IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Crypt Cloud+: Secure And Expressive Data Access Control For Cloud Storage

MAHESH TS MOHAMED ABDUL RASIK

Aalim Muhammed Salegh College of Engineering Chennai, India

Aalim Muhammed Salegh College of Engineering Chennai, India

RAMALAKSHMI V BAROSH M

Aalim Muhammed Salegh College of Engineering
Chennai, India

Aalim Muhammed Salegh College of Engineering
Chennai, India

ARSATH FARWESE M Aalim Muhammed Salegh College of Engineering Chennai, India

ABSTRACT

Secure cloud storage, which is an emerging cloud service, is designed to protect the confidentiality of outsourced data but also to provide flexible data access for cloud users whose data is out of physical control. Cipher text Policy Attribute-Based Encryption (CP-ABE) is regarded as one of the most promising techniques that may be leveraged to secure the guarantee of the service. However, the use of CP-ABE may yield an inevitable security

breach which is known as the misuse of access credential (i.e. decryption rights), due to the intrinsic "all-or-nothing" decryption feature of CP-ABE. In this paper, we investigate the two main cases of access credential misuse: one is on the semi-trusted authority side, and the other is on the side of cloud user. To mitigate the misuse, we propose the first accountable authority and revocable CP-ABE based cloud storage system with white-box traceability and auditing, referred

to as Crypt Cloud. We also present the security analysis and further demonstrate the utility of our system via experiments.

APACHE TOMCAT SERVER

Project; Tomcat is now a top level project) is a web container developed at the Apache Software Foundation. Tomcat implements the servlet and the JavaServer Pages (JSP) specifications from Sun Microsystems, providing an environment for Java code to run in cooperation with a web server. It adds tools for configuration and management but can also be configured by editing configuration files that are servers. Tomcat can also function as an independent web server. Earlier in its development, the perception existed that standalone Tomcat was only suitable for development environments and other environments with minimal requirements for speed and transaction handling. However, that perception no longer exists; Tomcat is increasingly used as a standalone web high-traffic, high-availability server in environments.

Apache Tomcat (formerly under the Apache Jakarta

Since its developers wrote Tomcat in Java, it runs on any operating system that has a JVM.

Purpose

The main aim of this project is to provide integrity of an organization data which is in public cloud.

normally XML-formatted. Because Tomcat includes its own HTTP server internally, it is also considered a standalone web server.

Environment

Tomcat is a web server that supports servlets and JSPs. Tomcat comes with the Jasper compiler that compiles JSPs into servlets.

The Tomcat servlet engine is often used in combination with an Apache web server or other web

Project Scope

In this work, we have addressed the challenge of credential leakage in CP-ABE based cloud storage system by designing an accountable authority and revocable Crypt Cloud which supports white-box traceability and auditing (referred to as Crypt Cloud+). This is the first CP-ABE based cloud storage system that simultaneously supports white-box traceability, accountable authority, auditing and effective revocation. Specifically, Crypt Cloud+ allows us to trace and revoke malicious cloud users (leaking credentials). Our approach can be also used in the case where the users' credentials are redistributed by the semi-trusted authority.

Product Perspective

Data owners will store their data in public cloud along with encryption and particular set of attributes to access control on the cloud data. Cloud owners have all rights to download and delete their data whenever they want. While uploading the data

into public cloud they will assign some attribute set to their data. If any authorized cloud user wants to download their data they should enter that particular attribute set to perform further actions on data owner's data. A cloud user wants to register their details under cloud organization to access the data owner's data. Users want to submit their details as attributes along with their designation.

Based on the user details Semi-Trusted Authority generates decryption keys to get control on owner's data. A user can perform a lot of operations over the cloud data. If the user wants to read the cloud data he needs to be entering some read related attributes, and if he wants to write the data he needs to be entering write related attributes. Foe each and every action user in an organization would be verified with their unique attribute set. These attributes would be shared by the admins to the authorized users in cloud organization. These attributes will be stored in the policy files in a cloud. If any user leaks their unique decryption key to the any malicious user data owners wants to trace by sending audit request to auditor and auditor will process the data owners request and concludes that who is the guilty.

MODULES

- > Organization profile creation & Key Generation
- > Data Owners File Upload
- > File Permission & Policy File Creation

Tracing who is guilty

6.2 MODULE EXPLANATION:

6.2.1 Organization profile creation & Key Generation

User has an initial level Registration Process at the web end. The users provide their own personal information for this process. The server in turn stores the information in its database. Now the Accountable STA (semi-trusted Authority) generates decryption keys to the users based on their Attributes Set (e.g. name, mail-id, contact number etc...). User gets the provenance to access the Organization data after getting decryption keys from Accountable STA.

6.2.2 Data Owners File Upload

In this module data owners create their accounts under the public cloud and upload their data into public cloud. While uploading the files into public cloud data owners will encrypt their data using RSA Encryption algorithm and generates public key and secret key. And also generates one unique file access permission key for the users under the organization to access their data.

6.2.3 File Permission & Policy File Creation

Different data owners will generate different file permission keys to their files and issues those keys to users under the organization to access their files. And also generates policy files to their data that who can access their data. Policy File will split the key for read the file, write the file, download the file and delete the file.

6.2.4 Tracing who is guilty

Authorized DUs are able to access (e.g. read, write, download, delete and decrypt) the outsourced data. Here file permission keys are issued to the employees in the organization based on their experience and position. Senior Employees have all the permission to access the files (read, write, delete, & download). Fresher's only having the permission to read the files. Some Employees have the permission to read and write. And some employees have all the permissions except delete the data. If any Senior Employee leaks or shares their secret permission keys to their junior employees they will request to download or delete the Data Owners Data. While entering the key system will generate attribute set for their role in background validate that the user has all rights to access the data. If the attributes set is not matched to the Data Owners policy files they will be claimed as guilty. If we ask them we will find who leaked the key to the junior employees.

REFERENCES

 Mazhar Ali, Revathi Dhamotharan, Eraj Khan, Samee U. Khan, Athanasios V. Vasilakos, Keqin Li, and Albert Y. Zomaya. Sedasc: Secure data sharing in clouds. IEEE Systems Journal, 11(2):395–404, 2017.

- Mazhar Ali, Samee U. Khan, and Athanasios
 V. Vasilakos. Security in cloud computing:
 Opportunities and challenges. Inf. Sci.,
 305:357–383, 2015.
- 3. Michael Armbrust, Armando Fox, R ean Griffith, Anthony D Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, et al. A view of cloud computing. Communications of the ACM, 53(4):50–58, 2010.
- 4. Nuttapong Attrapadung and Hideki Imai.
 Attribute-based encryption supporting direct/indirect revocation modes. In Cryptography and Coding, pages 278–300.
 Springer, 2009.
- Amos Beimel. Secure schemes for secret sharing and key distribution. PhD thesis, PhD thesis, Israel Institute of Technology, Technion, Haifa, Israel, 1996.
- Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Advances in Cryptology-CRYPTO'92, pages 390–420.
 Springer, 1993.

- 7. Dan Boneh and Xavier Boyen. Short signatures without random oracles. In EUROCRYPT 2004, pages 56–73, 2004.
- 8. Hongming Cai, Boyi Xu, Lihong Jiang, and Athanasios V. Vasilakos. Iot-based big data storage systems in cloud computing: Perspectives and challenges. IEEE Internet of Things Journal, 4(1):75–87, 2017.
- Jie Chen, Romain Gay, and Hoeteck Wee.
 Improved dual system ABE in prime-order groups via predicate encodings. In Advances in Cryptology EUROCRYPT 2015, pages 595–624, 2015.
- 10. Angelo De Caro and Vincenzo Iovino. jpbc:

 Java pairing based cryptography. In ISCC

 2011, pages 850–855. IEEE, 2011.

