

Resilient Control Strategies For Renewable Energy Integration In Smart Grids

¹ Ajit Singh Bhardwaj

Department of Electrical Engineering,
Kalinga University Naya Raipur C.G.
India

⁴ Rajendra Miri

Department of Electrical Engineering,
Kalinga University,
Chhattisgarh, India

² Ajay Kumar Mishra

Department of Electrical Engineering,
Kalinga University Naya Raipur C.G.
India

⁵ Akash Ingle

Department of Electrical Engineering,
Kalinga University,
Chhattisgarh, India, 492015

³ Megh Fulbandhe

Department of Electrical Engineering,
Kalinga University,
Chhattisgarh, India,

⁶ Anu G. Pillai

Department of Electrical Engineering,
Kalinga University,
Chhattisgarh, India

Keyword's: Smart Grids, Renewable Energy Sources (RES), Resilient Control, Grid Stability, Grid Reliability

Abstract – To improve the seamless smart grid integration of renewable energy sources (RES), this research explores the concept of resilient control. The advantages of RES for the economy and environment have made their integration into power grids a top priority, but RES's intermittent nature presents significant challenges to grid flexibility, stability, and reliability. To reduce the uncertainties and disturbances related to RES, the paper examines efficient applications of sophisticated control strategies, such as adaptive control, robust control, and model predictive control. It also examines the importance of communication networks, demand-side management, and cyber-physical security in enhancing the resilience and functionality of smart grids. The challenges of incorporating renewable energy, including energy storage devices, grid interoperability, and legislative barriers, are also covered in detail. This paper provides recommendations for building resilient smart grids that can accommodate large rates of RES penetration while preserving stability and operational security. Initiatives to fill existing research gaps and policy recommendations are also made, emphasizing the value of backup plans and standardized procedures for grid dependability.

I. INTRODUCTION

The energy landscape is changing because of the global shift to sources of renewable energy (RES), like solar and wind energy. Significant economic and environmental advantages, including decreased emissions of greenhouse gases, increased energy stability, and the possibility of systems for decentralized energy, are promised by these resources. However, because of their intermittent and variable character, which can result in grid instability and operational inefficiencies, RES integration into conventional power networks poses considerable problems. This necessitates creative solutions that support the increasing proportion of RES while guaranteeing dependable and sustainable electricity delivery. One revolutionary method for tackling these issues is utilizing smart grid technology. Energy optimization, control, and monitoring are made possible by smart grids flow in real time with the use of advanced automation, digitalization, as well as communication technology. This feature is necessary to handle the RES's variable output and guarantee that the energy supply safely and effectively satisfies demand. Smart grids are more durable, flexible, and able to accommodate a distributed energy generating model than traditional grids. Resilience, or the system's ability to withstand disturbances, adapt to changing conditions, and recover from malfunctions, is a crucial component of smart grid architecture. For smart grids to be able to manage the uncertainties and interruptions brought on by the changeable nature of RES, robust control mechanisms must be integrated.

These tactics include sophisticated control methods that are intended to maximize grid performance in dynamic situations, such as adaptive control, robust control, and model predictive control. Even when RES penetration is substantial, these tactics help maintain the power system's stability and dependability by reducing disruptions and uncertainties.

Smart grid has different aspects and can be characterized as follows: -

- a. Engaging with consumers and markets.
- b. Scalable and flexible in a range of circumstances.
- c. Designed to optimize the use of resources and equipment.
- d. Proactive rather than reactive to avoid crises.
- e. Grids that can mend themselves with sophisticated automation.
- f. Integrated, including EMS, DMS, AMI, control protection maintenance, monitoring, etc.
- g. Possessing plug-and-play capabilities for ICT and network equipment.
- h. Safe and dependable.
- i. Economical.

Centralized inadequate market integration, unidirectional power flow, and power generating are all features of the traditional grid. Both distributed and centralized generating electricity, mostly from renewable sources, is a feature of smart grids. They include active and dispersed resources (such as electricity vehicles, loads, storage, and generation) into power systems and energy markets. To effectively distribute electricity that is adequately capable since the coverage region is safe, accessible, economical, dependable, effective and long-lasting, simply said, a smart grid is an electrical network that connects producers and consumers in an intelligent way. [1][2] Smart grid development is usually driven by one of the two primary concepts for enhancing electric power interactions for utilities and end customers. The rapidly growing non-traditional energy resource installations require a coordinated and collaborative effort from the design phase to the electronic devices mostly used for power generation, distribution, storage, and consumption [3][4].

II. CHALLENGES FOR INTEGRATION OF SMART GRIDS WITH RENEWABLE ENERGY SOURCES

Due to the intrinsic properties of renewable energy sources (RES) and the constraints of existing grid infrastructure, integrating RES into smart grids poses several difficulties. Because RES, like solar and wind, are intermittent and unpredictable, their power outputs fluctuate, which can upset grid stability by generating changes in voltage and frequency. Power planning and dispatching procedures are made more difficult by the continued difficulty in accurately projecting renewable generation. Significant improvements to monitoring, control, and regulatory systems at the generation and distribution levels are also required because the centralized architecture of current power networks—which

were constructed for bulk generation and transmission—is ill-suited to manage the decentralized and variable nature of RES. [5] known as renewable energy. One of the most popular types of renewable energy is the requirement for auxiliary services, such as spinning reserves, to sustain operational requirements and dependability is another significant obstacle. These services are crucial for reducing the sharp variations in RES output, which exacerbate the power network's stochastic character when coupled with the variability of current loads. Modernizing grid infrastructure at the distribution level is necessary to maximize power quality, boost dependability, and facilitate the integration of various small-scale renewable energy sources. Integration is further complicated by market and regulatory issues. For example, the Electricity Act restricts competitive retail options by requiring distribution licensees to purchase renewable energy while failing to take into consideration direct transactions between green energy traders and end consumers. Additionally, even though smart grids allow for sophisticated energy management, cybersecurity risks might jeopardize their dependability and functionality. Resilient control systems that integrate sophisticated forecasting, robust monitoring, improved grid infrastructure, and security measures are necessary to address these complex issues and guarantee a stable, adaptable, and effective smart grid system that integrates renewable energy sources. [6]

III. METHODOLOGY

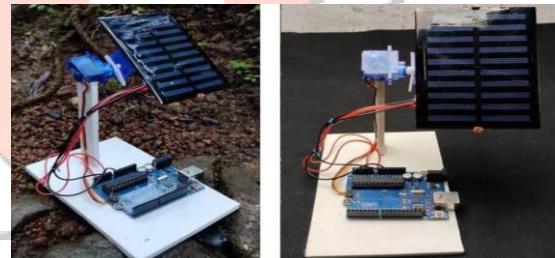


Fig. 1 Arduino-Powered Solar Panel for Sun Tracking.

Climate change is our biggest threat brought on by the overuse of fossil fuels, and using renewable energy is the only way to solve these problems. Energy that is extracted from nature without harming the environment is solar energy. The sun's radiation is captured by the solar panels, which then convert it into electrical power. The amount of electrical energy generated by the solar panel depends on the amount of sunlight that touches it. Check out our Arduino projects and tutorials if you're new to working with the Arduino platform. Everyone is welcome to construct and learn from our library of around 500+ Arduino projects, which include code, circuit diagrams, and thorough descriptions. When the sun passes over the horizon, solar panels usually don't absorb all of its energy because they are usually stationary. To produce the most power, a solar panel should constantly be facing the sun. As part of this project, we will construct a system for tracking the sun to assist the solar panels in generating the maximum amount of power. In a few of our previous postings, we built a simple system to track the electricity generated by solar panels along with other solar related to energy projects.

A. How does a solar tracker work?

I'm sure you're wondering how it operates. To get the most power, the sun should be facing the solar panel, as was previously mentioned. Therefore, our system consists of two steps: first, it determines the sun's location, and then it moves in tandem alongside it.

Determining the Sun's position:

We measure the amount of light using LDRs and contrast the light strength landing on both LDRs using an Arduino. The LDRs are placed on the edges of the solar panel.

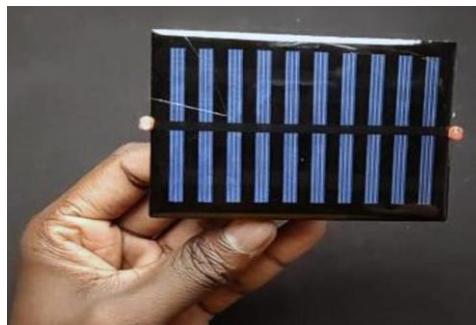


Fig. 2 Solar Panel

Photo Solar Panel

Depending on the light strength on the LDR, we send an electrical signal for the servo motor to start movement. When the right LDR's light intensity is higher, the panel tilts to the right; when the left LDR's light intensity is higher, the panel gradually tilts to the left.

Photo Angle of Solar Panel

Picture a beautiful winter morning. The light is brighter on the eastern part side of the panels than it is on the other side because the sun is rising from the east. Since the panel will follow the sun throughout the day, it will face west. By the evening, when it has travelled west, the light will be stronger than it was in the east.

Fig. 3
Different Angles of Solar Panel

B. Components Required for Making the Solar Tracker

Fig. 4 Components of The Solar Tracker

- One Arduino Uno
- One Servo motor
- One Solar panel
- Two LDR
- Two 10k Resistor
- Wire jumpers
- One MDF board

C. A Servo Motor:

Fig. 5 A Servo Motor

A servo motor rotates the solar panel. We are employing servo motors because they can precisely control the position of our solar panels and cover the sun's whole path. We're utilizing a servo motor that requires 5 volts to operate.

D. Light Dependent Resistor (LDR):

Semiconductor materials with light-sensitive characteristics are used to create light-dependent resistors, which are extremely light-sensitive. The type of light that strikes an LDR affects its resistance, which is inversely proportional to the light's intensity. In other words, the resistance of the LDR will increase in response to high-intensity light, and vice versa.

E. Schematics and Connection of the Solar Tracker:

It's not too difficult to connect the circuit. Here, I used an Arduino Uno as the controller and attached the two LDRs to analogue pins A0 and A1, respectively. The Arduino's pin 9 is connected to the servo motor. Using a 5V servo motor eliminates the requirement for an additional power supply because the Arduino can readily power every component. All the connections are shown in the image below.


```

{
  Servoposition--; servo.write(servoposition);
}
  
```

The servo spins to the west side if the error is negative and smaller than -30, indicating that the west side is more intense.

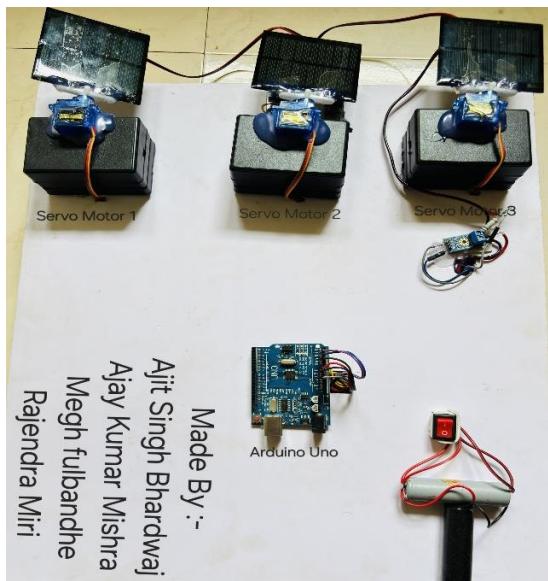


Fig. 7 ARDUINO Solar Panel

• CODE

```

#include Servo servo;

int eastLDR = 0;
int westLDR = 1;
int east = 0;
int west = 0;
int error = 0;
int calibration = 600;
int servoposition = 90;

void setup ()
{
  servo.attach(9);
}

void loop ()
{
  east = calibration + analogRead(eastLDR);
  west = analogRead(westLDR);
  if (east < 350 && west < 350)
  {
    while (servoposition <= 150)
    {
      Servoposition--; servo.write(servoposition);
    }
  }
}
  
```

```

  {
    servoposition++; servo.write(servoposition);
  }
}
  
```

```

  delay (100);
}
}
  
```

```

  error = east - west; if (error > 15)
{
}
  
```

```

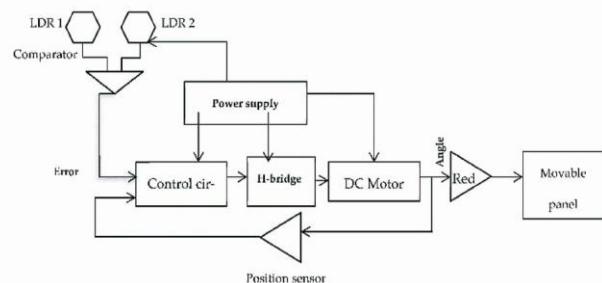
  if (servoposition <= 150)
{
}
  
```

```

  servoposition++; servo.write(servoposition);
}
}
}
  
```

```

  else if (error < -15)
{
}
  
```


```

  if (servoposition > 20)
{
  servoposition--; servo.write(servoposition);
}
  
```

```

  delay (100);
}
  
```

• CIRCUIT DIAGRAM

V. IDEOLOGY FOR RESILIENT CONTROL STRATEGIES TO INTEGRATE RENEWABLE ENERGY INTO SMART GRIDS

Achieving an environmentally friendly energy source future depends on the quick modern power networks' incorporation of renewable energy sources (RES). RES's intrinsic unpredictability and intermittency, however, provide serious obstacles to grid efficiency, dependability, and stability. To overcome these difficulties, the idea of resilient control techniques provides a revolutionary way to guarantee that smart grids can adjust to changing circumstances while preserving operational stability. [7] According to this study, using sophisticated control strategies in conjunction with reliable energy storage systems (ESS) and updated grid infrastructures is crucial to making it easier for renewable energy sources to be seamlessly integrated.

Three fundamental ideas form the basis of this thesis' ideology: sustainability, adaptation, and resilience. Resilience highlights the grid's ability to endure and bounce back from disruptions, guaranteeing steady energy distribution even when RES generation varies. Adaptability emphasizes the need for real-time control systems that respond to dynamic system changes to enhance grid performance, such as model predictive control (MPC), adaptive control, and robust control. Sustainability emphasizes how RES may help lower carbon emissions and advance decentralized energy systems, which is in line with the objectives of the global energy transition.

The significance of complementing technologies like energy storage systems and information and communication technologies (ICT) is also acknowledged in this thesis. ICT improves grid security and interoperability by enabling real-time monitoring and control. By offering auxiliary services like voltage regulation and frequency management, ESS reduces the unpredictability of RES while enhancing grid efficiency and flexibility. These elements work together to provide the framework of a robust smart grid. [8] [9]

The socio-technical aspects of integrating renewable energy are also covered in the article. Obstacles include legislative loopholes, poor infrastructure, and cybersecurity risks call for a comprehensive response in the Indian setting, where renewable energy ambitions are aggressive. To remedy these gaps, the study promotes grid modernization, regulatory changes, and standardized procedures, stressing the value of strong laws and backup plans.

VI. RESILIENT CONTROL STRATEGIES

Advanced control mechanisms are required to preserve operational dependability and efficiency when renewable energy sources (RES) are integrated into smart grids. These issues include intermittency, unpredictability, and grid instability. By improving the grid's capacity to tolerate disruptions, adjust to unforeseen circumstances, and maximize system performance, resilient control techniques aim to lessen these difficulties. Common methods used in resilient control schemes include the following:

1. Robust Control: guarantees grid performance in the face of erratic and disruptive conditions.

Ho Control optimizes within uncertainty bounds to minimize the worst-case performance decrease. Perfect for erratic RES fluctuations, such as abrupt decreases in wind or solar power.

Sliding Mode Control: Maintains reliability in nonlinear systems, handling rapid RES fluctuations with robustness to model uncertainties.

2. Adaptive Control: Adjusts parameters in real-time to handle dynamic changes and uncertainties.

Model Reference Adaptive Control (MRAC): Adapts to disturbances using a reference model, ensuring consistent grid performance with variable RES integration.

Self-Tuning Control: Uses real-time system identification to optimize performance in evolving grid conditions as RES penetration grows.

3. Model Predictive Control (MPC): Optimizes inputs by predicting future system behavior, incorporating constraints and forecasts.

Accounts for RES variability with probabilistic forecasts, ensuring demand-supply balance and minimizing disruptions.

When it comes to improving smart grid resilience, efficient control techniques are essential for reducing the interruptions brought on by erratic renewable energy sources. Control systems need to be strong enough to manage fluctuations while preserving system stability because renewable energy generation, especially solar and wind, is highly variable. Grids can adjust in real-time to changing conditions by implementing cutting-edge digital technologies like artificial intelligence and the internet of things, which can greatly improve operational management and forecasting accuracy [10]. Furthermore, proactive solutions like demand-response tactics and decentralized energy resources not only improve operational resilience but also give local populations the ability to independently manage their energy demands [11]. Stakeholders may better anticipate and address unforeseen difficulties by including these elements into the overall architecture of smart grid operations, which will eventually support a more dependable and sustainable energy ecosystem.

VII. CONCLUSION

Because of their unpredictability and intermittency, renewable energy sources (RES) pose hurdles to power grid integration, although being crucial for sustainability and lowering greenhouse gas emissions. Resilient control techniques including robust, adaptive, and model predictive control are used by smart grids, which have sophisticated communication and control capabilities, to overcome these problems and guarantee grid stability and dependability.

By allowing time-shifting, reducing RES unpredictability, and enhancing power quality, energy storage systems (ESS) further improve smart networks. ESS facilitates grid optimization and auxiliary services like frequency management and voltage regulation by integrating with sophisticated control algorithms. Ongoing innovation in ESS design, grid upgrades, and coordination are necessary for RES integration, nevertheless.

India, with its expanding energy requirements and renewable potential, can lead this transformation but must overcome hurdles like regulatory barriers, grid stability, and cybersecurity. Policy advancement Utilizing data and analytics to increase the grid's efficiency is known as grid optimization. This can be achieved by improving the efficiency of resources like transmission lines and generators and lowering losses. Programs that respond to demand urge users to reduce their power use during times of high demand. By doing this, system load can be decreased, and outages can be avoided.

Two key strategies to improve the efficiency and reliability of the smart grid are demand response and grid optimization. Infrastructure for EV charging uses demand response and grid

optimization techniques to lessen the impact of rising energy usage. To ensure grid stability and resilience, these strategies include incorporating RESs, balancing loads, and optimizing charging schedules. The paper focuses on the goal function, constraints, and decision factors as it analyzes the optimization component of EV demand-side management (DSM) scheduling. Coordinated efforts are essential for the successful integration of renewable energy, and it suggests that DSM operations may provide a viable option for customers and utility aggregators to engage in scheduling, dispatching, and market-oriented energy training.

VIII. REFERENCE

- [1] Tarun Kataray, B. Nitesh, Bharath Yarram, Sanyukta Sinha, Erdem Cuce, Saboor Shaik, Pethurajan Vignashwaran, Abin Roy. Integration of Smart Grids with Renewable Energy Sources: Opportunities and Challenges - A Comprehensive Review. Sustainable Energy Technologies and Assessments | 2023
- [2] Khushal Katkar, Abhishek Allaru, Mrunal Dhoke, Ritik Nimgade, Dr. Devendra M. Holey. Integration of Renewable Energy in Smart Grid. www.jetir.org | 2021
- [3] Koykul W. Current Status and Action Plan of Utility Sector on Smart Grid and Smart Community Provincial Electricity Authority Thailand | 2011
- [4] Gavianoa, WeberK, DirmeyerC. "Challenges and Integration of PV and Wind Energy Facilities from a Smart Grid Point of View". Energy Procedia | 2012
- [5] Subhojit Dawn, A. Ramakrishna, M. Ramesh, Shreya Shree Das, K. Dhanajay Rao, Md. Minarul Islam, Taha Selim Ustun. Integration of Renewable Energy in Microgrids and Smart Grids in Deregulated Power System: A Comparative Exploration. Advanced Energy and Sustainability Research | 2024
- [6] Concept and Practice for Transforming Infrastructure from Rigid to Adaptable | 2018
- [7] E. Santi, D. Franzoni, A. Monti, D. Patterson, F. Ponci, N. Barry, "A fuel Cell Based Domestic Uninterruptible Power Supply," APEC 2002 Conf | 2002
- [8] Gavianoa, WeberK, DirmeyerC. "Challenges and Integration of PV and Wind Energy Facilities from a Smart Grid Point of View". Energy Procedia | 2012
- [9] IEEE. Smart Grid: Reinventing the Electric Power System. IEEE Power and Energy Magazine for Electric Power Professionals. 2011
- [10] Aghahadi, Morteza, Berizzi, Alberto, Bosisio, Alessandro, Forciniti, Samuele, Merlo, Marco, Pegoiani, Andrea, "Digitalization Processes in Distribution Grids: A Comprehensive Review of Strategies and Challenges", 2024
- [11] Bastia, Satabdi, Cüce, Erdem, Dash, Sarthak Swaroop, Khan, T. M. Yunus, Mohanty, Asit, Ramasamy, A. K., Soudagar, Manzoore Elahi M, Verayiah, Renuga, "Power system resilience and strategies for a sustainable infrastructure: A review" 2024
- [12] Aneke M., Wang M. Energy storage technologies and real-life applications—A state of the art review. Appl. Energy | 2016
- [13] Moslehi K., Kumar R. A reliability perspective of the smart grid. IEEE Trans. Smart Grid | 2010
- [14] Mohamad F., Teh J. Impacts of energy storage system on power system reliability: A systematic review 2018
- [15] Soudan, B., C Darya, A. (2020). Autonomous smart switching control for off-grid hybrid PV/battery/diesel power system. Energy, 211, 118567.

