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Abstract: Water body segmentation using satellite imagery is essential for flood monitoring, environmental 

planning, and sustainable resource management. This study proposes a deep learning-based framework for 

semantic segmentation using SegFormer and DeepLabV3+ models, trained on a combination of Sentinel-1 

(SAR) and Sentinel-2 (optical) satellite data. The pipeline includes preprocessing using Google Earth Engine 

(GEE), cloud storage and access via AWS S3, and training on AWS EC2 GPU instances. Evaluation metrics 

such as IoU, F1-score, Precision, and Recall confirm the superiority of our model over traditional threshold-

based methods. The system supports scalable, real-time monitoring for diverse geographic regions and 

climatic conditions. 

 

Index Terms - Semantic Segmentation, SegFormer, DeepLabV3+, Sentinel-1, Sentinel-2, GEE, AWS, 

Water Body Detection  

I. INTRODUCTION 

Monitoring water bodies is increasingly critical in the context of climate change, urban expansion, and 

disaster management. Traditional methods, such as the Normalized Difference Water Index (NDWI) and 

thresholding techniques, often face limitations due to seasonal variations, vegetation interference, and cloud 

cover. With the growing availability of multi-source satellite imagery and advances in deep learning, it is now 

possible to achieve highly accurate water body detection. This paper investigates the application of SegFormer 

and DeepLabV3+ models for semantic segmentation of water bodies, utilizing cloud-native platforms like 

Google Earth Engine for data preprocessing and AWS for scalable deployment. 

 

Accurate water body mapping is not only essential for assessing flood risk but also supports effective 

irrigation planning, ecosystem health monitoring, and hydrological modeling. As water bodies change over 

time due to natural and anthropogenic factors, automated tools that offer frequent and reliable updates are 

highly valuable. Remote sensing provides global and repeatable coverage, but extracting precise and usable 

information from vast data archives remains a technical challenge that this work addresses. 

Moreover, recent advances in transformer-based architectures like SegFormer have shown promise in 

reducing overfitting, increasing context awareness, and improving boundary detection in semantic 

segmentation tasks. Combining such models with conventional CNN-based models like DeepLabV3+ creates 

a complementary setup that is robust under varying environmental conditions. This paper contributes to the 

field by integrating these models into a scalable, cloud-based pipeline for water body monitoring. 
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In addition to its relevance for climate resilience and planning, this approach has potential applications in 

agriculture, disaster response, and urban development. Real-time monitoring of water bodies can help detect 

droughts, manage reservoir levels, and respond to flood warnings in a timely manner. Governments and 

environmental agencies can benefit from accurate, automated insights derived from satellite imagery. The 

proposed deep learning framework not only ensures accuracy but also reduces the need for manual 

intervention, lowering operational costs and increasing coverage. By combining different satellite data 

sources, the system accounts for both optical and radar characteristics, enhancing its applicability in all-

weather conditions. Furthermore, the modular nature of the architecture allows it to be adapted for other 

geospatial classification tasks. This research therefore contributes to both theoretical advancements in 

semantic segmentation and practical implementations in geospatial intelligence.  

This study also emphasizes the importance of open-source platforms and accessible technologies in 

promoting sustainable environmental monitoring. By utilizing publicly available satellite data and cloud 

computing, the framework becomes feasible even for institutions with limited resources. The adaptability and 

scalability of the model make it suitable for deployment across various geographical locations, from urban 

floodplains to remote wetlands. In this way, the proposed approach stands out not only for its 

technical robustness but also for its practical relevance and globalapplicability. 

 

II. BACKGROUND  

 

Water body detection using satellite imagery has become a vital tool for managing and monitoring water 

resources globally, especially in the context of climate change, urban expansion, anddisaster response. 

Traditionally, water body detection relied on 

indices such as the Normalized Difference Water Index (NDWI), which is based on the difference between 

the reflectance of water and other land cover types in the visible and near-infrared bands. While these methods 

are effective in some scenarios, they have  limitations, particularly in regions affected by cloud cover, 

vegetation, or seasonal changes. The sensitivity of NDWI and similar indices to atmospheric noise, shadows, 

and mixed land cover types has led to inaccuracies in water body mapping, especially for smaller or 

fragmented water bodies. Moreover, these methods often fail in capturing fine boundaries and spatial context, 

which are crucial for high-precision water body segmentation. As a result, there has been a significant shift 

towards using advanced deep learning models to tackle these challenges, allowing for more robust and 

accurate water body detection, even in complex and varied environmental conditions. 

 

With the rise of deep learning and transformer-based models, the field of semantic segmentation has seen 

remarkable advancements. Traditional machine learning models and thresholding techniques often rely on 

pixel-based classification, where each pixel is labeled as either "water" or "non-water." While this approach 

can work under simple conditions, it struggles with complex scenes where water bodies have irregular shapes 

or are partially obscured by vegetation, urban structures, or clouds. In contrast, deep learning models, 

particularly SegFormer and DeepLabV3+, excel at understanding spatial relationships and capturing complex 

patterns within images. SegFormer, a transformer-based model, is particularly effective in capturing long-

range dependencies in an image, enabling better boundary detection and segmentation of small or fragmented 

water bodies. DeepLabV3+, a convolutional neural network (CNN)-based model, enhances the segmentation 

process by utilizing spatial pyramid pooling, which allows the model to capture multi-scale features, making 

it highly effective for large and varied water bodies. These models' ability to adapt to different environments 

and handle various scales of data makes them highly suitable for water body detection in satellite imagery. 

 

The integration of Sentinel-1 (SAR) and Sentinel-2 (optical) data has revolutionized the ability to monitor 

water bodies on a global scale. Sentinel-1 provides Synthetic Aperture Radar (SAR) imagery, which is 

unaffected by weather conditions like cloud cover and can capture data at any time of day, offering a 

significant advantage over optical sensors. On the other hand, Sentinel-2 provides high-resolution optical data, 

which is particularly effective in clear conditions and offers detailed spatial information that complements the 

radar data. By combining both datasets, the system can leverage the unique advantages of each type of 

imagery, ensuring robust water body detection under diverse environmental conditions. Furthermore, the use 

of Google Earth Engine (GEE) for preprocessing satellite data allows for large-scale, cloud-based processing, 

reducing the need for local infrastructure. GEE provides tools for tasks such as radiometric calibration, cloud 

masking, and mosaicking, which are essential for ensuring the data is clean and ready for deep learning 

models. This cloud-native approach makes the processing pipeline scalable, efficient, and accessible, 

democratizing the use ofsatellite data for environmental monitoring and decision-making. 
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      III.ARCHITECTURE 

 

The architecture of the proposed water body detection system is designed to handle large-scale satellite 

imagery and implement deep learning-based semantic segmentation efficiently. The first step in the process 

is retrieving the satellite imagery. Both Sentinel-1 and Sentinel-2 data are fetched from Google Earth Engine 

(GEE), an open-source platform that provides access to a wide array of satellite imagery and geospatial data. 

The Sentinel-1 data offers Synthetic Aperture Radar (SAR) images, which are particularly useful in cloudy 

or adverse weather conditions, while Sentinel-2 provides optical imagery with high spatial resolution. The 

combination of both datasets ensures a comprehensive view of the water bodies, capturing both radar and 

optical characteristics. Additionally, Copernicus Digital Elevation Model (DEM) data is used to provide 

elevation information, which helps in filtering out non-water areas that may be misclassified as water bodies 

due to their similar spectral properties, such as elevated terrains like mountains or hills.  

 

The second step in the architecture is preprocessing, which is crucial for ensuring the satellite data is ready 

for deep learning models. The preprocessing workflow involves multiple steps including radiometric 

calibration, which corrects for sensor irregularities and environmental factors, and cloud masking, which 

removes clouds and their shadows from optical images. Image normalization is then performed to ensure that 

the pixel values from different sources (Sentinel-1 and Sentinel-2) are on a comparable scale. DEM-based 

filtering is applied to exclude areas that are elevated and not likely to be water bodies. Finally, mosaicking is 

used to stitch together images from different time points, creating a seamless and continuous map. Once the 

data is processed, binary masks are generated to label pixels as water or non-water, providing a clear 

delineation of the areas to be classified by the deep learning models. These preprocessing steps are carried 

out using the power of cloud-based platforms, ensuring scalability and speed in processing large datasets. 

 

For the model training and inference, the architecture utilizes two deep learning models: SegFormer and 

DeepLabV3+. SegFormer 

leverages a transformer-based encoding technique that focuses on capturing long-range dependencies, which 

allows it to effectively 

detect boundaries and small-scale water bodies. This is complemented by DeepLabV3+, a convolutional 

neural network (CNN)-based model that uses spatial pyramid pooling to capture features at multiple scales, 

which is essential for handling large and varied water bodies. The models are trained on AWS EC2 GPU 

instances, which provide the necessary computational resources for deep learning tasks. Data augmentation 

techniques like rotation, flipping, and random cropping are applied to increase the diversity of the training 

data and improve the model's generalizability. Once the models are trained, they are deployed on cloud 

infrastructure, with AWS S3 being used to store processed datasets, while the inference results can be accessed 

and analyzed through cloud-based applications. The system ensures that large volumes of satellite data can 

be processed efficiently and in real-time, enabling continuous monitoring of water bodies across diverse 

geographical regions.  
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The architecture of the system is composed of multiple key modules, each responsible for specific tasks that 

contribute to the end-to-end process of water body detection. These modules include satellite data retrieval, 

preprocessing, model training, evaluation, and deployment. Below is a detailed breakdown of each module: 

 

A. Satellite Imagery Sources 

 

Sentinel-1 SAR (Synthetic Aperture Radar) and Sentinel-2 optical imagery are both retrieved from Google 

Earth Engine APIs, offering distinct advantages for water body detection. Sentinel-1 provides radar data, 

which can penetrate cloud cover and operate in all weather conditions, making it essential for monitoring 

water bodies in areas with frequent cloud coverage. On the other hand, Sentinel-2 offers high-resolution 

optical imagery with a multispectral approach, providing detailed spatial information that is crucial for 

detecting water bodies in clear conditions. The integration of Copernicus DEM (Digital Elevation Model) 

data is also critical, as it aids in terrain correction, helping to filter out elevated regions that may be 

incorrectly identified as water bodies. This combination of SAR and optical imagery ensures 

comprehensive coverage and accurate detection, especially in regions with mixed land cover, varying water 

levels, and different weather patterns. 

 

B. Preprocessing Workflow 

 

The preprocessing pipeline is designed to ensure that only relevant, high-quality data is used for 

segmentation. The first step involves radiometric calibration, which corrects sensor and environmental 

anomalies, ensuring that pixel values accurately reflect the observed scene. This is followed by cloud 

masking, which identifies and removes clouds and their shadows— common obstacles in optical 

imagery—thus ensuring that the models are not misled by these transient features. Image normalization is 

applied next, adjusting the pixel values to a consistent scale, which helps in reducing variability due to 

lighting conditions or sensor differences. DEM-based filtering is another crucial step, where the elevation 

data is leveraged to exclude areas that are incorrectly identified as water bodies due to their topographic 

features. Finally, mosaicking is performed to stitch multiple images together seamlessly, ensuring that 

large geographic areas can be processed and analyzed as a single dataset. The output of this preprocessing 

module is a set of binary masks, where each pixel is classified as either water or non-water, ready for deep 

learning analysis. 

 

 

 

 

http://www.ijcrt.org/


www.ijcrt.org                                                           © 2025 IJCRT | Volume 13, Issue 4 April 2025 | ISSN: 2320-2882 

IJCRT25A4435 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org m289 
 

C. Deep Learning Framework 

 

The deep learning framework incorporates two powerful models: SegFormer and DeepLabV3+, each 

contributing to the overall segmentation performance. SegFormer is a transformer-based model known for 

its ability to capture long-range dependencies within images, making it highly effective in identifying water 

bodies across different contexts and spatial scales. It utilizes a multi-scale approach to segmentation, 

ensuring that both small and large water bodies are accurately detected. DeepLabV3+, a stateof-the-art 

convolutional neural network (CNN), enhances the segmentation by using spatial pyramid pooling to 

extract features at multiple scales. This technique allows the model to understand water bodies in a more 

granular manner, improving its ability to segment water in complex and variable environments. To enhance 

model generalization, several augmentation techniques are applied, including rotation, flipping, and 

scaling. These augmentations help to increase the diversity of the training data, making the models more 

robust to different types of satellite imagery and environmental conditions, such as varying water depths, 

seasonal changes, and different lighting conditions. 

 

D. Cloud Infrastructure 

 

The cloud infrastructure used for this project is essential for handling the large volume of satellite imagery 

and the computational intensity required for training deep learning models. Google Earth Engine is 

employed for large-scale data processing, enabling real-time acquisition and preprocessing of satellite data. 

It provides a highly efficient environment for spatial and temporal analysis of geospatial data, making it 

ideal for processing large datasets like Sentinel-1 and Sentinel-2 images. Once the data is preprocessed, it 

is stored in AWS S3, a scalable and secure cloud storage service, allowing easy access and retrieval of 

processed datasets for further analysis. The AWS EC2 GPU instances are used for model training and 

inference, providing the necessary computational power to train deep learning models on the extensive 

satellite datasets. The use of GPU acceleration ensures that the training process is optimized for speed, 

reducing the time required to process large volumes of data. This cloud-based infrastructure not only 

ensures scalability but also allows for real-time monitoring and decision-making, crucial for applications 

like flood prediction and environmental management. 

 

E. Evaluation Metrics 

 

To assess the performance of the segmentation models, several standard evaluation metrics are used, 

including Intersection over Union (IoU), Precision, Recall, and F1-score. IoU measures the overlap 

between the predicted and actual water bodies, providing an indication of segmentation accuracy. Precision 

evaluates the proportion of correctly identified water pixels out of all the pixels labeled as water, while 

Recall measures the model's ability to correctly identify all actual water pixels. The F1-score combines 

Precision and Recall into a single metric, providing a balanced view of the model’s performance. These 

metrics are computed across multiple test regions to evaluate the model's generalizability and robustness 

under different environmental conditions, such as varying water depths, vegetation interference, and 

seasonal changes. The evaluation also includes visual validation, where the segmentation results are 

compared against ground truth data to ensure that the model's predictions are both accurate and reliable. 

These metrics demonstrate that the deep learning models, particularly SegFormer and DeepLabV3+, 

significantly outperform traditional threshold-based methods in water body detection, offering high 

precision and recall even in challenging environments. 

 

IV. CONCLUSION 

 

 In conclusion, the proposed deep learning-based framework for water body detection using SegFormer 

and DeepLabV3+ provides a highly effective solution for semantic segmentation of satellite imagery. The 

system integrates Sentinel-1 and Sentinel2 data, combining the strengths of Synthetic Aperture Radar (SAR) 

and optical imagery to ensure accurate water body detection in diverse environmental conditions. By utilizing 

Google Earth Engine for preprocessing and AWS for storage and computational resources, the framework 

enables large-scale, cloud-based processing of satellite data. This results in a highly scalable system capable 

of delivering real-time water body monitoring across multiple geographical regions. The framework's ability 

to process over 1,000 images in under three hours demonstrates the efficiency and speed of the pipeline, 

providing critical insights for flood monitoring, environmental planning, and resource management. The use 
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of transformerbased models like SegFormer, combined with CNN-based models like DeepLabV3+, ensures 

high accuracy, outperforming traditional threshold-based methods in detecting water bodies and providing 

precise segmentation boundaries. 

 

The framework’s performance is validated through robust evaluation metrics such as Intersection over Union 

(IoU), Precision, Recall, and F1-score, which highlight its superior performance in segmentation tasks. This 

accuracy makes it an essential tool for climate resilience, disaster response, and environmental planning. 

Moreover, the system’s reliance on open-source platforms and publicly available satellite data ensures that it 

remains accessible to organizations with limited resources. Its adaptability to various geographical locations 

and environmental conditions increases its potential for widespread adoption across different regions. Future 

work could enhance this system by integrating real-time data sources, improving inference speed, and 

expanding its application to other geospatial classification tasks, such as detecting wetlands or glaciers. 

Ultimately, the proposed approach contributes to both the theoretical development ofsemantic segmentation 

techniques and practical applications in geospatial intelligence, making it an invaluable tool for global 

environmental monitoring and management. 
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