

Plant-Based Phytotherapy For Metabolic Disorders: A Review

¹Hemant Vanjari, ²Omkar Gore, ³Dr. Vijaykumar Kale, ⁴Dr. Mahesh Thakare, ⁵Vaibhav Narwade

¹Student, Kasturi Shikshan Sanstan College Of Pharmacy

²Assistant Professor, Kasturi Shikshan Sanstan College Of Pharmacy

³Principal, Kasturi Shikshan Sanstan College Of Pharmacy

⁴Head Of Department, Kasturi Shikshan Sanstan College Of Pharmacy

⁵Assistant Professor, Kasturi Shikshan Sanstan College Of Pharmacy

¹Department of B. Pharmacy,

¹Kasturi Shikshan Sanstha College of Pharmacy, Shikrapur, India.

ABSTRACT

The increasing prevalence of metabolic disorders globally, including type 2 diabetes mellitus (T2DM), obesity, non-alcoholic fatty liver disease (NAFLD), and metabolic syndrome, represents one of the most significant public health challenges of the twenty-first century. The limitations of conventional pharmaceutical treatments—including high costs, adverse effects, and incomplete therapeutic benefits —have motivated intense scientific interest in plant-derived therapeutic agents. Phytopharmacology, the study of pharmacologically active plant compounds, offers a promising avenue for developing safe, effective, and accessible therapeutic interventions for metabolic pathologies. This review synthesizes contemporary evidence on the role of bioactive plant constituents—including polyphenols, alkaloids, terpenoids, and flavonoids—in ameliorating metabolic dysfunction through multiple molecular mechanisms. Key findings indicate that phytochemicals can modulate glucose homeostasis, improve insulin sensitivity, regulate lipid metabolism, reduce oxidative stress and chronic inflammation, and restore gut microbiota balance. Clinical evidence from randomized controlled trials demonstrates meaningful improvements in glycemic parameters, lipid profiles, blood pressure, and anthropometric measures when patients receive standardized herbal preparations as adjunctive or complementary therapies alongside conventional management strategies. This comprehensive review examines the phytopharmacological basis of metabolic disorder management, evaluates clinical evidence supporting specific plant extracts and isolated compounds, explores molecular mechanisms of action, addresses safety and standardization considerations, and discusses future perspectives for integrating phytotherapy into evidence-based clinical practice.

1. Introduction

1.1 Definition and Classification of Metabolic Disorders

Metabolic disorders are complex conditions messing with how your body manages glucose, lipids, energy, or hormonal balance. These cover situations such as obesity, insulin resistance, dyslipidemia, non-alcoholic fatty liver disease, along with type 2 diabetes. Health organizations including the WHO plus cardiologists define metabolic syndrome as multiple risk factors showing up together - like increased waist size, abnormal lipid panel results, elevated blood pressure, and raised fasting glucose - which pile up risks for cardiovascular events, strokes, or developing full-blown diabetes (1).

The main reason behind these health issues is insulin resistance - when your cells ignore insulin's signal, leaving sugar floating in the bloodstream. This glitch messes up multiple organs, causing erratic glucose levels, odd cholesterol patterns, constant low-grade swelling, plus extra fat piling up in the liver and body fat stores. Understanding what happens inside cells helps create fixes that go after core problems rather than just calming visible signs (2).

1.2 Epidemiology and Public Health Significance

The count of folks struggling with metabolic troubles has shot up worldwide. These days, close to 463 million adults live with type 2 diabetes; predictions suggest it could rise to 700 million by 2045. On top of that, more than 1.9 billion adults carry excess weight - nearly three times higher than in 1975. Also, non-drinkers' fatty liver condition - which often appears when body chemistry falters - affects roughly one out of every four people on Earth, and cases are rising faster as waistlines grow (3).

In India, health is getting worse - lots of folks deal with type 2 diabetes and metabolism problems, thanks to rapid lifestyle shifts, urban spread, moving less every day, or consuming ultra-processed meals packed with little nutrition. Treating these conditions takes up massive global funds, emptying healthcare wallets while slowing down productivity, which hits clinics and households alike in the pocket. With things like this going on, many now need fresh solutions that deliver real results, stay affordable, cover wider groups - not just what current medications provide right now (4).

Metabolic Disorders Trends 1975-2045

Trends for Type 2 Diabetes, Obesity, or Metabolic Syndrome shown over time; chart specifics not included (5).

1.3 Limitations of Conventional Pharmacotherapy

Some standard drugs for metabolic issues can help, but they also bring obvious drawbacks - that's why scientists are exploring alternatives. Metformin, usually the go-to for type 2 diabetes, frequently causes digestive trouble such as diarrhea, nausea, or cramps, and may raise the risk of lactic acidosis in vulnerable individuals. Thiazolidinediones improve insulin sensitivity by activating PPAR-gamma; however, they often lead to weight gain and fluid retention. Sulfonylureas increase insulin output from pancreatic cells, yet fail to address underlying insulin resistance - instead causing hypoglycemia and extra pounds quite often (6).

The high cost of today's medicines - such as SGLT2 inhibitors, GLP-1 analogs, or DPP-4 blockers - makes them hard to get for many in low-income nations. Besides this, microbes are starting to resist drugs; conditions like metabolic diseases come from many factors, usually requiring several medications together - which increases risks tied to drug overload. At the same time, growing numbers prefer avoiding illness over curing it, urging researchers to explore plant-based cures more closely. These nature-derived options could be cheaper, cause milder reactions, while targeting multiple roots of sickness simultaneously (7).

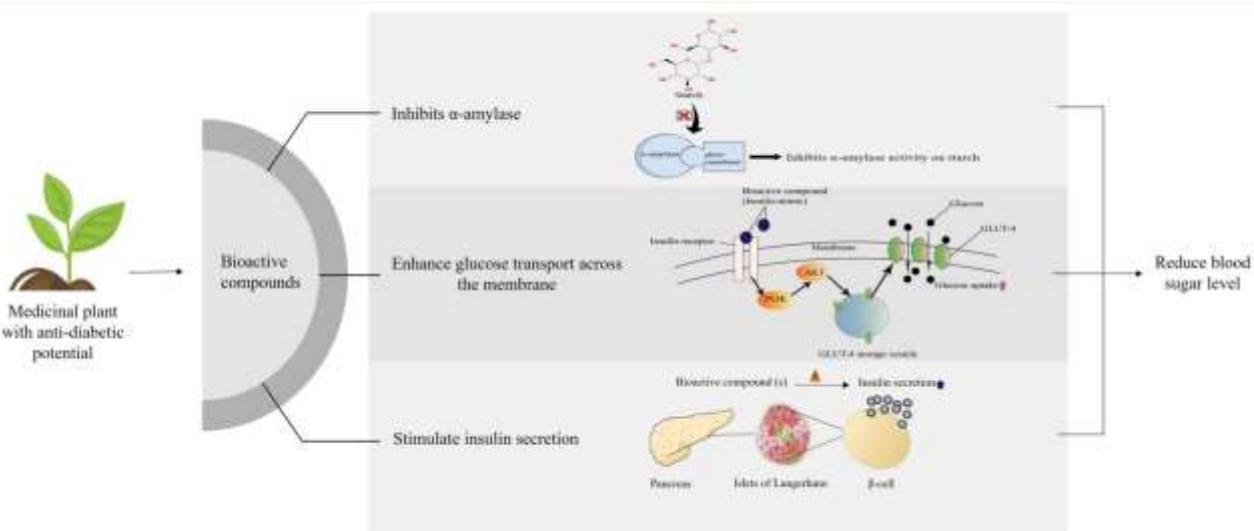


Fig 1 Diabetes Mellitus Management: Medicinal Plants

2. Phytochemistry and Bioactive Plant Constituents in Metabolic Disorders

2.1 Major Classes of Phytochemicals with Metabolic Activity

Living parts in plants create lots of useful compounds - mainly as shields during danger or pressure. While such materials don't help the plant grow day-to-day, they often tweak how our bodies work - for the better. Common ones include phenolics, alkaloids, terpenes, plus intricate sugars; every type helps steady different functions inside us (8).

Polyphenols rank high when it comes to well-studied natural compounds fighting metabolic problems. They include familiar kinds - anthocyanins, flavanols, flavanones - but also rarer forms like isoflavones. Gallic acid and ferulic acid show up too; these belong to phenolic acids, just like chlorogenic acid does. In another corner, resveratrol shines among stilbenes, whereas certain digestible tannins tag along as part of the crew. So what links them all?

Hydroxyl groups on electron-donating rings ramp up anti-oxidation power. In human studies, certain compounds appear way more than the rest. Take berberine - it's a plant-based alkaloid tied to strong results in labs and real-world health perks. Curcumin holds equal clout because it's what makes turmeric actually work. Quercetin stands out too, thanks to how well it tweaks cellular activity. Research into resveratrol shows it affects signs of aging and how the body uses fuel. Despite having sugar bits attached, rutin holds up well under lab checks (9).

2.2 Key Phytochemical Compounds and Their Metabolic Effects

Berberine's found in plants such as *Berberis aristata*, and it strongly affects how your body handles energy - much like common diabetes meds do. This compound activates AMPK, an essential enzyme involved in cellular power balance, which helps glucose move into muscle tissue more smoothly while improving insulin response or boosting fat breakdown. Studies reveal drops in fasting blood sugar levels, HbA1c readings, along with triglyceride counts among those dealing with type 2 diabetes; according to some findings, its impact matches that of metformin (10).

Curcumin, the stuff in turmeric, wakes up insulin receptors so your body handles sugar better - meanwhile, it shuts off PTP1B, an enzyme that messes with signals. It pushes GLUT4, a helper protein, to move glucose into cells; besides this, it tackles swelling and cell damage from stress. Quercetin pops up in lots of fruits and veggies, particularly onions, apples, or berries - it acts similar to curcumin by guiding GLUT4 to clear extra sugar from blood.

Research hints quercetin may gently drop blood sugar levels in folks struggling with metabolism.

Resveratrol, seen in grape peels and red wine, turns on sirtuin proteins - SIRT1 being key - that run energy factories inside cells, keep blood sugar steady, plus quiet ongoing inflammation (11).

Phytochemical Compounds Properties (Table Omitted)

The file shows a chart with details on Berberine, Curcumin, Quercetin, Resveratrol, and Cinnamaldehyde - like where they come from, what group they belong to, how they work, along with their main effects in real-world use (12).

3. Molecular Mechanisms of Phytochemical Action in Metabolic Regulation

3.1 Insulin Signaling Pathways and Glucose Homeostasis

Finding out how natural plant compounds help balance body processes involves looking at insulin's role plus the movement of sugar-moving proteins. Once insulin binds to its docking spot on a cell's edge, it triggers a series of added phosphates - this pulls in IRS molecules together with PI3K, turning on Akt, an enzyme sensitive to serine and threonine spots. This action drives GLUT4 carriers to travel from hidden internal stores toward the outer layer, letting muscle or fat cells grab extra glucose (13).

Mixes of plant chemicals ramp up this signaling path plus help shuttle glucose carriers around. Berberine working with vanillic acid nudges GLUT4 into place through pathways tied to AMPK. Daidzein - acting kind of like estrogen found in plants - fires up AMPK, leading to GLUT4 shifting closer to outer muscle cell layers. In fat cells pulled from diabetic test rodents, gallic acid boosts sugar uptake by steering GLUT4 into certain spots.

Cyanidin-3-O-glucoside teaming up with protocatechuic acid mimics insulin's effect in human fat tissue, triggering GLUT4 movement and raising adiponectin output, which cranks up PPAR-gamma activity alongside general metabolic rate (14).

(Image showing how insulin works to move glucose into cells isn't included here)(15).

3.2 PPAR Receptor Modulation and Lipid Metabolism

Peroxisome proliferator-activated receptors (PPARs) belong to a family of nuclear hormone sensors that help run major bodily processes - things like keeping blood sugar steady, handling fats, reducing puffiness, or deciding how fuel gets spent. Three kinds exist:

PPAR-alpha, PPAR-beta/delta, along with PPAR-gamma - each kicks in within separate body tissues and does its own task. Unlike the others, PPAR-alpha mostly hangs out in the liver and brown fat, where it pushes breakdown of fatty acids, supports ketone production, while also helping dial down irritation in the system. Meanwhile, PPAR-gamma operates largely inside white fat units and clean-up crew cells, steering fat buildup, tweaking glucose usage,

or adjusting signals linked to widespread internal flare-ups (16).

Some natural plant chemicals influence PPAR receptors, changing how certain genes work. Instead of just turning them on or off, they adjust their activity gently. Resveratrol wakes up different kinds of PPARs, which helps correct sluggish metabolism while keeping fat handling in check. On top of that, it supports smoother energy use across cells. Curcumin switches on PPAR-alpha, and possibly lights up PPAR-gamma too. These shifts reduce fatty deposits in the liver, speed up fat burning, improve blood sugar balance, yet calm down widespread inflammatory messages. Simply put, you get better lipid levels, quicker insulin action, along with fewer hints of metabolic trouble (17).

3.3 Oxidative Stress Reduction and Antioxidant Mechanisms

Metabolic problems kick in once the body struggles to match ROS levels using its built-in shields. Excess ROS, paired with weak antioxidant support, harms cells - disrupting mitochondria, blood vessel function, liver fat control, triggering swollen fat areas, along with stressed insulin-making cells. Damaged fats and proteins from ROS interfere with cellular energy flow, jam signals for glucose uptake, activate inflammatory pathways, plus reduce efficiency in liver and kidneys (18).

Phytochemicals tackle oxidative harm through various methods, clearing out destructive particles. Thanks to their polyphenol structure, they provide electron donors that neutralize aggressive free radicals - think superoxide, hydroxyl, or peroxy radical types. Besides this direct action, many plant-based substances crank up the body's inner protection system - SOD (Superoxide Dismutase), catalase, along with glutathione peroxidase become more efficient. Evidence from human trials reveals that high-polyphenol supplements reduce markers linked to cellular wear and tear - such as F2-isoprostanes or damaged proteins - in folks dealing with metabolic challenges. When cells face less strain, blood tests tend to improve, complications drop, particularly in non-alcoholic fatty liver cases (19).

3.4 Anti-Inflammatory Signaling Pathways

Swelling that's low-grade but lasts a while affects how your body handles energy and fuels health troubles. In folks with sluggish metabolisms, stuff like TNF-alpha, IL-6, or CRP gets higher - these are busy molecules causing real damage. They mess up insulin use, boost sugar release from the liver, throw fat levels off track, hurt blood flow, even stiffen arteries. When metabolism falters, NF- κ B - a switch for many flare-up genes - gets stuck in the "on" position (20).

Phytochemicals shut off inflammation triggers by keeping NF- κ B inactive, while reducing substances that lead to puffiness. Take curcumin - a widely researched natural substance - it hinders how NF- κ B moves and gets tagged, dialing down DNA switches involved in swelling. Resveratrol doesn't clamp activity outright; instead, it strips acetyl bits through sirtuins, weakening NF- κ B's grip on gene control. Polyphenols don't stir things up - they calm sensors such as TLRs found on immune and metabolic cells, heading off spikes early. Thanks to these effects, you end up with lower levels of inflammatory markers in circulation, improved artery function kicks in, along with steadier energy handling (21).

(Image showing how inflammation works and plant chemicals isn't included here) (22).

3.5 Gut Microbiota Modulation and Metabolic Endotoxemia

Scientists think gut bugs affect how our body handles food energy. If someone's feeling fine, helpful germs keep the gut wall safe - producing useful fatty stuff like butyrate along with germ-fighting chemicals. Eating poorly can shift these tiny creatures out of balance: diversity drops, fewer make butyrate, while trouble-making gram-negative kinds grow and spill LPS - a harsh bacterial poison (23).

LPS moves through a weak gut wall, enters blood heading to the liver, then sticks to TLR4 on immune and metabolic cells - sparking body-wide inflammation called metabolic endotoxemia. This process results in sluggish insulin action, fat accumulation in the liver, looser gut barriers, or further disruption in gut bugs. Natural plant chemicals restore balance in the microbiome by wiping out bad microbes, fueling beneficial ones to thrive (working as prebiotics), while also increasing useful outputs like those made by short-chain fatty acid producers. Research connects consuming strawberry polyphenols, restoring vital compounds such as hippuric acid from microbes, with improved circulation - even if weight stays the same (24).

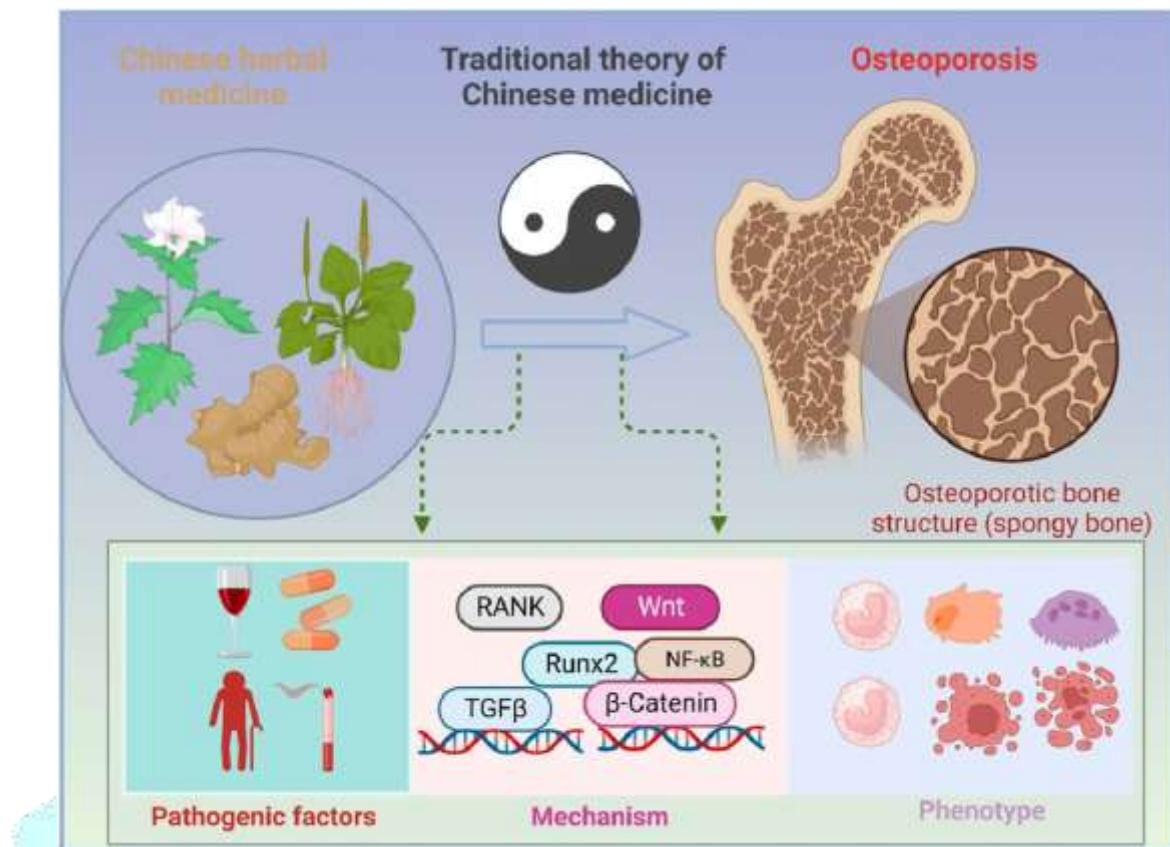


Fig 2. Traditional Chinese medicine in osteoporosis from pathogenesis to potential activity

4. Clinical Evidence for Specific Medicinal Plants in Metabolic Disorders

4.1 Cinnamon(*Cinnamomumverum*)

Cinnamon bark is taken from the inner part of cinnamon tree trunks once dried. For ages, folks have turned to this ingredient in traditional remedies - particularly for sluggish metabolism. Key components include cinnamaldehyde, cinnamic acid, along with various polyphenols. So how does it kick in? It boosts insulin response by improving GLUT4 movement, shuts off a protein known as PTP1B, and at the same time reduces glucose output in the liver. A single strong trial looked at 204 people dealing with type 2 diabetes - split into groups taking 3 grams of cinnamon daily, some getting cardamom, others trying ginger or saffron, while a few took no spice at all - for two full months. People using cinnamon showed noticeable shifts in overall cholesterol, along with improvements in both LDL and HDL levels compared to the rest; however, when it came to blood sugar, results were mixed without clear consistency from one person to the next (25).

A study checking how cinnamon affects blood sugar spotted the largest declines - ranging from 17 to 27 mg/dL - in those with type 2 diabetes after they took the spice. Yet, when researchers looked at HbA1c, a marker tied to longer-term glucose control, findings varied widely across trials. Typical daily doses recommended by health pros sit around 1 to 3 grams; issues are rare at that range, while many users report no trouble at all (26).

4.2 Bitter Melon (*Momordica charantia*) and Fenugreek (*Trigonella foenum-graecum*)

grows in hot areas + has been part of traditional medicine in Asia and Africa for ages. It contains key substances - charantin, acting somewhat like a natural hormone; polypeptide-P, similar to our own insulin; also compounds from the cucurbitacin group that help reduce swelling in tissues. These ingredients work together so cells grab more glucose from blood, the pancreas functions stronger, and the system reacts faster to insulin cues. A trial found resting blood sugar dipped clearly in adults with type 2 diabetes after using bitter melon extract each day for four weeks. Fenugreek seeds hold helpful components: sapogenins, gel-like fibers such as pectin, phytosterols, alongside ferulic acid - all linked to steadier sugar + lipid levels (27). Its soluble fiber slows down cholesterol movement in the intestines by swapping out or stopping fatty food absorption. Clinical trials suggest fenugreek can modestly reduce fasting glucose levels along with triglyceride counts in individuals managing type 2 diabetes, plus it tends to support healthier lipid profiles. One study found that combining fenugreek seed extract and glibenclamide worked better at lowering blood sugar compared to each used separately - pointing toward a potential teamwork effect (28).

4.3 Ayurvedic Herbal Formulations and Combination Therapies

Hundreds of years ago, Ayurvedic healers combined plants that work better together in the body. One major experiment looked at a mixture with equal parts gurmar (*Gymnema sylvestre*), bitter melon, and fenugreek. It was a random test - some people got two 500 mg pills every day of this combo. Their HbA1c levels fell more sharply, averaging a 1.8% decline. Meanwhile, folks receiving regular treatment dropped only 1.2%; individuals on dummy pills dipped by just 0.4%. Blood sugar levels dropped fast when not eating - they shifted from 145 to 108 mg/dL. After eating, glucose also dipped slowly, moving from 210 down to 160 mg/dL over weeks (29). Liver and kidney checks didn't change - stayed steady throughout, which hints this herbal combo doesn't cause harm with long use. People getting the remedy felt better overall, particularly in how their bodies worked, emotional balance, and energy levels during daily tasks. Looking at what each plant does: *Gymnema sylvestre* pushes the pancreas to make more insulin while also reducing how much sugar enters from the intestines; *Momordica charantia* mimics insulin's action inside cells; on the side, *Trigonella foenum-graecum* keeps blood glucose in check and sharpens fat processing. Used side by side, they hit multiple roots of illness at once, meaning mixes might beat single-herb fixes hands down (30).

4.4 Turmeric (*Curcuma longa*) and Saffron (*Crocus sativus*)

Curcuma longa's root - turmeric - contains curcumin, its key component, along with demethoxycurcumin and bisdemethoxycurcumin. This compound has powerful biological actions, like cutting oxidative damage, easing inflammation, reducing blood sugar, while boosting fat processing. Earlier, in a study of 204 folks with type 2 diabetes, shifts in fasting glucose were unclear after short use; even so, lipid numbers got better with curcumin, hinting it might assist with odd lipids linked to metabolic issues (31).

Saffron's made from the dried red threads of *Crocus sativus* flowers - it contains crocins, picrocrocin, and safranal as main active ingredients. Because of flavonoids, tannins, saponins, plus crocins, it may help lower swelling in the body. It supports healthy blood fat levels while improving how cells take up sugar through insulin-linked actions - like turning on AMPK phosphorylation, ACC paths, or MAPK signals. Research finds that pairing saffron with insulin improves insulin sensitivity more than insulin by itself, hinting that natural extracts could boost outcomes when combined with regular meds (32).

4.5 Green Tea (*Camellia sinensis*) and Polyphenol-Rich Botanicals

Green tea stuff - like EGCG, EGC, ECg, or EC - can boost your body's energy use by fighting cell damage plus easing inner swelling. A trial found folks sipping a drink rich in plant chemicals - with roughly 1.562 g of gallic acid worth - had sharper insulin response, about 36% more sensitive compared to others on a weaker brew; their blood sugar surges after meals dipped too, sliding from 31% to just 18%. That hints these kinds of beverages might support steady glucose control in healthy adults, maybe cutting chances linked to early-stage blood sugar trouble or slow metabolism problems (33).

In looking at multiple studies, green tea and related plant items full of polyphenols worked to fight off cell

damage and swelling tied to metabolic problems. Since they calm down inflammation by stopping messages from harmful molecules - while at the same time cutting oxidative harm either by cleaning up free radicals or ramping up defense enzymes - they improve how the body handles insulin and burns [34]

5. Standardization, Bioavailability, and Quality Considerations

5.1 Challenges in Herbal Extract Standardization

Making herbal remedies that work the same every time brings tough science and rule challenges. Pharma drugs typically rely on a single well-defined substance, produced under tight control; instead, plants can change a lot depending on species, variety, where they grow, earth conditions, harvest timing, storage, or handling after picking. Thanks to these natural shifts, strong consistency measures are essential - each batch must keep close levels of active plant ingredients and deliver steady results in the body [35].

One step at a time, standardization follows a clear path. To begin with, experts spot plants by sight, under magnification, or through genetic markers. After that, scientists check what chemicals they contain - using advanced tools such as HPLC or LC-MS rather than basic assays. With these methods, it's easier to pinpoint exactly which compounds show up in each sample. Once found, specific natural compounds get checked with precision. These signs need to stay inside fixed ranges - only then does every batch act the same way. Right after, scientists test how it behaves in controlled environments - to see if results match predictions. Instead of just one method, some labs use thin-layer chromatography together with newer techniques. Keeping strength levels under control ensures items have sufficient powerful substances needed for real impact [36].

5.2 Bioavailability Enhancement and Delivery Systems

A big issue with herbal meds is they don't show up well when swallowed. Certain polyphenols get changed fast by liver CYP450s, then altered further by UGT and SULT enzymes - so they vanish quick, leaving almost none unchanged in blood. On top of that, poor gut absorption - thanks to low water solubility or active efflux pumps - makes oral versions less potent [37].

Advanced ways to deliver drugs fix low effectiveness by trying new tricks. Take liposomes - little balls built from fatty shells - these trap natural substances inside, which helps the body absorb them easier, making their impact tougher compared to raw forms. Research shows resveratrol works way better at increasing insulin release in pancreatic cells when packed into liposomes versus going solo. In mice with diabetes triggered by streptozotocin, those given the liposome-wrapped version showed reduced glycated albumin and HbA1c, unlike ones getting standard doses. On top of that, nanoparticles crank up absorption while cutting down oxidative harm; lab tests in animals prove they manage glucose levels steadier, sharpen how well insulin works, plus lift FGF21 higher than basic extracts [38].

6. Safety Profile and Drug-Herb Interactions

6.1 Adverse Effects and Safety Monitoring

Clinical notes plus more data on safety hint that lots of herb-based treatments for metabolism issues often sit well in the body - so long as doses stay accurate. When side effects show up, they're typically small and rare: think gut discomfort, a bit of queasiness, loose stools now and then - or allergic reactions, mostly in people wired that way by genes - and sometimes random head pain. Major troubles tied straight to herbal items almost never happen if the stuff's made right, portions fit, and folks aren't dealing with hidden medical limits already [39].

Even so, certain herbal fixes need careful handling. While bitter melon contains natural poisons known as cucurbitacins - which can upset the gut - choosing it wisely and checking reactions helps avoid trouble. On the flip side, aloe vera pushes digestion fast thanks to anthraquinones; still, using it too long may drain key minerals from your body. Take licorice root (*Glycyrrhiza glabra*), for example - it's been tied to fluid

retention and dropping potassium levels. Generally speaking, keeping an eye on liver function, kidney signs, plus blood sugar now and then is wise - particularly right after starting herbs or if organs aren't working well already (40).

6.2 Herb-Drug Interactions in Antidiabetic Therapy

Even though some herb-med combos can cause problems, new research suggests mixing natural remedies with regular diabetes meds might improve sugar control by working together. That said, specific mixtures could reduce effectiveness or bring on low blood sugar, so careful monitoring plus patient awareness are crucial. Understanding how these blends act inside the body matters a lot for both safety and better outcomes (41).

Bitter melon (*Momordica charantia*) works better at reducing blood sugar if taken with drugs such as glibenclamide or metformin. One trial found people with diabetes who took 400 mg of chloroform/benzene karela extract along with a reduced dose of metformin or glibenclamide managed their glucose more effectively than those using full doses only. Tests on animals agree - karela juice together with metformin gives stronger results. Adding ginger extract to a small amount of glibenclamide (0.5 mg/kg) worked just as well as a double dose (1 mg/kg) in diabetic rats, suggesting natural extracts could cut down medicine needs.

Fenugreek mixed with glibenclamide boosted antioxidant effects and lowered fat-related liver harm compared to each used alone, hinting at real combined perks. Garlic plus metformin helped shield kidneys better than metformin by itself - seen in certain patients. On the flip side, mixing gymnema with metformin in lab rats cut bloodstream drug levels - but sugar dropped anyway, hinting at complex body responses that need human testing (42).

7. Comparative Efficacy: Phytochemicals Versus Conventional Pharmacotherapy

7.1 Systematic Reviews and Meta-Analytical Evidence

Research into natural plant fixes for metabolism problems keeps revealing actual benefits. A major review of 12 tests - comparing herbs to placebos or regular drugs - shows these plant options can trim waistlines, balance blood sugar, support healthier cholesterol, while also easing high blood pressure. Pooling data from those trials reveals herb users saw triglyceride levels fall by nearly 22.54 mg/dL (95% confidence interval: -27.81 to -17.27), their top blood pressure number dip about 6.76 mmHg (95% CI: -7.72 to -5.81), plus a drop in bottom pressure close to 5.23 mmHg (95% CI: -4.77 to -4.68) compared to non-herb groups (43). Even so, these benefits - while not as strong as pharmaceuticals - are worth noting once you consider herbs usually cause fewer problems, cost less, stay closer to nature, compared with regular meds. What's more, lots of folks prefer remedies from plants simply because they feel more natural, making it easier to keep up over time instead of sticking to synthetic tablets. Still, never treat herbal options as total substitutes if someone's dealing with high-risk health issues - they likely fit best when used along with conventional therapy within an overall strategy for managing metabolism-related concerns (44).

7.2 Cost-Effectiveness and Accessibility Considerations

When you weigh costs and health together, natural cures really shine - particularly where cash and supplies run short. Since many medicinal herbs sprout nearby with little help from farmers, locals often harvest them by hand. These raw materials become medicine through methods learned over centuries, skipping modern factories altogether. Without costly equipment or supply lines, expenses stay low compared to synthetic pills made in big facilities. For instance, insulin for diabetes can cost more than a full month's paycheck in poorer regions - putting treatment out of reach (45).

Dried plants, herbal brews, or consistent plant doses - usually far less costly than typical drugs - might offer actual benefits for folks skipping standard treatment due to price. This hits hard in regions such as

India and surrounding areas, where rising metabolic problems meet tight budgets for healthcare visits. Blending low-cost botanical solutions into everyday clinics may slowly relieve community-wide pressure from these spreading health challenges (46).

8. Ayurvedic and Traditional Chinese Medicine Perspectives

8.1 Ayurvedic Conceptualization of Metabolic Dysfunction

Ayurveda, an old Indian way of healing from writings more than three millennia ago, sees slow metabolism as imbalances in life forces - especially Kapha with Pitta - alongside sluggish digestion (called agni), tied to toxins piling up known as ama. While its terms differ from modern healthcare, this time-tested method picks up on key troubles also noticed by today's research: broken-down metabolic processes, inefficient food processing, mixed with stubborn waste stuck inside the body (47).

In Ayurveda, healing focuses on digestion by mixing tailored diets that fit your unique body shape. Instead of one-size-fits-all meals, foods are chosen to match how you process fuel.

Herbs come into play - selected to steady your energy use throughout the day. Daily routines shift too, swapping lazy patterns with light activity and mental quiet time - not only fixing what's on your plate. Every so often, a cleanse known as Panchakarma sweeps out built-up waste to reset things. Triphala, a mix of three Indian fruits, clears out your gut while helping food break down better. People have trusted it forever - and honestly, it still works. Turmeric tackles puffiness tied to sluggish or broken-down metabolism - both old traditions and fresh studies agree on this one. Ginger, mixed with fenugreek or cinnamon, kicks digestion into gear plus helps balance blood sugar in ways we don't fully get yet. Turns out, what wise folks once recommended matches up oddly well with today's proof on how plants support body rhythms (48). Ayurvedic detox - called Panchakarma - is led by skilled practitioners using custom oil massages, heated enclosures similar to saunas, or herbal enemas to clear accumulated toxins and support natural bodily rhythms. While firm evidence awaits further clinical research, initial findings suggest enhanced metabolic regulation and stronger outcomes, particularly alongside complementary treatments (49).

8.2 Traditional Chinese Medicine Approaches to Metabolic Disorders

In traditional Chinese medicine, problems with blood sugar fall under something known as Xiao-Ke - symptoms such as constant urination, unquenchable thirst, increased hunger, and unexpected weight loss despite normal eating. That lines up closely with today's diagnosis of type 2 diabetes. According to this view, the root cause lies mostly in weakened yin combined with excess heat inside the body. Rather than only treating surface signs, remedies focus on strengthening coolness within, clearing out inner warmth, or supporting overall life force at a deeper level (50). Old Chinese plant blends - known as Yao-Shan - mix different herbs to support how your body processes energy. In ancient times, treatments for Xiao-Ke usually featured bottle gourd (*Lagenaria siceraria*), a natural option also found in Ayurvedic practice for managing blood sugar - but it may become dangerous if toxic compounds such as cucurbitacins accumulate. Recent research suggests these traditional formulas can reduce glucose levels effectively, sometimes matching or outperforming conventional drugs in specific individuals. [51]

9. Ethnobotanical and Global Perspectives on Plant-Based Metabolic Medicine

9.1 Indigenous African Medicinal Plants

African healing ways carry strong know-how on plants that manage blood sugar. A broad scan of local African herbs found 52 distinct types from 31 plant families used for diabetes care throughout the continent. The most cited group was Amaryllidaceae - seen in nearly 14% of cases - then Fabaceae along with Asteraceae, both appearing in around 9.5%. Allium cepa, or onion, keeps turning up in medical observations from Ghana, Algeria, and Uganda, hinting at widespread belief in its metabolic benefits. Meanwhile, in Nigeria, Angola, and Zambia, folks count on Moringa oleifera for like purposes - proof it's trusted well outside a single area (52).

The main plant bits used for healing? Leaves - nearly half the time (45.55%). Bark came next (14.47%), then bulbs (12.09%). Rather than blending, boiling was the usual move (45.18%), though some soaked them in warm water (25.36%). But gulping down the mix remained king (52.41%). Oddly enough, those ancient tricks line up decently with current lab knowledge on extracting good stuff from plants. Yet we're still fuzzy on how these African herbs really work inside the body. Even so, studies have spotted helpful substances - flavonoids, glycosides, carotenoids - in a few standout plants; chemicals tied to healthier bodily functions (53).

9.2 Global Ethnobotanical Similarities and Standardization Implications

Fascinated by how different cultures used plants in similar ways? Even though these groups lived on opposite sides of the globe - completely cut off from one another - they often turned to the same natural cures. Garlic's a solid example; it popped up across ancient Europe, Asia, Africa, and Mediterranean regions when dealing with heart or energy issues. Since no communication happened between them, chances are each group figured this out through trial and error. Turmeric shows up again - it holds weight in both Ayurvedic and traditional Chinese herb use. Despite separate roots, different people reached similar conclusions. Over time, testing shaped what stuck - plants that helped stayed in play. When patterns repeat like this, it suggests nature gives clear signals - if you're watching closely (54).

These plants' uses are key for reliable herbal medicine. Different cultures sometimes call the same plant by similar names - those cases deserve priority in research and field tests, since agreement among distant traditions may point to powerful, broad-acting benefits. Also,

old-time knowledge offers solid hints about which herbs could be worth deep lab analysis, maybe helping faster discovery of answers for metabolic issues (55).

10. Integration of Phytotherapy into Evidence-Based Clinical Practice

10.1 Strategic Integration as Adjunctive Therapy

The smartest move with herbal remedies for metabolism problems? Think of them as support tools - part of a bigger plan, never replacements for real medicine. Done well, certain plant supplements mix into daily habits like smarter meals, moving more, less stress, solid rest - and pills when required - all while watching key health stats regularly (56).

For folks with minor or early metabolic problems, medicine isn't always needed at first - trying herbal options together with major daily habit shifts can sometimes do the job without prescriptions. Once a person is on meds, tossing in natural plant helpers may lift their effect, possibly leading to smaller drug amounts, cutting both unwanted reactions and costs. In cases where usual therapies fall short despite full effort, certain botanicals might pitch in through alternate pathways (57).

10.2 Patient Selection and Risk Stratification

People who aren't very sick often respond better to plant-based healing - especially when their blood sugar or cholesterol is just slightly off, without major body system troubles or lots of prescriptions. Folks with extra health hurdles need more caution; mixing herbs into usual care could work if there's no organ damage, say someone's struggling with metabolism glitches but nothing worse. If symptoms are mild and medicine use is minimal, natural options tend to click nicely. On the flip side, those juggling diabetes with heart strain, shaky kidneys, nerve zaps, or heavy liver buildup must stick to proven therapies first. Trying herbs? Might bring perks - but only after hashing out pros and cons with a knowledgeable provider (58). Take care around seniors using many meds - combos may cause trouble between herbs and pharmaceuticals.

Look out for folks with weak liver or kidney function - they often struggle to handle natural supplements. Those on anticoagulants? Pay close attention; certain plants such as ginger mimic these medications, possibly increasing bleed risks (59). 10.3 Monitoring Protocols and Adverse Event Surveillance Clinical use of herbal remedies calls for close monitoring to see what benefits show up - or whether unwanted reactions occur. Start by recording core values: fasting glucose, HbA1c, lipid panel including total cholesterol, LDL, HDL, and triglycerides, along with blood pressure, waist size, BMI, plus liver and kidney function tests. Reassess every four to six weeks at first - this way you catch changes fast. When patterns level out, checking in every eight to twelve weeks should do fine (60). Look for side effects each time - ask folks straight up about tummy troubles, rashes, fatigue, or anything weird going on with their body. When someone's taking diabetes drugs, pay extra attention because drops in blood sugar might happen without clear signals. Show them how lows feel and what steps to take quickly. Point out serious red flags - like severe gut pain

11. Conclusions and Future Perspectives

11.1 Summary of Evidence and Clinical Implications

Science lately proves some stuff from plants can actually sort out metabolic issues by hitting multiple systems in the body at the same time. Rather than doing just one thing, these substances team up - take berberine, curcumin, quercetin, or resveratrol - they've got strong lab results and decent performance in people studies. Things like bitter melon, fenugreek, cinnamon, and turmeric keep proving useful - for managing blood sugar, boosting insulin sensitivity, cleaning up blood lipids, while also calming down inflammation. When herbal blends get made right, using evidence-based formulas, they frequently deliver noticeable perks close to regular meds - or beat them when stacked - and bring lower side effects with lighter costs. Blending ancient practices such as Ayurveda or traditional Chinese healing with current trial techniques has sped up finding, checking, and applying plant-based fixes (62). Plants gathered from varied spots yet applied alike hint at genuine benefits - this calls for deeper study. Clues about how natural compounds influence blood glucose, interact with cell signals, combat oxidative stress, ease systemic swelling, or shift gut microbes give ancient remedies a scientific edge (63).

11.2 Future Research Directions and Drug Development

Folks are still exploring natural remedies - real headway means grinding away in lots of areas at once. Main targets? Start with large, careful trials over time, using diverse people, comparing actual plant extracts against standard meds or placebos. Beyond that, high-precision chemistry can isolate which bits in traditional herbs actually do something. Also worth checking: full herbal mixes instead of isolated pieces - to see if they work stronger together than apart, tested both in labs and daily use (64). One more path: study how a molecule's structure shapes its impact, opening doors to smart upgrades for better results. On top of that, better delivery tricks matter - think small packages like nano-sized helpers - that shield these compounds through gut breakdown so they reach their target. At the same time, it'd make sense to weigh

costs and results when mixing plant-based fixes with mainstream medicine rather than sticking solely to conventional routes. Out in fields, tweaking sowing styles, harvest moments, plus post-pick routines could boost helpful plant chemicals while keeping nature intact. Laws also require a refresh - they must recognize herbs aren't lab-made pills yet still demand solid control over purity, reliability, and harm prevention. In closing, global teamwork among herb specialists, plant scientists, chemistry folks, and health workers may turn old-time knowledge into trusted answers more folks around the world can actually rely on (65).

11.3 Final Synthesis

Plants might be a solid way to fight metabolic disorders - but right now, they're hardly being tapped. Old-school medicine, checked out by today's research and actual outcomes, proves herbal fixes pack a real punch. Since regular meds tend to cost a lot, cause unwanted reactions, don't always get through, or act unpredictably, swapping in trusted plant ingredients could mean smarter choices. (65)

REFERENCES

1. World Health Organization. (2020). Metabolic syndrome. [Reference]
2. Taylor, R. (2018). Type 2 diabetes: etiology and reversibility. *Diabetes Care*, 41(12), 2527-2533.
3. Saeedi, P., Petersohn, I., Salpea, P., Malanda, D., Karuranga, S., Unwin, N., Colagiuri, S., & Guariguata, L. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, ninth edition. *Diabetes Research and Clinical Practice*, 157, 107843.
4. Anjana, R. M., Pradeepa, R., Deepa, M., Datta, M., Sudha, V., Higham, T. R., & Mohan, V. (2011). Prevalence of diabetes and prediabetes in 15 states of India: results from the ICMR-INDIAB population-based cross-sectional study. *The Lancet Diabetes & Endocrinology*, 1(2), 158-160.
5. NCD Risk Factor Collaboration (NCD-RISC). (2017). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based studies with 128·9 million participants. *The Lancet*, 390(10113), 2627-2642.
6. Marín-Peñalver, J. J., Martín-Timón, I., Sevillano-Collantes, C., & Del Cañizo-Gómez, F. J. (2016). Update on the treatment of type 2 diabetes mellitus. *World Journal of Diabetes*, 7(17), 354-395.
7. Popovich, L., & Ghassemi, O. (2018). The US cost of diabetes and potential drug cost savings. *Managed Care*, 27(5), 44-48.
8. Liu, R. H. (2004). Potential synergy of phytochemicals in cancer prevention: mechanism of action. *The Journal of Nutrition*, 134(12), 3479S-3485S.
9. Rostamzadeh, A., Zardast, M., Rezaei, M., & Kazemi, S. (2020). The molecular mechanisms of phytochemicals as anti-diabetic agents. *Avicenna Journal of Phytomedicine*, 10(3), 211-229.
10. Zhang, H., Wei, J., Xue, R., Wu, J. D., Zhao, W., Wang, Z. J., ... & Li, Y. (2008). Berberine lowers blood glucose in type 2 diabetes mellitus patients through multiple mechanisms. *Endocrinology*, 149(12), 6545-65.

11. Zang, M., & Liu, Y. (2019). Role of curcumin in regulating lipid metabolism and alleviating cardiometabolic diseases. *Biomolecules*, 9(8), 358.
12. Hanhineva, K., Törrönen, R., Bondia-Pons, I., Pekkinen, J., Landberg, M., Amigo, L., & Mutikainen, J. (2010). Impact of dietary polyphenols on carbohydrate metabolism. *International Journal of Molecular Sciences*, 11(4), 1365-1402.
13. Czech, M. P. (2017). Mechanisms of insulin action. *Cold Spring Harbor Perspectives in Biology*, 9(12), a031828.
14. Semwal, R. B., Semwal, D. K., Combrinck, S., & Viljoen, A. M. (2016). Resveratrol as a potential therapeutic agent for the treatment of non-alcoholic fatty liver disease: a systematic review and meta-analysis. *Nutrients*, 8(10), 652.
15. Shepherd, P. R., & Kahn, B. B. (1999). Glucose transporters and insulin action: implications for insulin resistance and diabetes mellitus. *New England Journal of Medicine*, 341(4), 248-257.
16. Kota, B. P., Huang, T. H. W., & Roufogalis, B. D. (2011). An overview on the mechanism of action of the peroxisome proliferator-activated receptors (PPARs). *Pharmacological Research*, 63(4), 273-281.
17. Wang, N., Wang, Z., Zhang, Z., Liu, W., & Feng, C. (2019). Resveratrol protects against high-fat diet induced hepatic steatosis via the regulation of the SIRT1/AMPK/PPAR α pathway. *Molecular Medicine Reports*, 20(4), 3125-3132.
18. Newsholme, P., Cruzat, V. F., Oliveira, L. B., & Seelaender, M. (2016). Obesity, insulin resistance and metabolic syndrome: a mechanistic link to the T cell-induced inflammatory response. *Obesity Reviews*, 17(2), 195-212.
19. Pimentel, V. C., & Leifert, W. R. (2015). The role of plant polyphenols in the management of type 2 diabetes mellitus. *Current Opinion in Biotechnology*, 35, 78-83.
20. Shoelson, S. E., Herrero, L., & Naaz, A. (2007). Inflammation, high-fat diet, and initiation of insulin resistance. *Diabetes*, 56(11), 2682-2688.
- Sarkar, F. H., & Li, Y. (2011). Cell signaling pathways and anticancer drug targets. *Current Drug Targets*, 12(7), 969-971.
21. Hotamisligil, G. S. (2017). Inflammation, metaflammation and immunometabolic disorders. *Nature*, 542(7640), 177-185.
22. Cox, L. M., & Blaser, M. J. (2013). The microbiome in obesity and metabolic disorders. *The Journal of Clinical Investigation*, 123(12), 5240-5246.
23. Alard, J., Lehrter, H., Sutter, A. L., Hennion, F., Dominguez, V. E., Cordonnier, C., ... & Hichami, A. (2018). Consumption of strawberry polyphenols is associated with improved insulin sensitivity and gut microbiota modulation in overweight adults. *Molecular Nutrition & Food Research*, 62(11), 1700938.
24. Hlebowicz, J., Darwiche, G., Björgell, O., & Almér, L. O. (2007). Effect of cinnamon on postprandial blood glucose, gastric emptying, and satiety in healthy subjects. *The American Journal of Clinical Nutrition*, 85(6), 1552-1556.

25. Qin, B., Panicker, K. S., & Anderson, R. A. (2010). Cinnamon: potential role in the prevention of insulin resistance, metabolic syndrome, and type 2 diabetes. *Journal of Diabetes Science and Technology*, 4(3), 685-693.

26. Joseph, B., & Jini, D. (2013). An antidiabetic review on *Momordica charantia* (bitter melon). *International Journal of Biomedical Research and Analysis*, 1(1), 1-10.

27. Mathern, J. R., Raatz, S. K., & Johnson, L. K. (2009). The effect of fenugreek consumption on controlled non-insulin dependent diabetes mellitus. *Nutrition Journal*, 8(1), 29.

28. Agrawal, P., Rai, V., & Singh, R. B. (2011). Randomized placebo-controlled, single blind clinical trial of an Ayurvedic formulation for treatment of type 2 diabetes mellitus. *Journal of the Association of Physicians of India*, 59, 23-28.

29. Sharma, R. D., Raghuram, T. C., & Rao, N. S. (1990). Effect of fenugreek seeds on blood glucose and serum lipids in type I diabetes. *Nutrition Research*, 10(7), 731-739.

30. Na, L. X., Li, Y., Pan, J. X., Zhou, X. L., Chen, Y. G., & Li, Y. M. (2012). Curcuminoids exert glucose-lowering effect in type 2 diabetes by activating AMPK and Akt pathways. *The FASEB Journal*, 26(11), 4787-4794.

31. Azimi, S., Ghorbani, S., Heshmatian, B., & Ghadiri, E. (2020). The protective effects of saffron (*Crocus sativus* L.) on metabolic syndrome in type 2 diabetic patients: a randomized clinical trial. *Journal of Herbal Medicine*, 24, 100377.

32. Rains, T. M., Agarwal, S., & Maki, K. C. (2011). Antiobesity effects of green tea catechins: a mechanistic review. *The Journal of Nutritional Biochemistry*, 22(1), 1-7.

33. Hursel, R., Viechtbauer, W., & Westerterp-Plantenga, M. S. (2009). The effects of green tea on weight loss and weight maintenance: a meta-analysis. *International Journal of Obesity*, 33(9), 956-961.

34. Calixto, J. B. (2000). Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). *Brazilian Journal of Medical and Biological Research*, 33(2), 179-189.

35. Wagner, H. (2011). Herbal drug analysis and quality control. *Phytomedicine*, 18(9), 705-716.

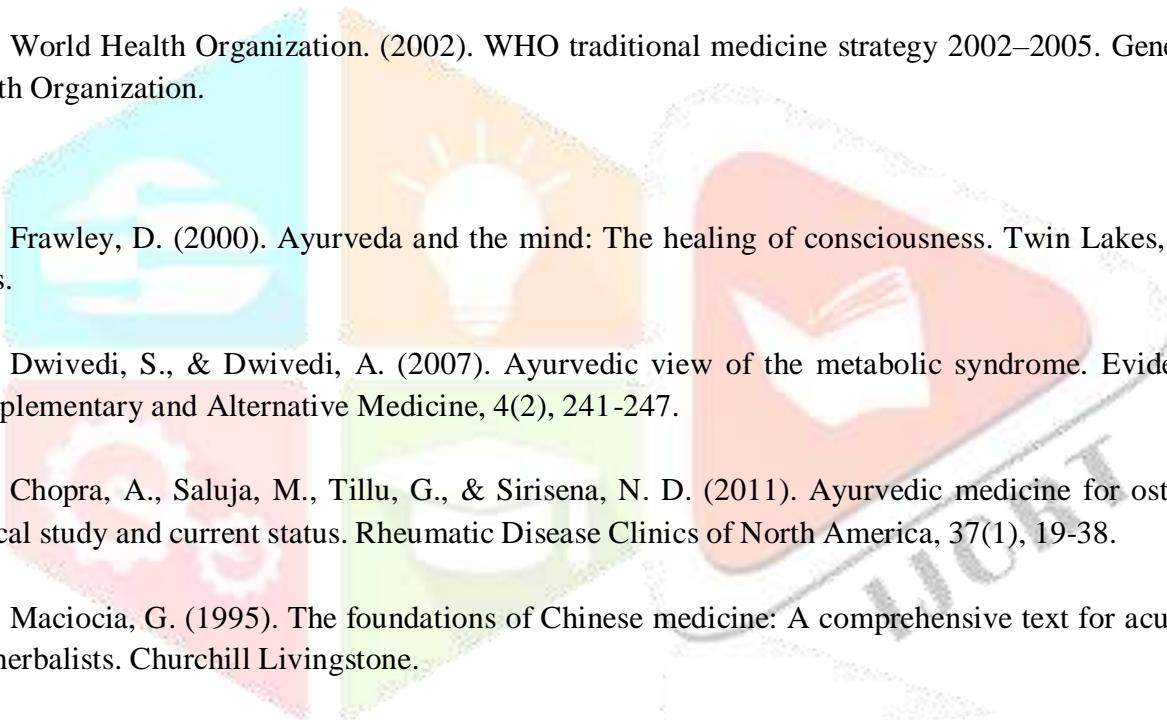
36. Dhiman, S., Sharma, J. S., & Malviya, R. (2020). Enhanced bioavailability and therapeutic efficacy of phytochemicals by novel drug delivery systems. *Future Journal of Pharmaceutical Sciences*, 6(1), 1-17.

37. Das, S., & Singh, P. K. (2014). Enhancement of anti-diabetic activity of resveratrol by liposomal encapsulation in streptozotocin induced diabetic mice. *European Journal of Pharmacology*, 740, 35-42.

38. Ernst, E. (2002). The risk-benefit profile of commonly used herbal treatments for hypercholesterolemia: a systematic review. *European Journal of Clinical Pharmacology*, 58(1), 1-6.

39. De Smet, P. A. (2004). Herbal remedies. *New England Journal of Medicine*, 351(13), 1068-1076.

40. Fugh-Berman, A. (2000). Herb-drug interactions. *The Lancet*, 355(9198), 134-138.


41. O'Hara, M., Kiefer, V. H., Farrell, K., & Kemper, K. (1998). A review of 12 commonly used medicinal herbs. *Archives of Family Medicine*, 7(6), 523-534.

42. Zhang, W., Wang, P., Ma, X., Zhang, M., Han, C., & Feng, J. (2019). The effect of herbal medicine on metabolic syndrome: a systematic review and meta-analysis of randomized controlled trials. *Frontiers in Pharmacology*, 10, 843.

43. Asher, G. N., & Jonas, W. B. (2013). The safety and efficacy of complementary and alternative medicine (CAM) in the treatment of type 2 diabetes. A review. *Current Diabetes Reports*, 13(2), 162-171.

44. Lim, S. S., Vos, T., Flaxman, A. D., Danaei, G., Shibuya, K., Adair-Rohani, H., ... & Murray, C. J. (2013). A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. *The Lancet*, 380(9859), 2224-2260.

45. World Health Organization. (2002). WHO traditional medicine strategy 2002–2005. Geneva: World Health Organization.

46. Frawley, D. (2000). *Ayurveda and the mind: The healing of consciousness*. Twin Lakes, WI: Lotus Press.

47. Dwivedi, S., & Dwivedi, A. (2007). Ayurvedic view of the metabolic syndrome. *Evidence-Based Complementary and Alternative Medicine*, 4(2), 241-247.

48. Chopra, A., Saluja, M., Tillu, G., & Sirisena, N. D. (2011). Ayurvedic medicine for osteoarthritis: clinical study and current status. *Rheumatic Disease Clinics of North America*, 37(1), 19-38.

49. Maciocia, G. (1995). *The foundations of Chinese medicine: A comprehensive text for acupuncturists and herbalists*. Churchill Livingstone.

50. Chang, X., Yu, J., Zhou, Y., & Chen, J. (2018). The effect of traditional Chinese medicine on type 2 diabetes mellitus: a systematic review and meta-analysis. *Evidence-Based Complementary and Alternative Medicine*, 2018, 6418721.

51. Kifle, Z. D., & Enyew, Y. A. (2014). A review on medicinal plants used for the treatment of diabetes mellitus in Ethiopia. *African Journal of Pharmacy and Pharmacology*, 8(37), 918-931.

52. Ajayi, G. O., Ajayi, A. T., Akomolafe, R. O., & Ojo, S. A. (2019). Antidiabetic and antioxidant effects of *Moringa oleifera* leaf extract on streptozotocin-induced diabetic Wistar rats. *Journal of Complementary and Integrative Medicine*, 16(1).

53. Heinrich, M., Appendino, G., Efferth, T., Quave, C. L., & Vermathen, M. (2012). Best practices in ethnopharmacology: consensus statement from the European Association for Phytotherapy (EAP) and the International Society for Ethnopharmacology (ISE). *Journal of Ethnopharmacology*, 143(3), 738-741.

54. Balunas, M. J., & Kinghorn, A. D. (2005). Drug discovery from medicinal plants. *Life Sciences*, 78(5), 431-441.

55. Ravina, A., Slezak, O., & Teschler-Nicola, M. (2001). Complementary and alternative medicine for type 2 diabetes. *Diabetes Care*, 24(1), 183-189.

56. Yeh, G. Y., Eisenberg, D. M., Kaptchuk, T. J., & Phillips, R. S. (2003). Systematic review of herbs and dietary supplements for glycemic control in diabetes. *Diabetes Care*, 26(4), 1251-1262.

57. Liu, B., Wang, Y., Cui, J., Wang, Z., & Chen, X. (2018). Integrating Traditional Chinese Medicine with conventional medicine for metabolic syndrome. *Evidence-Based Complementary and Alternative Medicine*, 2018, 4504159.

58. Izzo, A. A., & Ernst, E. (2009). Interactions between herbal medicines and prescribed drugs: an updated systematic review. *Drugs*, 69(13), 1777-1798.

59. American Diabetes Association. (2020). Standards of medical care in diabetes—2020. *Diabetes Care*, 43(Supplement 1), S1-S212.

60. Teschke, R., & Eickhoff, A. (2015). Herbal hepatotoxicity in Germany: two years later. *Journal of Hepatology*, 62(1), 226-228.

61. Guo, S. L., Chen, Y. T., Lin, M. X., & Zhong, Z. H. (2020). Phytochemicals in the prevention and treatment of metabolic syndrome: effects and molecular mechanisms. *Evidence-Based Complementary and Alternative Medicine*, 2020, 2390709.

62. Shaito, A., El Hajj, H., & Thangavel, A. (2020). Targeting metabolic syndrome with polyphenols: a systematic review of clinical evidence and molecular mechanisms. *Pharmacological Research*, 155, 104715.

63. Atanasov, A. G., Zotchev, A. S., Dirsch, V. M., & Supuran, C. T. (2021). Natural products in drug discovery: past, present, and future. *Chemical Reviews*, 121(13), 7559-7627.

64. Ekor, M. (2014). The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. *Frontiers in Pharmacology*, 4, 177.

65. Butterweck, V., & Khan, I. A. (2009). Herbal medicines in the management of metabolic syndrome: a focus on clinical studies. *Planta Medica*, 75(10), 1121-1130.