets for supporting Tiny ML. Thirdly, we present key enablers for
the improvement of Tiny ML systems. Fourthly, we present state-
of-the-art frameworks for Tiny ML. Finally, we identify key
challenges and prescribe a future roadmap for mitigating several
research issues of Tiny ML.

IV. METHODOLOGY

To develop an Al-based Extreme-Edge TCN-Based Low-Latency
Collision-Avoidance Safety System, a systematic approach is
necessary to ensure efficiency, real-time responsiveness, and safety
in industrial environments. The methodology follows a structured
framework encompassing system architecture, sensor integration,
Al model development, edge computing deployment, testing, and
optimization to enhance collision avoidance capabilities.
System Architecture Design
The system architecture is designed to integrate Al algorithms,
real-time sensors, and edge computing to detect and prevent
collisions. The essential components of the system include:
1. Embedded Microcontroller: A low-power Al-compatible
microcontroller (e.g., STM32, ESP32, or an ARM Cortex-based
MCU) to perform Al inference at the edge.
2. Sensors: A combination of LIDAR, ultrasonic sensors, infrared
sensors, and cameras to detect objects, movements, and distances
in industrial environments.
3. Actuators and Alarms: Emergency braking mechanisms, visual
indicators, and sound alarms that activate in case of a predicted
collision.
To enhance the accuracy and reliability of collision detection,
multi-sensor fusion is implemented. Each sensor provides a
different perspective of the environment, improving the system's
ability to detect obstacles effectively. The steps involved include:
1. Data Collection:  Continuous acquisition  of
environmental data from multiple sensors.
2. Noise Reduction: Filtering out erroneous readings using
signal-processing techniques.
3. Data Synchronization: Aligning sensor inputs in a
unified format for accurate analysis.
4. Feature Extraction: Identifying critical parameters such
as object proximity, velocity, and movement direction.
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Fig 3. Block Diagram of collision avoidance system

Al Model Development Using Temporal Convolutional
Networks (TCN): The Al model is developed using a Temporal
Convolutional Network (TCN), which processes time-series sensor
data to predict potential collisions. TCN is preferred over
conventional Recurrent Neural Networks (RNNs) or Long Short-
Term Memory (LSTM) models due to its advantages in low-latency
processing, ability to capture long-range dependencies, and efficiency
in time-series prediction.

Al Model Development Steps:

Dataset Collection: Gathering real-world collision scenarios using
industrial sensor data. Preprocessing: Normalizing sensor values,
eliminating outliers, and labeling collision events. Feature
Engineering: Extracting key indicators like object trajectory,
acceleration, and risk factors. Model Training: Training the TCN
model with supervised learning techniques on time-series data.
Optimization: Applying quantization and pruning to minimize the
model size for embedded system deployment.

Edge Computing Implementation

To ensure ultra-low latency, the Al model is deployed on an edge
computing device, enabling real-time processing without reliance on
external servers. This step ensures: Faster decision-making: Al
inference is executed directly on the microcontroller, avoiding delays
from cloud-based processing. Energy efficiency: Optimized
algorithms reduce power consumption for prolonged operation.
Offline functionality: The system remains fully operational even in
network-constrained environments.

Collision Prediction and Preventive Actions

Once deployed, the system operates in real-time, continuously
monitoring the surroundings and predicting possible collisions. The
execution process follows these steps: Real-Time Data Acquisition:
Sensors collect and transmit data at high frequency. Data Processing:
The microcontroller preprocesses sensor inputs and runs Al inference.
Collision Prediction: The Al model assesses time-series data and
identifies potential obstacles. Preventive Actions: If a collision is
predicted, the system triggers: Emergency braking mechanisms for
machinery. Visual and audio alarms to alert nearby personnel.
Vibration feedback systems for operator notification.

System Testing and Validation

To evaluate the system's performance, rigorous testing is
conducted in both simulated and real-world industrial environments.
The testing process includes: Accuracy Testing: Comparing Al
predictions with actual obstacle occurrences. Response Time
Measurement: Assessing the latency from detection to preventive
action. Robustness Evaluation: Testing performance under varying
environmental conditions (e.g., lighting changes, sensor interference).
Power Consumption Analysis: Ensuring energy efficiency for long-
term industrial usage. Hardware-in-the-loop (HIL) simulations and
real-time industrial field trials validate the system’s effectiveness in
preventing collisions.

Block diagram explanation:
1. LIDAR Sensor, Camera Module, and Ultrasonic Sensor:

The LIDAR Sensor, Camera Module, and Ultrasonic Sensor
play a crucial role in detecting obstacles and monitoring the
environment in real time. The LIDAR sensor provides precise

distance measurements, the camera module captures visual
data, and the ultrasonic sensor detects nearby objects. These
sensors collect environmental data and send it as raw signals to
the Driver Circuit for Sensors for further processing.

2. Driver Circuit for Sensors:

The Driver Circuit for Sensors is an intermediary between the
sensors and the microcontroller. It processes the raw signals from
the LIDAR, camera, and ultrasonic sensors, ensuring proper
voltage levels and signal conditioning. Once processed, the
refined sensor data is sent to the Microcontroller Circuit, which
serves as the system’s central processing unit.

3. Microcontroller Circuit:

The Microcontroller Circuit is responsible for analyzing sensor
data and making real-time decisions to prevent collisions. It
receives inputs from the driver circuit and determines whether an
obstacle is present. Based on the detected risk, the microcontroller
sends control signals to the Machine Control system to adjust
movement and avoid accidents. Additionally, it activates the
Alarm Indication & Alert System to warn nearby workers and
transmits real-time data to the loT Transmitter for remote
monitoring.

4. Power Supply:

The Power Supply is essential for the proper functioning of the
entire system. It provides electrical energy to all components,
including the sensors, driver circuit, microcontroller, alarm
system, and loT transmitter. This ensures stable operation and
reliable performance. It is battery operated; a 12V dc power
supply is used here to provide power to the entire circuit.

5. Alarm Indication & Alert System:

The Alarm Indication & Alert System is designed to notify
workers of potential hazards. It receives activation signals from
the microcontroller whenever an obstacle is detected. Upon
receiving the signal, the system triggers warning mechanisms
such as buzzers, flashing lights, or voice alerts to ensure worker
safety.

6. loT Transmitter to Monitoring Device:

The loT Transmitter to Monitoring Device enables remote
supervision and real-time data transmission. It receives processed
information from the microcontroller and transmits it wirelessly
to a cloud-based dashboard, computer, or mobile application.
This allows industrial supervisors to monitor machine operations
and safety status remotely.

7. Machine Control:

The Machine Control system is responsible for adjusting the
machine’s movements in response to potential collision risks. It
receives control signals from the microcontroller and executes
corrective actions, such as stopping, slowing down, or changing
direction. This ensures that the machine operates safely without
causing accidents.

Role of each block:
1. LIDAR Sensor, Camera Module, Ultrasonic Sensor

These sensors collect environmental data, detecting obstacles,
distance, and movement. The output of sensor signals are sent to the
Driver Circuit for Sensors for processing.

2. Driver Circuit for Sensors

It receives raw signals from LIDAR, Camera Module, and
Sensor. Then, it sends the signals to the processor circuit and
conditions them before sending them to the microcontroller circuit.

3. Microcontroller Circuit

The microcontroller receives processed sensor data from the
driver circuit and analyzes sensor data using algorithms (TCN model)
to detect potential collisions. The Microcontroller sends signals to the
Machine Control for corrective actions. Activates Alarm Indication &
Alert System for warnings. Transmits safety data to the loT
Transmitter to the Monitoring Device.

4. Power Supply

Takes a 12V DC power source. Supplies power to all system
components, ensuring stable operation.
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5. Alarm Indication & Alert System

Receives activation signals from the Microcontroller Circuit when a
collision risk is detected. Then it triggers warnings (buzzers, flashing
lights, or voice alerts) to notify nearby workers.

6. 10T Transmitter to Monitoring Device

It receives processed safety data from the Microcontroller Circuit.
And transmits real-time data wirelessly to remote dashboards, mobile
apps, or cloud-based monitoring platforms.

7. Machine Control

Receives control signals from the Microcontroller Circuit in response
to potential collisions. Executes corrective actions (stopping, slowing
down, or changing direction) to avoid accidents.

Let's take an example for the safety System for Crane Operations:-

cranes play a crucial role in the heavy equipment and construction
industry, enabling the transportation of heavy materials across
worksites. However, crane operations come with several safety
challenges, including the risk of collisions with structures, equipment,
and workers. One of the most significant hazards is the presence of
workers in the crane’s operational area, which can lead to severe
accidents. Additionally, cranes often operate in constrained spaces
where poor visibility, blind spots, and high wind conditions make it
difficult for operators to maneuver safely. Load swinging due to
sudden movements or external factors such as wind can also
destabilize lifting operations, increasing the risk of dropping
materials. Delayed response times in traditional crane operations
further increase the chances of accidents, as manual control relies on
human reflexes, which may not always be fast enough to prevent
collisions.

To address these challenges, an Al-based low-latency collision-
avoidance system is integrated into crane operations, utilizing a
combination of sensors such as LIDAR, Al-powered cameras,
ultrasonic sensors, infrared sensors, and accelerometers. The system
continuously monitors the crane’s surroundings and detects obstacles
in real-time. If a worker is detected in the crane’s movement path, Al
vision and LIDAR immediately trigger an emergency stop, preventing
accidents. If an obstacle such as a nearby building or equipment is
detected, the system calculates a new path and adjusts crane
movement accordingly. For load stabilization, inertial sensors and
accelerometers detect excessive swinging and automatically adjust the
crane’s speed to ensure balance. In cases of poor visibility due to fog,
dust, or nighttime operations, thermal cameras enhance object
detection, allowing the system to alert operators about potential
hazards.

The output of this intelligent system includes multiple preventive
actions to enhance safety and efficiency. If an obstacle or worker is
detected, the crane's movement is automatically halted to prevent
accidents. In cases where excessive load swinging occurs, the system
dynamically adjusts crane speed to stabilize the load, reducing the risk
of material loss. Additionally, the system issues real-time audio-visual
alerts to the operator if an obstruction is detected, allowing for quick
decision-making. When a potential collision is identified, Al
algorithms calculate an alternative movement path, ensuring smooth
and safe operations. All detected incidents are logged into a cloud-
based platform for continuous monitoring and safety improvements.

By implementing this Al-based collision-avoidance system, crane
operations become significantly safer and more efficient. The system
enhances worker safety by preventing fatal accidents, reduces
downtime by avoiding machinery damage, and ensures precise load
control for stable lifting operations. Furthermore, the optimization of
crane movement improves operational efficiency while maintaining
compliance with strict safety regulations. This advanced technology
transforms traditional crane operations into a safer, more reliable, and
intelligent process, reducing risks and increasing overall productivity
in the construction and heavy equipment industry.
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V. CONCLUSION

The Al-based Extreme-Edge TCN Low-Latency Collision-
Avoidance System effectively enhances industrial safety by
integrating real-time sensor fusion, Al-driven time-series
analysis, and edge computing. The system ensures ultra-fast
collision prediction and response, minimizing accidents and
improving operational efficiency. By leveraging low-power
microcontrollers and optimized Al models, it operates with
high accuracy and reliability. Continuous monitoring and
adaptive learning further enhance its effectiveness, making it
a robust and scalable solution for industrial environments.
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