

Role Of Artificial Intelligence (AI) In Drug Discovery: Current Trends and Future Perspectives

Shreyash C Jagtap¹, Vivek F Dengale², Sakshi G Dalvi³, Nikita D Vaidya⁴

^{1,2,3,4}Shri Sant Gajanan maharaj College of Pharmacy ,
Buldhana,Maharashtra,-443001, India

ABSTRACT

Artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL), has become a transformative force in drug discovery and medicinal chemistry. Unlike traditional rule-based or physics-driven models, ML techniques learn directly from large datasets, enabling efficient prediction, optimization, and design of chemical structures. Early applications of AI in drug discovery mainly involved quantitative structure–activity/property relationship (QSAR/QSPR) models, which were limited by linear assumptions and sparse data. Recent advances in computing power, algorithm development, and the availability of large chemical databases such as ChEMBL have significantly expanded AI capabilities. Today, AI is widely applied in QSAR modeling, virtual screening, ADMET and toxicity prediction, and bioactivity assessment across drug development pipelines. Generative models, including recurrent neural networks and variational autoencoders, support de novo molecular design by creating novel compounds with desired properties. AI has also improved synthetic route planning through deep learning–based retrosynthesis, producing efficient and practical synthesis pathways. Additionally, active learning enhances the design–make–test cycle by reducing experimental redundancy and cost. Despite challenges related to data quality, interpretability, reproducibility, and extrapolation beyond known chemical space, AI functions best as a supportive tool that complements human expertise. Overall, AI is becoming an essential component of modern pharmaceutical research and drug development.

I. INTRODUCTION

Target identification, high-throughput screening, medicinal chemistry optimization, and thorough preclinical and clinical testing are all part of the traditional drug discovery process, which is primarily linear and experiment-intensive. In this method, human experience, intuition, and trial-and-error experimentation are the primary sources of guidance for decision-making. The conventional method is costly, time-consuming, and has a high failure rate even though it has successfully produced numerous beneficial medications. Drug development frequently involves a significant financial investment and takes more than ten years. Efficiency is further constrained by the sluggish speed of experimental cycles and the restricted capacity to investigate the large chemical space. As a result, a large number of promising drug ideas fail later on, lengthening the research process and raising overall expenses. In order to facilitate data-driven, predictive, and parallel decision making throughout the drug development process, AI-driven drug discovery combines artificial intelligence and machine learning approaches. Millions of substances can be virtually screened, biological activity and physicochemical qualities may be predicted, and big and complex datasets can be quickly analyzed using AI models. Additionally, new chemical structures with optimum profiles can be created using these techniques. AI lessens reliance on lengthy wet-lab experimentation by ranking the most promising options for synthesis and testing. AI also facilitates continuous feedback loops, active learning, and synthesis planning. AI greatly increases efficiency, scalability, cost reduction, and creativity in contemporary pharmaceutical research, even though human expertise and experimental validation are still crucial. This review's goal is to thoroughly

investigate how artificial intelligence and machine learning are used in contemporary pharmaceutical research and medication discovery. Chemoinformatics, quantitative structure-activity and structure-property relationship modeling, virtual screening, de novo molecular design, and prediction of physicochemical and pharmacokinetic parameters are among its main areas of research. AI-based synthesis planning and the incorporation of AI into the design-make-test cycle are also covered in the paper. Emerging deep learning techniques are covered, as well as ligand-based and structure-based approaches. Understanding how these methods are changing conventional workflows and supporting more effective and data-driven drug discovery procedures is emphasized. This review's main goals are to provide an overview of current developments in AI and ML-driven drug discovery and to assess their benefits and drawbacks in comparison to conventional techniques. The review looks at how AI affects pharmaceutical research efficiency, cost reduction, and decision-making. Important issues including data quality, model interpretability, synthetic accessibility, and generalizability across chemical space are also covered. Future insights on the developing use of AI and ML in medication development are also given. The review seeks to demonstrate how AI can boost innovation and success rates when successfully combined with human expertise by addressing both present successes and limits.

2. Overview of Drug Discovery Process

2.1. The traditional drug research and development pipeline is a linear, multi-stage procedure that is commonly explained as follows:

* Identification of the Target

Finding and confirming a biological target—such as a protein, receptor, or enzyme—that is causally connected to a disease and may be affected by a medication is the first stage in this process. All subsequent steps are guided by successful target identification, which necessitates substantial biochemical and genetic research.

Preprints

* Hit Identification and Lead Discovery

After selecting a target, scientists search through vast chemical libraries for substances (hits) that interact with the target. Hits are refined into more potent and selective lead compounds. Biochemical tests and conventional high-throughput screening (HTS) are widely used.

* Preclinical Examinations

Before being used on humans, lead compounds are tested in labs and on animals to determine their safety, toxicity, pharmacokinetics, and biological activity. Only applicants who fulfill specific requirements advance.

MDPI

* Clinical Research

If preclinical findings are encouraging, the medication moves on to human clinical trials, usually in phases I–III:

Phase I involves evaluating dose and safety in a small number of healthy participants.

Phase II: further safety evaluation and early proof of effectiveness.

Phase III: extensive research on effectiveness and side effect monitoring.

MDPI

Regulatory evaluation and market use approval signal the conclusion of the procedure.

Several pharmaceutical studies characterize traditional workflows as resource-intensive, heavily regulated, and linear.

2.2. Conventional Methods' Limitations

Significant disadvantages of the conventional drug discovery approach are covered in a number of pharmaceutical sciences review articles:

• Time-consuming

Because of extensive clinical trials and repetitive tests, it usually takes 10 to 15 years to develop a new medicine from initial discovery to regulatory approval.

MDPI +1 * Extremely Expensive

Due to substantial laboratory work, clinical infrastructure, and regulatory compliance, the cost of bringing a new medicine to market frequently surpasses \$2–2.5 billion USD.

MDPI +1

• Elevated Failure Rates

Less than 10–15% of compounds undergoing clinical trials eventually get regulatory approval, primarily due to safety or lack of efficacy, according to industry reports. The majority of candidates fail before approval.

* Data and Complexity Bottlenecks

Large amounts of biological data and intricate chemical spaces are difficult for traditional approaches to handle. Empirical screening (like HTS) and manual interpretation are ineffective and have little predictive power.

Preprints: Ineffective Tools for Prediction

Low prediction performance for toxicity and efficacy is a result of classical computational techniques, which are frequently rule-based and lack adaptive learning to address complicated patterns in biological data.

IJARSCT

The industry literature frequently refers to these constraints as reflecting Eroom's Law (i.e., drug development gets slower and more expensive over time), which explains why drug discovery is still expensive, dangerous, and slow.

2.3. The Requirement of AI-Based Methods

The critical need for AI and data-driven approaches to get over conventional obstacles is highlighted by recent reviews:

- **Quicken Important Phases**

Large datasets can be analyzed using AI models (machine learning, deep learning, network-based techniques), allowing for quicker target selection, virtual screening, and lead optimization.

+1 eu-opensci.org

- **Improved Capability to Predict**

AI can reduce late-stage failures by more accurately predicting pharmacokinetics, toxicity, drug-target interactions, and molecular characteristics than traditional models.

Integration of Data

AI systems reduce the need for trial-and-error wet-lab studies by integrating multi-omics, structural, and clinical data to find novel targets and optimize candidate selection.

PubMed * Cutting Time and Expense

Reviews have demonstrated that AI can reduce costs and shorten discovery times by automating complicated operations and enhancing decision-making early in the pipeline. approaches.

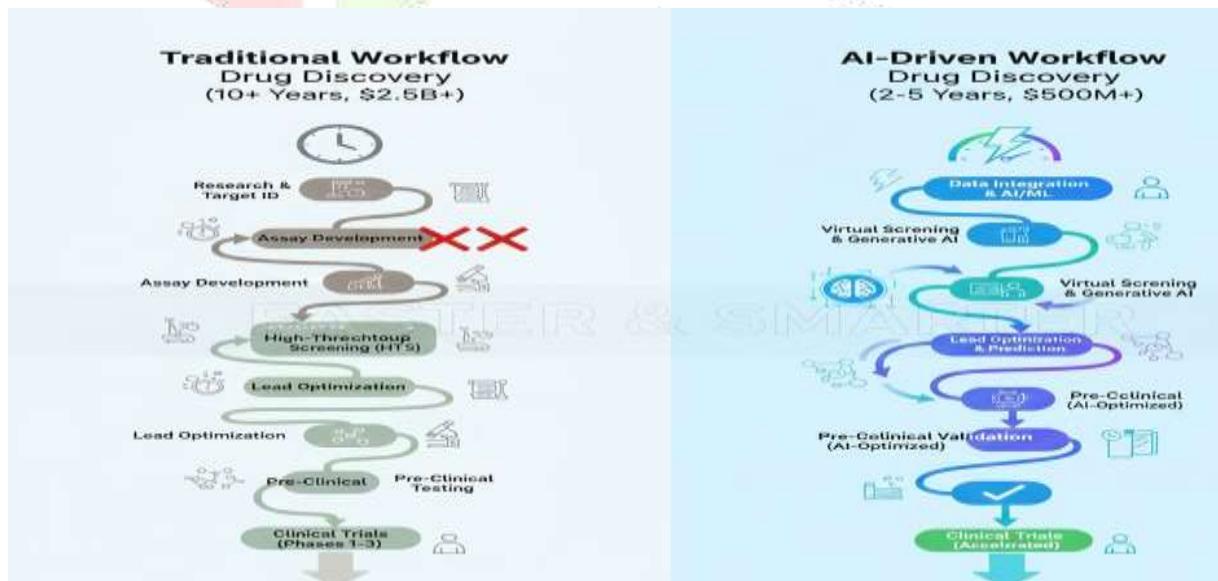
MDPI: Enhancing Clinical Achievement

In order to improve success rates and lower attrition, AI also helps in clinical trial design (e.g., patient categorization, predictive modeling).

PubMed

These developments imply that AI is a strategic force transforming pharmaceutical R&D, tackling fundamental inefficiencies in conventional drug discovery workflows, rather than merely an incremental tool.

eu-opensci.org



3. AI Techniques Used in Drug Discovery

3.1 ML, or machine learning

In drug discovery, machine learning techniques are frequently used to create predictive models and analyze complex biological and chemical data.

Supervised Learning: Predicts outcomes including biological activity, toxicity, solubility, and pharmacokinetic parameters using labeled datasets. Support vector machines (SVM), random forests (RF), and k-nearest neighbors (k-NN) are examples of common methods. Quantitative structure-activity relationship (QSAR) modeling makes extensive use of these techniques.

Unsupervised learning: Used to find hidden patterns, group molecules, and investigate chemical space with unlabeled data. Compound categorization and target identification are aided by methods like principal component analysis (PCA) and clustering techniques.

Reinforcement learning (RL) is the process of using reward-based systems to learn the best ways to make decisions. RL is being utilized more and more in drug discovery for lead optimization, chemical optimization, and adaptive experimental design

3.2. DL, or deep learning

A branch of machine learning called "deep learning" makes use of multi-layered neural networks that can process big, complicated information.

Molecular characteristics, protein–ligand interactions, bioactivity, and toxicity are predicted using deep learning models including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and graph neural networks (GNNs).

These models eliminate the requirement for human feature engineering by automatically extracting features from unprocessed chemical representations (such as SMILES strings and molecular graphs).

The accuracy of virtual screening and structure-based drug creation has greatly increased because to deep learning.

3.3. NLP, or natural language processing

Automated information extraction and interpretation from unstructured text data is made possible by natural language processing.

Biomedical literature, clinical trial reports, electronic health information, and patent databases are all mined using NLP approaches.

Target identification, drug-drug interaction prediction, adverse event detection, and knowledge graph generation are some of the applications.

NLP speeds up the creation of hypotheses and decision-making by assisting academics in quickly synthesizing enormous volumes of public data.

3.4. Models of Generation

By facilitating de novo drug design, generative AI models are revolutionizing early-stage drug development. Novel chemical compounds with desirable biological and physical features can be produced via models like transformer-based architectures, generative adversarial networks (GANs), and variational autoencoders (VAEs).

These models improve creativity and lessen reliance on trial-and-error methods by enabling exploration of new chemical space beyond current compound libraries.

Reinforcement learning and generative models can be combined for multi-objective optimization.

3.5. AI Software and Platforms in the Pharmaceutical Sector

Pharmaceutical research actively uses a number of AI-driven platforms:

Atomwise: Deep learning-based AI-based structure-guided drug development.

BenevolentAI: Identifies targets and repurposes drugs by combining ML and NLP.

Insilico Medicine: Researches aging and de novo drug design using generative AI and deep learning.

Exscientia: Automates drug design by combining AI and medicinal science.

Schrödinger: Uses machine learning in conjunction with physics-based modeling to simulate molecules.

4. APPLICATION OF AI IN DRUG DISCOVERY

4.1 Target Identification and Validation :-

At every level of the drug discovery and development process, artificial intelligence (AI) has become a potent tool. AI overcomes the main drawbacks of conventional drug discovery, such as high costs, lengthy timelines, and high attrition rates, by combining machine learning (ML), deep learning (DL), natural language processing (NLP), and big-data analytics. AI makes it feasible to analyze complicated chemical and biological data at a scale that is not achievable with traditional techniques. These tools facilitate quicker decision-making, more accurate prediction, and effective drug candidate prioritization. AI boosts efficiency and creativity in everything from early-stage target identification to clinical development and safety evaluation. Because of this, AI-driven methods are becoming more and more essential to contemporary pharmaceutical research and development plans.

4.2 Identification and Optimization of Lead Compounds :-

By enhancing virtual screening and property prediction, AI significantly contributes to the identification and optimization of lead compounds. The accuracy and computing cost of traditional virtual screening techniques are constrained. AI-based virtual screening enables precise prediction of binding affinity and activity by quickly screening millions of chemicals against biological targets using deep learning and neural networks. Additionally, bioactivity, pharmacokinetics, and ADMET characteristics including solubility, permeability, metabolic stability, and toxicity are predicted using AI models. Graph neural networks and QSAR models are two methods that aid in the early removal of drugs with poor profiles. AI greatly reduces laboratory effort, development time, and research expenses while increasing lead optimization efficiency by decreasing the number of compounds that need experimental testing.

4.3 Drug Repurposing :-

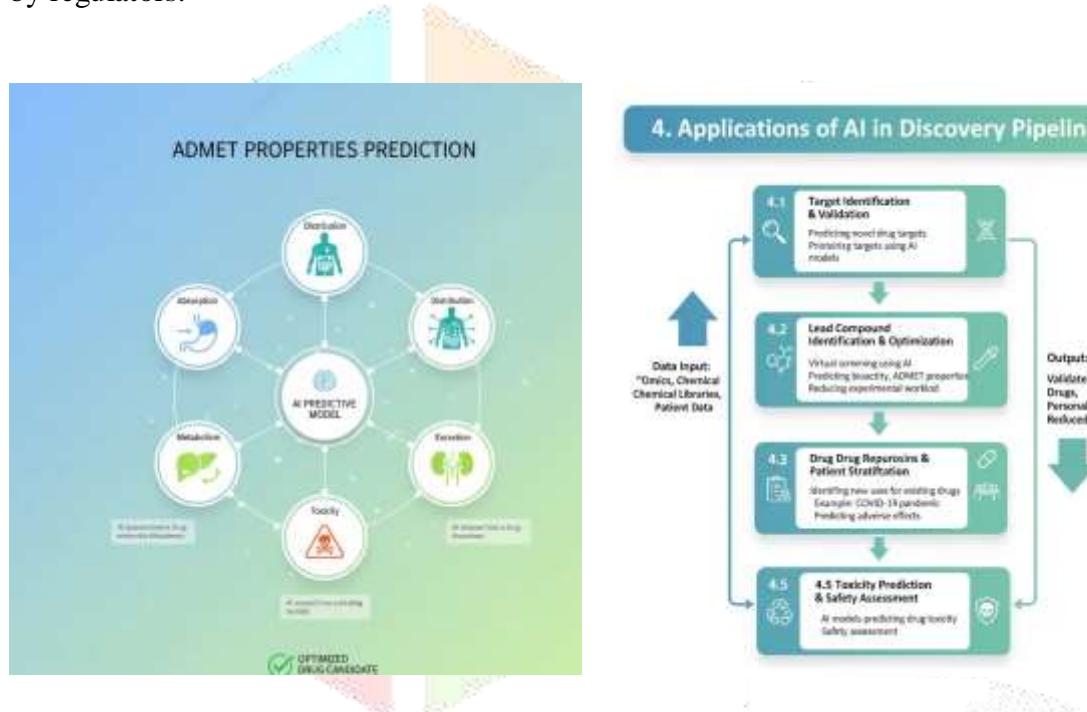
Finding novel therapeutic applications for currently available or authorized medications is known as "drug repurposing." Through the analysis of gene expression data, disease signatures, drug-target interactions, and clinical data, artificial intelligence plays a critical part in this process. Uncovering hidden connections between medications and illnesses is made easier by knowledge-graph techniques and machine learning models. AI-based techniques were extensively employed during the COVID-19 pandemic to quickly find possible antiviral medicines from already-existing pharmacological libraries. AI-driven network analysis were used to highlight medications like Remdesivir and Baricitinib. Because the safety and pharmacokinetic profiles of repurposed pharmaceuticals are already well established, AI-assisted medication repurposing greatly decreases development time, expense, and risk.

4.4 Clinical Trials and Patient Stratification :-

One of the most costly and prone to failure phases of drug development is clinical trials. AI is being used more and more to enhance trial planning, execution, and results. In order to optimize study protocols, choose suitable outcomes, and enhance patient recruitment, AI algorithms examine past trial data and empirical evidence. Meaningful information can be extracted from electronic health records with the aid of natural language processing. AI-based patient stratification supports customized treatment strategies by identifying particular groupings based on clinical, molecular, and genetic traits. This lessens side effects and increases the effectiveness of treatment. AI models also forecast patient reactions and possible negative drug reactions, improving trial safety and raising the possibility of clinical success.

4.5 Toxicity Prediction and Safety Assessment :-

One of the main reasons for drug attrition in preclinical and clinical development is toxicity. To find possible hazardous effects early in the discovery process, AI-based toxicity prediction models examine biological data and chemical structures. Hepatotoxicity, cardiotoxicity, genotoxicity, and other organ-specific toxicities can be precisely predicted using machine learning and deep learning models. Prior to animal research or clinical trials, early detection of poisonous chemicals aids in the removal of dangerous candidates. This saves time and money, enhances safety evaluation, and lessens ethical issues. AI-driven toxicity prediction improves decision-making and aids in the creation of safer, more potent medications that are more likely to be approved by regulators.



5 . ADVANTAGES OF AI IN DRUG DISCOVERY

5.1 Drug Development Time and Cost Reduction Reducing the time and expense needed to find and create new medications is one of the biggest advantages of integrating AI. Conventional drug discovery processes typically take longer than ten to fifteen years and cost billions of dollars on average. By providing quick in silico prediction of molecular interactions, pharmacokinetic characteristics, and toxicological profiles prior to the start of wet-lab experiments, AI reduces these timelines. AI minimizes the amount of costly experimental tests and iterative synthesis cycles by giving priority to the most promising compounds early on. This results in a discovery process that is more efficient and economical.

5.2 Improving Prediction Precision AI-driven models capture intricate, non-linear correlations in vast and diverse datasets, outperforming many conventional computational techniques. According to recent evaluations, AI outperforms traditional statistical techniques in predicting drug–target interactions, compound efficacy, and ADMET (absorption, distribution, metabolism, excretion, toxicity) profiles. By concentrating experimental validation on the most promising candidates, this improved predictive capability increases the chance of clinical success and lowers late-stage failures.

5.3 Acceleration of Decision-Making Throughout the drug discovery process, AI facilitates quicker and better informed decision-making. AI offers thorough insights that direct strategic research decisions by quickly

analyzing and integrating data from various sources, including high-throughput screening, omics platforms, and clinical databases. AI-driven analytics speed up decision-making processes like lead selection and optimization tactics by highlighting promising paths and early warning signs. The capacity to convert complicated data into useful forecasts improves planning effectiveness and lowers uncertainty in drug research processes.

5.4 Effective Management of Complex and Large-Scale Data
Massive amounts of data are produced by contemporary pharmaceutical research, including proteomics, genomes, high-resolution screening results, and actual clinical datasets. Such high-dimensional, multi-modal data is frequently difficult to handle and analyze using traditional analytical techniques. AI is excellent at digesting these massive datasets, identifying significant patterns and connections that would be challenging or impossible to find by hand. Target identification, compound design, and safety profiling can all be advanced concurrently through systems-level insights made possible by the integration of diverse data types made possible by machine learning and deep learning architectures.

6 :- CHALLENGES AND LIMITATIONS

6.1 Availability and Quality of Data
The quantity, variety, and quality of the data utilized to train AI models are crucial. Due to differences in experimental settings and reporting standards, available datasets in drug discovery are frequently noisy, biased, incomplete, or inconsistent. Model performance is further limited by the lack of high-quality, well-annotated biological and clinical data. Furthermore, pharmaceutical companies rarely share their proprietary data with the public, which results in fragmented datasets. The practical usefulness of AI-driven methods might be limited by poor data quality, which can lead to erroneous predictions, decreased model generalizability, and deceptive conclusions.

6.2 The Algorithm Interpretability and Transparency (Black Box Issue)
Many AI models, especially deep learning architectures, function as "black boxes," which means that it is difficult to understand how they make decisions internally. In drug research, where comprehension of the reasoning behind predictions is essential for both scientific validation and regulatory approval, this lack of openness presents a serious obstacle. Researchers, physicians, and regulatory bodies may become less trusting if AI models are unable to explain how they arrive at particular conclusions. As a result, there is an increasing need for explainable AI (XAI) techniques that preserve high performance while offering comprehensible insights into model predictions.

6.3 Compliance with Regulations
For a drug to be approved, regulatory bodies like the FDA and EMA need strong proof of its safety, effectiveness, and repeatability. The absence of established criteria for AI model evaluation and reporting makes it difficult to integrate AI-generated outcomes into current regulatory frameworks. Data provenance, model bias, reproducibility, and ongoing model changes are among the regulatory issues. Compliance with conventional regulatory procedures intended for static models is made more difficult by the dynamic nature of AI systems, which may change in response to new inputs. For AI to be successfully adopted, regulatory expectations and AI approaches must be in harmony.

6.4 The Requirement for Multidisciplinary Knowledge
Experts from a variety of fields, including pharmaceutical sciences, biology, chemistry, computer science, data science, and regulatory affairs, must work closely together to effectively apply AI in drug discovery. One significant obstacle, nevertheless, is the lack of specialists with interdisciplinary expertise. Inadequate communication between AI experts and domain scientists can result in excessive expectations, incorrect model construction, and incorrect findings interpretation. To maximize the influence of AI in pharmaceutical research, it is imperative to bridge this skills gap through interdisciplinary education, collaborative research environments, and cross-training programs. **Overall View**

Overall View :- AI has the potential to completely transform the drug discovery process, but its effective application will require resolving issues with data quality, model interpretability, regulatory integration, and interdisciplinary cooperation. The sustainable and responsible application of AI in pharmaceutical science will depend on addressing these constraints through better data standards, explainable AI techniques, regulatory frameworks, and workforce development.

7. FUTURE PERSPECTIVE :-

7.1 Combining AI with Other Cutting-Edge Technologies Drug development is predicted to be revolutionized by AI's cooperation with other cutting-edge technologies including robotics, high-throughput automation, and quantum computing. Complex molecular simulations can be accelerated exponentially by quantum computing, allowing for more precise prediction of chemical characteristics and molecular interactions. Quantum computing may enable quick virtual screening of large chemical libraries and optimize lead compounds more effectively than traditional techniques when paired with AI. Completely autonomous experimentation is made possible by robotics and AI-integrated automated laboratory platforms. With little human participation, AI-guided robotic systems can carry out iterative cycles of compound synthesis, testing, and optimization, greatly cutting down on experimental time and resource usage. It is anticipated that combining AI with these technologies will speed up and reduce the cost of medication research.

7.2 AI-Guided Precision Therapy and Personalized Medicine Personalized medicine, which attempts to customize treatments to individual patient profiles based on genetic, proteomic, metabolomic, and clinical data, is strongly related to the future of AI in drug development. In order to choose the best therapeutic targets, forecast drug response, and foresee adverse effects, AI algorithms can evaluate patient-specific data. AI-guided precision medicines will make it possible to create customized treatment plans that increase efficacy while lowering toxicity. AI systems can offer predictive insights that help doctors choose the best medication or combination therapy for each patient by combining real-world data with electronic health records. This advances the field of precision medicine.

7.3 AI Systems with Continuous Learning for Real-Time Forecasts When new data becomes available, traditional AI models used in drug development must be retrained because they are frequently static. Predictive models will become more responsive and flexible when continuous learning AI systems with real-time updating capabilities are developed. These systems are able to predict pharmacological action, toxicity, and efficacy in real time by dynamically integrating fresh experimental, clinical, and real-world

8 . CONCLUSION

From target identification and lead optimization to toxicity prediction and clinical trial design, artificial intelligence (AI) has shown transformative potential at every stage of drug research. AI improves forecast accuracy, saves time and money, and promotes better decision-making by enabling quick analysis of complicated biological and chemical data. AI's capabilities are further expanded by combining it with complementary technologies like robots, high-throughput screening, and quantum computing, which promises faster and more effective drug discovery. AI-driven methods have also created opportunities for customized medicine, boosting precision treatments by enabling patient-specific drug efficacy and safety predictions. Ongoing research and innovation are gradually tackling these constraints, despite obstacles

pertaining to data quality, model interpretability, regulatory integration, and the requirement for interdisciplinary skills.

9. REFERENCES

1. Vamathevan J. et al., Applications of machine learning in drug discovery and development, *Nature Reviews Drug Discovery*, 2019.
2. Cherkasov A. et al., QSAR modeling: where have you been? Where are you going to?, *Journal of Medicinal Chemistry*, 2014.
3. Ekins S. et al., Exploiting machine learning for end-to-end drug discovery and development, *Nature Materials*, 2019.
4. Popova M. et al., Deep reinforcement learning for de novo drug design, *Science Advances*, 2018. 5. Gawehn E., Hiss J.A., Schneider G., Deep learning in drug discovery, *Molecular Informatics*, 2016.
6. Gilmer J. et al., Neural message passing for quantum chemistry, *ICML*, 2017.
7. Jiménez J. et al., KDEEP: Protein–ligand absolute binding affinity prediction via 3D CNNs, *Journal of Chemical Information and Modeling*, 2018.
8. Lever J. et al., Text mining of scientific literature for drug discovery, *Drug Discovery Today*, 2019.
9. Zhang Y. et al., Natural language processing in biomedicine, *Briefings in Bioinformatics*, 2021.
10. Elton D.C. et al., Deep learning for molecular design—A review, *ACS Central Science*, 2019.
11. Sanchez-Lengeling B., Aspuru-Guzik A., Inverse molecular design using machine learning, *Science*, 2018.
12. Paul D. et al., Artificial intelligence in drug discovery, *Drug Discovery Today*, 2021.
13. Kazi, A. J., Gurav, M. A., Patil, S. R., et al. (2024). The Impact of Artificial Intelligence on Drug Discovery; A Comprehensive Review. *Asian Journal of Pharmaceutical Research and Development. AJPRD*
14. Blanco-Gonzalez, A., Cabezon, A., Seco-Gonzalez, A., et al. (2022). The Role of AI in Drug Discovery: Challenges, Opportunities, and Strategies. *PubMed*
15. Singh, R., Arya, P., & Dubey, S. H. (2024). Artificial Intelligence in Pharmaceutics: Revolutionizing Drug Formulation and Optimization. *Journal of Drug Discovery and Health Sciences*.
- Drug Discovery Journal 4. Sharma, S., Chaubey, A., Pathan, M. N., & Tyagi, S. (2024). *Pharmacy Journal*
16. Revolutionizing Drug Discovery: A Comprehensive Review of AI Applications (2025). MDPI. *MDPI*
17. AI-Driven Drug Discovery: A Comprehensive Review (2024). *PubMed*. *PubMed*
18. The Role of Artificial Intelligence in Modern Drug Discovery and Development (2023). *PubMed*. *PubMed*
19. AI Meets Drug Discovery: Systematic Review on AI-Powered Target Identification and Design (2025). *Preprints.org*. *Preprints*
20. AI-enabled drug and molecular discovery: computational methods, platforms, and translational horizons (2025). Springer. *Springer*
21. Deep learning in drug discovery: an integrative review and future challenges (2023). Springer. *Pharmacy Journal*

22. AI-powered virtual screening for drug discovery: Methods and challenges. International Journal of Pharmacy and Pharmaceutical Science. . AI-powered virtual screening for drug discovery: Methods and challenges. International Journal of Pharmacy and Pharmaceutical Science.

23. Recent Review Article References (2025)

24. Artificial intelligence in drug discovery and development: transforming challenges into opportunities. Discover Pharmaceutical Sciences; 2025. Springer Link

25. Saini JP, Thakur A, Yadav D. AI-driven innovations in pharmaceuticals: optimizing drug discovery and industry operations. RSC Pharmaceutics; 2025. RSC Publishing

26. Additional supporting data on improved prediction accuracy and applications of AI in pharmaceutical research.

27. Artificial intelligence in drug discovery and development: transforming challenges into opportunities. Discover Pharmaceutical Sciences, 2025. This review discusses key limitations including data quality/availability, interpretability, and workflow integration issues in AI drug discovery. Springer Link

28. Saini JP, Thakur A, Yadav D. AI-driven innovations in pharmaceuticals: optimizing drug discovery and industry operations. RSC Pharmaceutics, 2025. Highlights regulatory hurdles, bias, and transparency concerns hindering AI adoption. RSC Publishing

29. Artificial intelligence (AI) in drug design and discovery: A comprehensive review. ScienceDirect, 2025. Covers methodological limitations such as data quality and model explainability impacting performance and regulatory compliance. sciencedirect.com

30. Sachin Verma. Drug development and discovery considering artificial intelligence: A review. International Journal of Pharmaceutical Sciences, 2025. Discusses challenges including data standardization issues, model transparency, and the need for interdisciplinary expertise. Int. J. Pharma Sci. Open Access

31. The Potential of Artificial Intelligence in Pharmaceutical Innovation: From Drug Discovery to Clinical Trials. MDPI, 2025. Reviews regulatory challenges, interpretability needs, and harmonization barriers for AI integration. MDPI