

AVOID ACCIDENTS BY FATIGUE DETECTION FROM THE FACE RECOGNITION

SK. Shameera ¹, G.Srinivas Rao ², V. Nandini ³, K. Bansi Devi ⁴, R. Hyndhavi ⁵

¹Assistant Professor, ²Professor, ^{3,4,5}U.G. Students

^{1,2,3,4,5} Department of Electronics and Communication Engineering, Bapatla Women's Engineering College, Bapatla, Andhra Pradesh, India-522101

Abstract: Accidents caused by fatigue are a serious problem, particularly in sectors like manufacturing and transportation. This work suggests a deep learning-based method for face recognition-based driver drowsiness detection and accident prevention. Driver fatigue is a major cause of road accidents, making real-time detection crucial for ensuring safety. Traditional methods like K-Nearest Neighbors (KNN) classify fatigue based on facial features but struggle with real-time tracking and temporal dependencies. To overcome these limitations, this project introduces a CNN + LSTM-based fatigue detection system that not only extracts facial features automatically but also analyzes fatigue patterns over time for improved accuracy. The system employs a Convolutional Neural Network (CNN) for feature extraction from facial images and a Long Short-Term Memory (LSTM) network to analyze temporal patterns associated with fatigue indicators such as eye closure.

The proposed model processes real-time video frames, detects fatigue symptoms, and triggers alerts to prevent drowsy driving. The system is designed to be efficient and scalable, making it suitable for real-world deployment in vehicles and industrial safety applications. Experimental results demonstrate high accuracy in fatigue detection, showcasing the effectiveness of combining CNN and LSTM for robust facial-based fatigue analysis.

Index Terms - Driver Fatigue Detection, Convolutional Neural Network, Long Short-Term Memory, Real-Time Monitoring.

I INTRODUCTION

Fatigue-related accidents are a major cause of road fatalities and workplace injuries, often leading to severe consequences. Drowsy driving impairs reaction time, reduces awareness, and increases the likelihood of collisions, making fatigue detection an essential aspect of road and occupational safety. Traditional methods, such as self-reporting or vehicle-based monitoring systems, are often unreliable and fail to provide real-time assessments. This study introduces an intelligent fatigue detection system that leverages facial recognition and deep learning to identify signs of drowsiness. The proposed approach integrates Convolutional Neural Networks (CNNs) for extracting facial features and Long Short-Term Memory (LSTM) networks for analyzing temporal dependencies in fatigue-related expressions, such as eye closure, yawning, and head tilting.

By processing real-time video frames, the system continuously monitors driver fatigue levels and issues timely alerts to prevent potential accidents. The main objective of this potential accidents. The main objective of this research is to develop an efficient and accurate fatigue detection system that can be deployed in vehicles and workplaces to enhance safety. The combination of CNNs for spatial feature extraction and LSTM for sequential pattern recognition makes the proposed model highly effective in identifying fatigue-related behavioral cues. Experimental evaluations demonstrate the system's capability to achieve high accuracy in detecting fatigue, making it a reliable solution for accident prevention. Systems employing facial recognition analyze various facial cues, such as eye closure, blink rate, yawning, and head posture, to assess

alertness levels.

For instance, a study from Nanyang Technological University developed a software that utilizes a mobile phone's front camera to monitor drivers' facial expressions, aiming to reduce road accidents by providing early alerts. Similarly, research from the International Journal of Advanced Science and Technology highlighted a system that combines facial recognition with drowsiness detection, triggering an alarm to warn the driver. Nanyang Technological University of the SERSC+1IJRASET+1 is EWA Direct. These cutting-edge methods improve vehicle safety by offering real-time, non-intrusive evaluations of driver weariness. By integrating facial recognition technology into advanced driver assistance systems, vehicles can proactively alert drivers to potential drowsiness, thereby reducing the risk of fatigue-related accidents. Recent advancements in this field include the development of multi-parameter fusion models that combine facial features like eye and mouth aspect ratios with other indicators to enhance detection accuracy. For instance, a study published in the Journal of the Society for Information Display introduced a driver fatigue detection method that utilizes facial key points to monitor eye closure and yawning, achieving detection accuracies of 91% and 96.43%, respectively, while significantly reducing processing. Wiley Library+1MDPI+1 Another innovative approach integrates facial features with physiological signals, such as photoplethysmogram (PPG) data, to create a comprehensive fatigue detection system. This system employs a Long Short-Term Memory (LSTM) model to analyze multi-source data, resulting in an impressive detection accuracy of 97.36%. These developments indicate a shift towards more sophisticated, real-time fatigue detection systems that leverage facial recognition and multi-modal data fusion. By continuously monitoring facial expressions and integrating additional physiological signals, these systems can provide timely alerts to drivers, thereby enhancing road safety and reducing the risk of fatigue-related accidents. By continuously monitoring these facial cues, fatigue detection systems can alert drivers before their condition leads to dangerous situations, thereby reducing the risk of accidents. The integration of face recognition-based fatigue detection into vehicles represents a proactive step toward enhancing road safety and saving lives.

II LITERATURE SURVEY

[1]. Adianta et al. (2021) in "Fatigue Detection on Face Image Using FaceNet Algorithm and K-NN Classifier" used Face Net for feature extraction and K-NN for classifying facial fatigue, achieving 94.68% accuracy.

[2]. Adianta, Rakhmadani, and Wijayanto (2021) proposed a system titled "Fatigue Detection on Face Image Using Face Net Algorithm and K-Nearest Neighbor Classifier" to monitor visual fatigue caused by prolonged screen exposure. Using the UTA-RLDD dataset, the authors applied Haar Cascades for face detection and the Face Net model for facial feature extraction.

[3]. Murthy et al. (2020), in their paper "Driver Drowsiness Detection Using Facial Parameters and RNNs with LSTM", tackled the issue of road accidents caused by driver fatigue. Their methodology involved extracting eye, mouth, and head movement features from video frames using a CNN-based feature extractor.

[4]. The study "Application of Wearable Gloves for Assisted Learning of Sign Language Using Artificial Neural Networks" by Kim and Baek (2023) created a wearable gadget. They designed a glove fitted using DC motors and flex sensors to mimic Korean sign language movements.

III EXISTING METHOD

The K-Nearest Neighbours (KNN) algorithm is a simple, easy-to-use machine learning method for classification and regression problems. It uses the similarity principle to predict the label or value of a new data point by examining the 'K' closest data points (neighbours) in the training dataset. KNN saves the complete information and only makes calculations when making predictions; it does not create a model during training. The algorithm determines the distance (often using the Manhattan, Minkowski, or Euclidean distance) between a new data point and other points when it needs to be classed or forecasted. and all points in the dataset. Next, the nearest neighbours, or K data points with the shortest distances, are selected. KNN uses majority voting to classify new data points by assigning them to the class that is most prevalent among its K neighbours. Regression forecasts the value by averaging the values of its K closest neighbours. The choice of K is important: a small K can be sensitive to noise, while a large K can smooth out predictions but may overlook local patterns. KNN is referred to as a "lazy learner" since it is non-parametric, which means it makes no assumptions about the distribution of the underlying data, and it does not learn a model beforehand. This makes it flexible and easy to implement, but it can be computationally expensive during prediction, especially with large datasets.

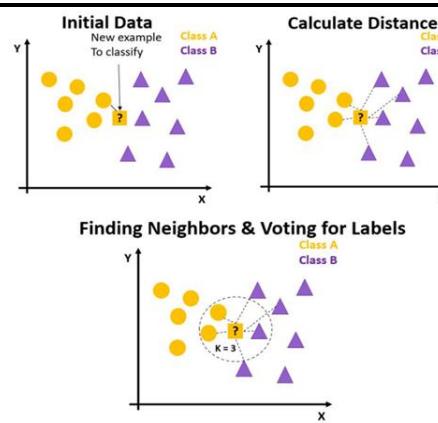


Fig. 1: KNN Algorithm

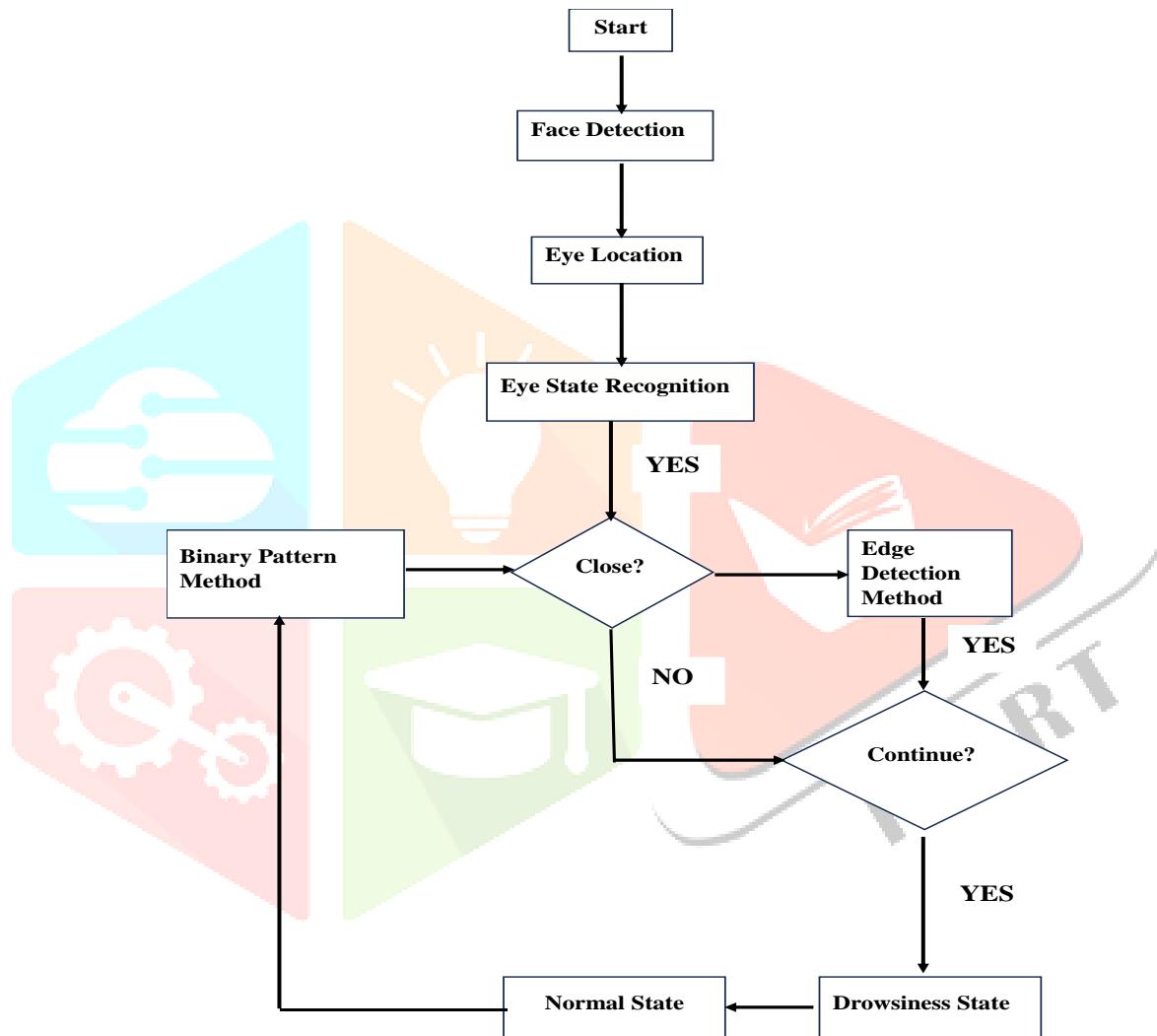


Fig. 2: Flow Chart for fatigue detection

IV PROPOSED METHOD

CONVOLUTIONAL NEURAL NETWORK (CNN)

Fatigue detection has become an essential area of research, particularly in industries where human alertness is critical, such as transportation, safety, with healthcare, and manufacturing. Several methods have been proposed to detect fatigue, often categorized based on the type of data they utilize—physiological, behavioral, or a combination of both. One of the most widely studied approaches it involves physiological in signal-based detection, which monitors changes in the body that infer fatigue levels. These methods are particularly useful in workplace monitoring systems. detection accuracy and reduce false positives. For example, a hybrid fatigue detection system may combine heart rate monitoring, eye-tracking data, and real-time performance metrics, all processed through a deep learning algorithm. Such integrated systems provide a more holistic understanding of a person's fatigue level and are being developed for real-world applications such as advanced driver-assistance systems (ADAS) and smart healthcare monitoring.

Overall, the trend in fatigue detection is moving towards intelligent, multi-modal systems that offer both accuracy and practicality for continuous monitoring. Signals that offer both accuracy and practicality are such as electroencephalography (EEG), which records brain activity, electrooculography (EOG) for eye movement, and heart rate variability (HRV) are often analyzed to detect drowsiness or cognitive decline. These methods offer high accuracy but usually require specialized sensors or wearable devices. Another common approach provides a more holistic understanding of a person's fatigue level and are being developed for real-world applications such as visual-based fatigue detection, which employs computer vision techniques to analyse facial expressions, eye blink frequency, and head movements. Metrics like PERCLOS (percentage of eye closure) are especially popular in detecting drowsiness among drivers.

Cameras, often integrated with infrared technology for low-light conditions, are used in real-time to monitor these visual cues. These systems offer a more holistic understanding and are non-intrusive and increasingly integrated into modern vehicles and mobile devices. Machine learning methods have also been proposed to enhance the accuracy and reliability of fatigue detection systems. Algorithms that support vector machines (SVM), random forests, and deep learning models like convolutional neural networks (CNNs) and long short-term memory networks (LSTMs) are trained. These systems are non-intrusive and increasingly integrated into modern vehicles and mobile devices on large datasets comprising physiological, visual, and behavioural inputs.

These models can learn complex patterns and improve detection performance, especially when multiple data sources are combined. Furthermore, and their behavioral and performance-based methods that evaluate changes in task performance—such as delayed reaction and temporal dependencies in data. This step analyses how the features change over time, which is crucial for detecting behavioural patterns like blinking rate or progressive eye closure that indicate drowsiness. Based on this analysis, the system proceeds to Fatigue Classification, categorizing the driver's state as either Awake or Drowsy. If drowsiness is detected, the system activates an Alert Mechanism to warn the driver, potentially preventing accidents caused by fatigue. Overall, the flowchart outlines an intelligent, real-time system combining CNN for spatial feature analysis and LSTM for time-series prediction, aimed at enhancing road safety through early fatigue detection.

- Eye state and head pose: to determine if the driver is closing their eyes frequently or nodding off.
- Mouth openness: to detect yawning, a common sign of drowsiness.
- General facial features: used for expression analysis and additional clues on alertness levels.

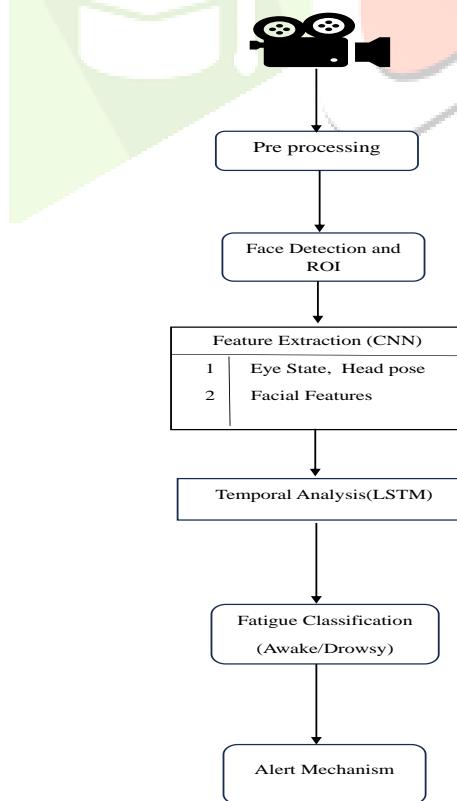


Fig. 3: Flow chart for proposed method

The process begins with live video input, which continuously captures frames of the driver's face. This input is first subjected to pre-processing to enhance the image quality and prepare it for further analysis. Common pre-processing steps include resizing, noise reduction, and grayscale conversion to standardize the data and improve detection accuracy. Next, the system performs face detection and Region of Interest (ROI) extraction, separating the face from the background of the picture. By ensuring that only pertinent facial traits are examined, this stage lowers computational burden and noise. These extracted features are then fed into the Temporal Analysis module, which utilizes a Long Short-Term Memory (LSTM) network. LSTM is a type of Recurrent Neural Network (RNN) that excels at understanding sequences.

V. RESULT

Avoiding road accidents by implementing real-time fatigue detection through facial recognition. By analyzing features such as eye blinking, yawning, and head movements from driver face images, the system aimed to identify signs of drowsiness before they result in dangerous driving behavior. The research tested three convolutional neural network (CNN) models, and on a custom dataset of active and sleepy faces. Among them, It achieved the highest accuracy of 93.69%, proving to be the most effective model in detecting fatigue accurately.

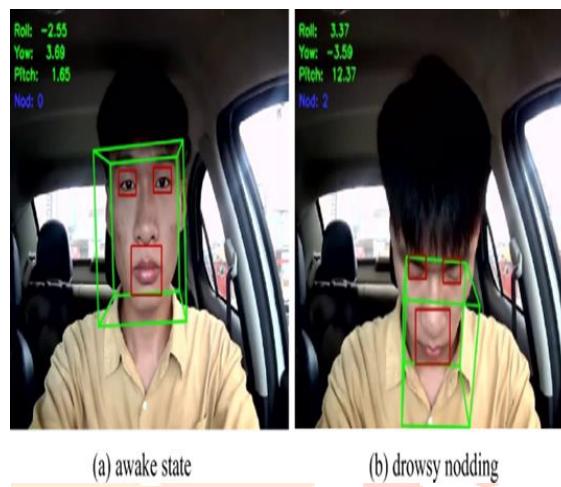


Fig. 4: Output

VI CONCLUSION

In this study, we proposed a deep learning-based fatigue detection system that combines Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks to accurately detect fatigue in real-time through facial recognition. By leveraging CNNs for automatic feature extraction and LSTMs for temporal analysis, the system offers superior performance over traditional machine learning methods, such as K-Nearest Neighbour (K-NN). The proposed system's ability to detect subtle signs of fatigue, such as eye closure, yawning, and head movements, in real-time provides a promising solution for preventing fatigue-related accidents in high-risk environments, such as transportation and industrial sectors. The high accuracy, real-time monitoring capabilities, and automated feature extraction make this system a reliable tool for improving safety and efficiency.

VII FUTURE SCOPE

The proposed fatigue detection system can be further enhanced in several ways. First, integrating multimodal inputs, such as audio (e.g., detecting yawning sounds) or physiological data (e.g., heart rate or skin temperature), could improve the system's robustness and accuracy. Additionally, expanding the system to work with diverse demographic groups, considering variations in facial features and expressions across different age groups, genders, and ethnicities, would make it more universally applicable. Future work could also explore the use of edge computing to reduce latency and enable real-time processing on low-power devices, making the system more suitable for deployment in mobile applications and vehicles. Furthermore, the system's scalability can be expanded to monitor fatigue levels in other environments, such as healthcare or aviation, where human fatigue poses a significant safety risk. Lastly, exploring advanced deep learning models and transfer learning techniques could enhance the model's ability to generalize across a wide range of real-world conditions.

VIII Acknowledgment

I would like to express my sincere gratitude to my guide, SK. Shameera, for their invaluable support, guidance, and encouragement throughout this project. I also thank the faculty and staff of ELECTRONICS AND COMMUNICATION ENGINEERING for providing the necessary resources and a conducive environment for this research. My heartfelt thanks to my family and friends for their continuous motivation. Lastly, I extend my appreciation to all those who contributed directly or indirectly to the successful completion of this project on "Avoid Accidents by Fatigue Detection from the Face Recognition."

REFERENCE

[1] W. L. Ou, M. H. Shih, C. W. Chang, X. H. Yu, C. P. Fan, "Intelligent Video-Based Drowsy Driver Detection System under Various Illuminations and Embedded Software Implementation", 2015 international Conf. on Consumer Electronics - Taiwan, 2015

[2] W. B. Horng, C. Y. Chen, Y. Chang, C. H. Fan, "Driver Fatigue Detection based on Eye Tracking and Dynamic Template Matching", IEEE International Conference on Networking, Sensing, and Control, Taipei, Taiwan, March 21-23, 2004.

[3] S. Singh, N. P. papanikolopoulos, "Monitoring Driver Fatigue using Facial Analysis Techniques", IEEE Conference on Intelligent Transportation System, pp 314-318.

[4] B. Alshaqaqi, A. S. Baquaizel, M. E. A. Ouis, M. Bouumehed, A. Ouamri, M. Keche, "Driver Drowsiness Detection System", IEEE International Workshop on Systems, Signal Processing and their Applications, 2013.

[5] M. Karchani, A. Mazloumi, G. N. Saraji, A. Nahvi, K. S. Haghghi, B. M. Abadi, A. R. Foroshani, A. Niknezhad, "The Steps of Proposed Drowsiness Detection System Design based on Image Processing in Simulator Driving", International Research Journal of Applied and Basic Sciences, vol. 9(6), pp 878- 887, 2015.

[6] R. Ahmad, and J. N. Borole, "Drowsy Driver Identification Using Eye Blink Detection," IJISET - International Journal of Computer Science and Information Technologies, vol. 6, no. 1, pp. 270-274, Jan. 2015.

[7] A. Abas, J. Mellor, and X. Chen, "Non-intrusive drowsiness detection by employing Support Vector Machine," 2014 20th International Conference on Automation and Computing (ICAC), Bedfordshire, UK, 2014, pp. 188- 193.

[8] A. Sengupta, A. Dasgupta, A. Chaudhuri, A. George, A. Routray, R. Guha; "A Multimodal System for Assessing Alertness Levels Due to Cognitive Loading", IEEE Trans. on Neural Systems and Rehabilitation Engg., vol. 25 (7), pp 1037-1046, 2017.

[9] K. T. Chui, K. F. Tsang, H. R. Chi, B. W. K. Ling, and C. K. Wu, "An accurate ECG based transportation safety drowsiness detection scheme," 343IEEE Transactions on Industrial Informatics, vol. 12, no. 4, pp. 1438- 1452, Aug. 2016.

[10] N. Dalal and B. Triggs, "Histograms of Oriented Gradients for Human Detection", IEEE conf. on CVPR, 2005.

