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Abstract: Osteoporosis is a disease that affects more than 200 million people worldwide, causing an estimated 

8.9 million fractures annually. One occurs every three seconds. Accurate early detection is essential to avoid 

further complications. Conventional approaches rarely succeed in reflecting the complex patterns of bone loss. 

This paper presents a novel hybrid artificial intelligence framework that combines Convolutional Neural 

Networks (CNNs), Generative Adversarial Networks (GANs), Vision Transformers (ViTs), and Graph Neural 

Networks (GNNs) for improved osteoporosis prediction from knee radiographs. CNNs extract rich multi-level 

visual features, GANs augment and adapt real-world data, ViTs capture global relationships, and GNNs model 

structural bone connectivity. A weighted attention fusion mechanism takes into account the diagnostic relevance 

of these fused features and dynamically combines them. Tested on 1,650 hand-labeled X-rays, the model reached 

94.3% classification accuracy and a 15.2% increase in Grade 1 sensitivity above expert consensus. It estimated 

3-year fracture risk with 91.2% accuracy. Bayesian uncertainty estimation improves the transparency of model 

outputs, which underpins clinical trust in the outputs. This hybrid approach represents an important step forward 

for AI-powered osteoporosis diagnosis, providing expert-level performance and potential for wide-scale 

implementation across different healthcare environments. 

 

Keywords - Deep Learning, CNN, GAN, Vision Transformer, Medical Imaging, Kellgren-Lawrence 

Classification. 

 

I.INTRODUCTION  

Osteoporosis is a chronic, progressive disease characterized by the gradual loss of bone mineral density and micro 

architectural tissue integrity, substantially increasing fracture risk and fracture-related morbidity and mortality 

[1, 2]. The World Health Organization estimates that only 1 in 10 women at the age of 60 has osteoporosis. That 

percentage starts to increase dramatically with age to 67% for women older than 90 years of age. This results in 

it being significantly underdiagnosed in comparison to other common chronic diseases. Research indicates as 

many as 80 percent of patients who experience an osteoporotic fracture are never diagnosed or treated 

accordingly. 

We know that while traditional screening approaches such as Dual-Energy X-ray Absorptiometry (DXA) provide 

excellent diagnostic information, they are hampered by issues of accessibility, cost and ability to capture 3D 

structural degeneration. This is in contrast to conventional radiography, which is restricted by the subjective 

interpretation and high inter-observer variability in terminating grading. These previous methods have been 
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constrained to single-architecture neural networks which fail to comprehensively represent the intricate multi-

factorial nature of osteoporotic changes. 

The multifactorial manifestation of osteoporotic degeneration as seen on radiographic imaging necessitates a 

sophisticated computational approach that can simultaneously account for multiple aspects of bone health. 

Density variations, trabecular microarchitecture, cortical structure, and spatial relationships among distinct 

anatomical features. This paper argues that the future of this research demands a paradigm shift from single-

architecture approaches to a synergistic hybrid model, one that embraces the interdisciplinary strengths of 

multiple neural network architectures. 

We argue that our approach more closely resembles the multifactorial pathophysiology of osteoporosis. This 

novel, hybrid framework addresses shortcomings of previous approaches by increasing sensitivity to detect early, 

subtle changes, reducing false negatives, and providing interpretable, decision-supporting capabilities to 

clinicians. We hope that our work is a significant step towards more personalized, accurate and accessible 

osteoporosis diagnosis and management. 

II.RELATED WORK 

2.1 Deep Learning in Osteoporosis Diagnosis 

Recent years have seen significant developments in the use of deep learning methods for diagnosing osteoporosis. 

Zhao et al. (2021) were the first to use CNNs to automatically Kellgren-Lawrence grade knee osteoporosis, 

reaching an accuracy of 89.1% on a dataset of 1,200 radiographs. Their ResNet-based architecture didn’t require 

manual segmentation, but still had trouble with the early stage detection showing that extracting robust enough 

diagnostic features is still a challenge. Patel & Krishnan (2022) introduced attention mechanisms to their CNN 

framework, achieving a sensitivity of 76.3% for detecting Grade 1 cases. Their approach was still limited to local 

feature extraction without a global structural context. 

Transfer learning strategies, which take advantage of data available for other tasks or from other times or 

locations, have been promising in helping overcome the limited availability of training data. In the work done by 

Lin et al. (2023), they used a DenseNet-169 pre-trained on ImageNet, and further fine-tuned on 850 knee X-rays, 

achieving a classification accuracy of 90.5%.  

2.2 Generative Models in Medical Imaging 

GANs OUTPUT have quickly become key assets for medical image generation and augmentation. The innovative 

research conducted by Rodriguez-Ruiz et al. (2020) showed that mammograms synthesized with GANs could 

successfully augment training datasets and lead to better breast cancer detection classifiers, increasing 

performance by 7.4%. In the field of osteoporosis, Kumar and Wang (2022) used cycle-consistent GANs to 

produce synthetic knee radiographs by overcoming class imbalance problems in the distribution of Kellgren-

Lawrence grades. Their paper claimed a 5.2% increase in classification accuracy by augmenting the real images 

with samples generated by a GAN. 

More recently, Diffeomorphic GAN architectures proposed by Esfahani et al. (2024) have demonstrated 

outstanding efficacy in maintaining anatomical plausibility while still infusing racially significant variations in 

bone density and trabecular organization. Their approach did not just improve the robustness of their classifiers, 

but allowed domain adaptation between different imaging systems to reduce the performance gap between high-

end and portable X-ray devices from 9.7% to 3.1%, a key development for real-world use in resource-limited 

settings. 

2.3 Transformers in Radiographic Analysis 

Additionally, Vision Transformers have transformed the landscape of medical image analysis by allowing for the 

direct modeling of long-range dependencies that are not feasible for CNNs. Initial work by Hatamizadeh et al. 

(2022) tuned the ViT architecture for medical imaging applications, showcasing 10 state-of-the-art performance 

in downstream anatomical segmentation tasks when compared to U-Net variants. To osteoporotic fracture 

classification, Mahmood et al. (2023) used a hybrid CNN-ViT model which conferred multi-scale radiographic 

processing and reached an accuracy of 92.7%, significantly enhancing the detection of subtle trabecular changes 

associated with early-stage disease. 
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Chen and Raghavan (2023) took transformer architectures even further by injecting anatomical prior knowledge 

with specialized positional encodings, achieving a 4.3% higher classification accuracy and much improved 

localization of diagnostically relevant regions. Even with these advances, pure transformer approaches are still 

struggling with the high resolution needs of radiographic images and frequently require prohibitive computational 

resources for real-time clinical deployment. 

2.4 Graph-Based Models for Structural Analysis 

Graph Neural Networks are a recent approach that holds great promise for modeling complex structural 

relationships in medical imaging. This innovative approach developed by Gonzalez et al. (2021) was the first 

graph-based representation of trabecular bone structure in high-resolution CT images, showing more accurate 

fracture prediction (88.7%) than density-based measures used in isolation (81.2%). Following this idea along the 

lines of traditional radiography, Tanaka et al. (2022) recently came up with a technique to create bone graphs 

from regular X-rays, allowing structural analysis with no need for advanced imaging technology. Complementing 

this, recent improvements by Lee and Patel (2024) merge superpixel segmentation with graph attention networks 

to represent the complex relationships between bone structures in radiographs. Their method showed most 

promise at separating radiographic metabolic and mechanical causes of bone density changes, reaching a notable 

86.9% accuracy at this more complex classification task. While promising, these graph-based approaches have 

largely been implemented without consideration of other architectures, hampering their potential to take 

advantage of complementary information sources. 

 

2.5 Proposed Methodology 

Our methodology introduces a novel hybrid AI framework that systematically integrates four distinct yet 

complementary neural network architectures to comprehensively analyze radiographic manifestations of 

osteoporosis. Each component addresses specific aspects of bone health assessment, while our fusion mechanism 

enables synergistic interaction between architectures to produce robust and interpretable predictions. 

2.6 CNN Component for Hierarchical Feature Extraction 

The foundational element of our hybrid system is a modified EfficientNet-B4 CNN optimized for bone imaging. 

Unlike conventional implementations, our architecture incorporates specialized residual blocks with dilated 

convolutions to capture multi-scale bone density patterns without information loss.  

The CNN pathway consists of three stages: (1) low-level feature extraction focusing on edge detection and 

texture analysis, (2) mid-level feature integration capturing density gradients and trabecular patterns, and (3) 

high-level semantic feature extraction identifying anatomical landmarks and structural abnormalities. 

We implement spatial attention gates between convolutional blocks to automatically focus computational 

resources on regions with potential diagnostic significance. These gates are trained using radiologist-annotated 

regions of interest to develop an attention mechanism that mimics expert gaze patterns. The CNN component 

processes standardized 256×256×1 grayscale images and outputs a rich feature representation (2048-dimensional 

vector) that captures hierarchical visual patterns associated with different osteoporosis stages. 

2.7 GAN Component for Data Augmentation and Domain Adaptation 

Our system incorporates a StyleGAN2-based architecture with medical imaging-specific modifications to serve 

dual purposes: data augmentation and domain adaptation. The generator employs progressive growing techniques 

to synthesize high-fidelity knee radiographs (512×512 resolution) with controllable pathology manifestation. By 

conditioning the generator on Kellgren-Lawrence grades, we can synthesize realistic examples of 

underrepresented classes to address dataset imbalance.  

The GAN component is trained using a two-phase strategy: (1) unsupervised training on unlabeled 

radiographs to learn the manifold of anatomically plausible knee images, followed by (2) supervised fine-tuning 

to generate grade-specific examples. The discriminator network is dual-headed, simultaneously assessing image 

realism and pathology grade accuracy. This component not only augments the training dataset but also enables 

domain adaptation between different imaging protocols, enhancing the system's robustness to equipment 

variations. 
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2.8 Vision Transformer for Global Context Modeling 

To capture long-range dependencies between distant image regions, we implement a specialized Vision 

Transformer module. The ViT component divides input images into 16×16 non-overlapping patches, projects 

each patch into a 768-dimensional embedding space, and adds learned positional encodings. Our architecture 

consists of 12 transformer layers with 8 attention heads per layer, optimized for medical imaging through custom 

pre-training on a corpus of 50,000 radiographs. 

 

2.9 Graph Neural Network for Structural Relationship Modeling 

A major problem lies in how states are implementing it.GNN component further provides a flexible way to model 

the knee joint as a graph structured object, allowing nodes to represent anatomical landmarks and trabecular 

regions while edges naturally encode spatial and functional relationships. Node features consist of local density 

measures, texture features, anatomical labels, and edge features, such as distance between nodes and 

adjacency/connectedness of nodes. To address this problem, we use a graph attention network with custom 

message passing functions tailored to modeling force transmission pathways through complex bone structures. 

This graph-based representation is automatically learned from the input image using a hierarchical mix of 

anatomical landmark detection and adaptive superpixel segmentation. The GNN iteratively refines this 

representation via three graph convolution layers with skip connections, finally generating node-level and graph-

level structural health indicators encoded in the embeddings.  

 

2.10 Weighted Attention Fusion Mechanism 

Instead of naively concatenating features from each architecture, we introduce an attention fusion mechanism 

that weights the contribution of each architecture based on case-specific factors. The fusion module includes a 

meta-network, which learns to read initial features from all architectures and produces attention weights that 

govern information transmission from each architecture to the final decision layer. This combined method enables 

the model to focus more on CNN features for cases where density change is clear, ViT features for cases with 

subtle global patterns, and GNN features for cases with mostly structural abnormalities. 

 

III.SYSTEM ARCHITECTURE 

Multiple neural network architectures are integrated into a unified framework intended for clinical application in 

the hybrid AI system for osteoporosis prediction. The entire system architecture is depicted in Figure 1, 

emphasizing the integration mechanisms that allow for synergistic operation as well as data flow between 

components. 

3.1 Input Processing and Enhancement Module 

The system starts with a thorough preprocessing pipeline that improves diagnostic characteristics and 

standardizes input radiographs. Using a histogram-based method tailored for bone imaging, raw DICOM pictures 

(usually with a resolution of 2500×2048) are automatically exposed to normalization. With an 8x8 grid size and 

a clip limit of 2.5, Contrast Limited Adaptive Histogram Equalization (CLAHE) improves the appearance of 

trabecular patterns while maintaining overall density correlations. Quantum mottle is reduced without 

compromising fine structural features using a customized denoising autoencoder that has been trained on matched 

noisy/clean radiographs. A U-Net segmentation model (Dice coefficient 0.97 on test data) is used to automatically 

isolate the knee joint region in order to normalize anatomical alignment and remove superfluous background 

structures. 
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Fig. 3.1 System Architecture 

 

3.2 Multi-Architecture Feature Extraction Block 

The core of the system is built on four parallel neural network pathways, each designed to extract complementary 

features from input images. The CNN pathway utilizes a modified EfficientNet-B4 architecture, which processes 

the standardized input through seven convolutional blocks with increasing dilation rates and integrates Squeeze-

and-Excitation modules to emphasize important channels. This pathway concludes with global average pooling 

and projects the output to a 2048-dimensional feature vector. The GAN pathway employs a pre-trained 

StyleGAN2 encoder operating in inference mode to map the image into a 512-dimensional latent space (W+), 

capturing domain-invariant features for consistent performance across different imaging sources. In the ViT 

pathway, the image is divided into 256 patches, each embedded into 768-dimensional tokens and passed through 

12 transformer layers, with the final classification token projected to a 1024-dimensional global representation. 

Lastly, the GNN pathway automatically constructs a graph of approximately 120–150 nodes representing 

anatomical landmarks and regions, where node features include 64-dimensional descriptors. This graph is 

processed through three graph attention layers with eight heads each, producing a 512-dimensional graph-level 

embedding that captures both spatial and anatomical relationships. 

3.3 Fusion and Decision Module 

Our weighted attention fusion method receives inputs from each of the four pathways. A trainable meta-
network determines the contribution of each architecture to the final choice by analyzing preliminary 
information from each pathway and producing dynamic attention weights. A softmax layer that generates 
normalized attention weights comes after two transformer layers that simulate interactions between 
architecture-specific features in this meta-network. The information flow from each pathway is modulated 
by these weights into a fused representation with 1024 dimensions. Two fully connected layers 
(1024→512→256) with ReLU activations and dropout (rate=0.3) for regularization are used for the final 
processing of this representation. A softmax layer that generates probability for every Kellgren-Lawrence 
grade (0–4) makes up the classification head. Concurrently, a branch of Bayesian estimating that was 
developed utilizing. 

Table 3.3.1: Distribution of Radiographs by Kellgren-Lawrence Grade 

Kellgren-

LawrencGrade 

Description Number of 

Images 

Grade 0 Normal 416 

Grade 1 Doubtful narrowing, possible 

lipping 

371 

Grade 2 Definite osteophytes, narrowing 327 

Grade 3 Moderate osteophytes, sclerosis 294 

Grade 4 Severe sclerosis and deformity 242 
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3.4 Clinical Decision Support System 

A thorough decision support module receives the system's output and converts technical forecasts into 

information that can be used in clinical settings.  

The system offers Fracture Risk Estimation in addition to basic classification: The 3-year fracture probability 

is estimated by a customized regression head trained on longitudinal outcomes data.  

● Recommendation Engine for Treatment: Image analysis and patient metadata are combined by an 

evidence-based rule system to produce recommendations for individualized interventions.  

● Tracking Progress: An automated comparison module measures changes from prior scans over 14 

different parameters for follow-up exams, allowing for an unbiased evaluation of therapy response or disease 

progression.  

● Explainability Visualizations: A feature importance module assesses the diagnostic relevance of 

discovered abnormalities, and class activation mapping approaches produce heat maps that emphasize locations 

that contribute to the final diagnosis.By using a standard protocol, this design easily interacts with hospital 

information systems and offers both synchronous and asynchronous. 

IV.  EXPERIMENTAL RESULTS 

We conducted comprehensive evaluations of our hybrid AI model across multiple dimensions to assess its 

diagnostic performance, generalizability, and clinical utility. All experiments followed institutional review board 

protocols, with patient data appropriately de-identified. 

4.1 Dataset and Evaluation Protocol 

Our main dataset comprised 1,650 knee radiographs obtained from three medical centers with different equipment 

(PROTEC PRS 500E, Siemens Multix Select DR, and GE Definium 6000). Three board-certified radiologists 

independently annotated each image based on the Kellgren-Lawrence classification system, and majority voting 

was used to establish consensus. The distribution of the dataset was as follows:  

● Grade 0 (416 images),  

● Grade 1 (371 images),  

● Grade 2 (327 images),  

● Grade 3 (294 images), and  

● Grade 4 (242 images). 

We used a stratified five-fold cross-validation regimen to have robust evaluation. Within each fold, 70% of the 

images were allocated to training, 10% for training-validation, and 20% to testing. All these performance 

measures were evaluated: accuracy, precision, recall, F1-score, and area under receiver operating characteristic 

curve (AUC-ROC) for both each individual grade and across all grades combined. We also monitored inference 

time, model size, and computation demand to inform practical deployment possibilities. 
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Fig. 4.1 Model Summary 

4.2 Classification Performance 

Table 1 shows our hybrid model's classification performance over single architectures and current state-of-the-

art methods. The hybrid model outperformed all by a considerable margin on all measurements, with some 

notably high increases in early detection (Grade 1), for which the sensitivity was boosted from 72.3% (best single 

model) to 87.5%. 

The confusion matrix evaluation indicated that the misclassifications were mostly between consecutive grades 

(e.g., Grade 1 and Grade 2), in agreement with the gradual nature of osteoporosis progression. Significantly, the 

hybrid model decreased severe misclassifications (difference >1 grade) by 76% when compared to the best single 

architecture strategy. 
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4.3 Ablation Studies 

To identify the contribution of every architectural element, we performed extensive ablation studies by 

sequentially eliminating every element and retraining the model. Results showed that all elements contributed 

positively to the overall performance, with different levels of significance based on the particular osteoporosis 

grade: 

● Eliminating the CNN element led to a 3.6% reduction in overall accuracy, with the highest impact on 

Grade 4 classification (-5.2%). 

● Removing the GAN component decreased accuracy by 1.9%, most significantly impacting performance 

on images from equipment poorly represented in the training data (-7.3%). 

● Removing the ViT component decreased accuracy by 2.7%, most significantly impacting detection of 

Grade 1 (-4.8%). 

● Removing the GNN component decreased accuracy by 2.3%, most significantly impacting differentiation 

between Grades 1 and 2 (-3.9%). 

● The mechanism of fusion itself played a big role, as substituting the weighted attention fusion with simple 

concatenation or averaging decreased performance by 1.8% and 2.3%, respectively. 

 

4.4 Generalization and Robustness 

We tested our model's generalization performance on external datasets of two other medical centers not involved 

in the training. The hybrid model had 92.1% accuracy on these external datasets, showing strong generalization. 

The top single-architecture method (ViT) only had 86.5% accuracy on the same external validation. 

To evaluate robustness to image quality changes, we degradationally tested images systematically by adding 

noise, decreasing contrast, and emulating various exposure conditions. The hybrid model was consistently >90% 

accurate until high levels of degradation, outperforming standalone architectures by a mean margin of 8.3% under 

difficult conditions. 

Method Accuracy Precision Recall F1-Score 
AUC-

ROC 

CNN 89.7% 88.3% 87.9% 88.1% 0.95 

GAN + 

CNN 
90.2% 89.1% 88.7% 88.9% 0.96 

ViT 91.5% 90.2% 89.8% 90.0% 0.97 

GNN 88.9% 87.5% 86.4% 86.9% 0.94 

Hybrid 

Model 
94.3% 93.1% 92.8% 93.0% 0.98 
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4.5 Clinical Validation 

The final test of any medical AI system is how it performs in actual clinical practice. We reported a prospective 

validation study on 15 clinicians (8 radiologists, 7 orthopedic specialists) who reviewed 200 cases, initially 

without and then with AI support. Outcomes were: 

● Accuracy of diagnosis rose from 83.7% (unassisted) to 91.5% (AI-assisted). 

● Inter-observer concordance (estimated using Fleiss' kappa) rose from 0.72 to 0.86. 

● Average time to diagnosis fell from 118 seconds to 64 seconds per case. 

● Sensitivity for early-stage detection (Grades 0-1) increased from 76.2% to 89.7%. 

A six-month follow-up of 120 cases demonstrated that treatment decisions made using AI-assisted diagnosis 

resulted in better clinical outcomes, with a 23% decrease in disease progression compared to the standard care 

pathway. 

4.6 Fracture Risk Prediction 

Apart from classification, we also assessed the capacity of our system to predict future fracture risk in a 420-

patient subset with 3-year follow-up data. The hybrid model was 91.2% accurate in predicting patients who would 

sustain osteoporotic fractures within this timeframe, vastly better than both clinical risk calculators (FRAX: 

84.7%) and singe-architecture methods (best: 86.9%). 

 
Fig. 4.6.1 Convolutional Neural Network Architecture

 

http://www.ijcrt.org/


www.ijcrt.org                                                                © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882 

IJCRT25A4468 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org m555 
 

 
Fig. 4.6.2 Confusion Matrix 

V. CONCLUSION AND FUTURE SCOPE 

This work proposes a paradigm shift in computer-aided osteoporosis diagnosis through a novel hybrid AI 

platform that synergistically integrates different neural network architectures. Our robust evaluations clearly 

indicate that this combined approach significantly outperforms single-architecture algorithms across all 

performance metrics, with particularly notable gains in early-stage detection. Achieving a 94.3% cross-

validation overall accuracy and 87.5% sensitivity in Grade 1 cases, our model represents a substantial 

improvement over current leading algorithms and has the potential to transform clinical practice. 
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Fig. 5.1 Sample Output 

 

Our model’s superior performance supports our hypothesis that various neural architectures capture orthogonal 

features of osteoporosis appearance in radiographic images.  

The CNN module excels at learning hierarchical bone texture and density features, while the GAN module 

enhances robustness to imaging equipment variations.  

The ViT module captures global contextual relationships crucial for detecting early-stage changes, and the 

GNN component detects structural degradation patterns that often precede visible density loss. The weighted 

attention fusion mechanism effectively combines these strengths, dynamically adjusting the influence of each 

network based on case-specific features. 

Our future clinical validation demonstrated tangible advantages in practice: improved diagnostic accuracy, 

increased inter-observer agreement, reduced interpretation time, and better patient outcomes due to earlier and 

more appropriate interventions. These findings affirm the hybrid AI system’s utility as a clinical decision 

support tool that enhances, rather than replaces, expert judgment. 

Despite these promising outcomes, some limitations remain. Our dataset, while large, requires broader 

validation across more representative populations to confirm consistent performance.  
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The hybrid model’s computational complexity may challenge deployment in low-resource environments, 

necessitating optimization for standard clinical hardware. 

Additionally, larger longitudinal studies with extended follow-up are needed to further validate our system’s 

predictive power in fracture risk assessment. 

Future research includes several promising directions:  

● Multimodal Integration – Incorporating clinical history, laboratory biomarkers, and genomic data 

could enhance predictive accuracy and support individualized risk assessments. 

● Federated Learning Framework – Developing privacy-preserving distributed training protocols 

would enable collaboration across institutions without compromising patient data privacy. 

● Longitudinal Monitoring – Supporting automated tracking of disease progression or treatment 

response would provide objective, quantitative measurements of subtle changes over time. 

● Expanded Anatomical Coverage – Adapting the hybrid model to assess other key anatomical sites like 

the spine, hip, and wrist would offer a more holistic assessment of skeletal health. 

In summary, our hybrid AI model represents a major advancement in osteoporosis diagnosis, demonstrating 

how architectural diversity in deep learning can effectively capture the multidimensional nature of disease.  

By leveraging the complementary strengths of multiple network designs through dynamic fusion, we have 

developed a high-performance, interpretable, and clinically meaningful system.  

This work lays the foundation for next-generation diagnostic tools capable of tackling complex radiographic 

challenges—not only in osteoporosis but in a wide range of multifactorial medical conditions. 
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