

Review On Targeting the Autonomic Nervous System

¹Vighnesh Katore, ²Omkar Gore, ³Dr. Vijaykumar Kale, ⁴Dr. Mahesh Thakare, ⁵Vaibhav Narwade

¹Student, Kasturi Shikshan Sanstan College Of Pharmacy

²Assistant Professor, Kasturi Shikshan Sanstan College Of Pharmacy

³Principal, Kasturi Shikshan Sanstan College Of Pharmacy

⁴Head Of Department, Kasturi Shikshan Sanstan College Of Pharmacy

⁵Assistant Professor, Kasturi Shikshan Sanstan College Of Pharmacy

¹Department of B. Pharmacy,

¹Kasturi Shikshan Sanstha College of Pharmacy, Shikrapur, India.

ABSTRACT

The autonomic nervous system handles key bodily tasks - like heartbeat, breathing, gut function, and hormone release - not requiring conscious thought. Due to its central role, drugs often aim at this system, particularly for issues tied to circulation, lungs, brain health, or metabolism. Here's a clear look at how the ANS is built, what chemicals it uses, plus breakthroughs in drugs affecting adrenaline and acetylcholine pathways. Lately, scientists have worked on fine-tuning which receptors get activated, aiming to limit unwanted reactions while boosting treatment accuracy. Today's adrenaline-like meds - like targeted α_1 , α_2 , β_1 , or β_2 regulators along with extended-release β_2 activators - tend to last longer while posing fewer risks. In the same way, updated nerve-signaling drugs, such as specific muscarinic adjusters paired with next-gen enzyme blockers, deliver real patient gains in lung and brain conditions. The review dives into how things like SAR progress, one-sided activation, besides allosteric shifted medication development. It checks today's ANS meds used for heart issues, breathing problems, lung trouble, stomach disorders, along with mental health cases. On top of that, it points out ongoing hurdles - unintended side actions, reduced receptor response, plus mix-ups between medicines - that still mess with real-world treatment. Emerging ideas - like tailoring meds using genetic info, using tiny particles to deliver drugs more precisely, creating compounds that do two jobs at once, or applying smart algorithms to find new treatments - are shaping how we'll treat nervous system disorders down the line. Mixing today's science with targeted receptor strategies means tomorrow's medicines could be safer, work better, because they're built around real patient needs. All things considered, this look back shows why smarter adrenaline- and acetylcholine-focused therapies matter more now when handling long-lasting health issues.

Keywords:- Autonomic Nervous System (ANS), Adrenergic Drugs, Cholinergic Drugs, Receptor Selectivity, β -Blockers, Muscarinic Modulators, Biased Agonism.

Introduction to the Autonomic Nervous System (ANS)

The human body runs like a well-organized machine, with countless tasks going on behind the scenes. Your heart beats nonstop, your lungs pull in air, your gut breaks down meals, yet you don't have to think about any of it. This invisible control comes from something called the Autonomic Nervous System, or ANS for short. Part of the larger nerve network outside the brain and spine, it helps keep life steady when things get shaky. It handles survival basics - like staying warm, calm, or alert - without needing orders. Knowing how the ANS works matters since illnesses, meds, even treatments often mess with its signals.[1]

Structure of the ANS

The ANS splits into two main parts:

1. Sympathetic Nervous System (SNS)
2. Parasympathetic Nervous System (PNS)

One system acts while the other reacts - now balancing, now clashing - to control gut movement, heartbeats, or sweat release.

1. Sympathetic Nervous System (SNS)

The sympathetic system gets the body ready when action's needed - like during tough or sudden moments. People usually call it the "run or react" mode. Once switched on, focus sharpens, heartbeat speeds up, flow of blood shifts toward key areas, yet the whole setup gears up to manage pressure.[2]

- Structural features of the sympathetic system:

Comes out of the spine's chest plus lower back area.

Has brief preganglionic fibers, then longer ones after the ganglion.

Ganglia sit near the spine - part of a network called the sympathetic chain.

2. Parasympathetic Nervous System (PNS)

The parasympathetic system helps the body recharge while saving energy. Called the "rest and digest" mode, it eases heart rhythm, aids gut activity, also keeps basic bodily processes steady.[3]

- Structural features of the parasympathetic system:

Comes out of the brainstem along with the lower spine area.

Has lengthy preganglionic fibers but brief postganglionic ones.

Ganglia sit near - or right inside - organs they serve.

These systems work together - yet each plays its own role - to keep the body reacting right when things shift inside or out.

Role of the ANS in Homeostasis

Homeostasis means the body keeps its inner state steady even when outside stuff changes. The ANS helps a lot with that balance by watching what's going on inside. Instead of you having to think about it, it tweaks how organs work all on its own. This happens nonstop, whether you're aware or not.[4]

Major homeostatic roles include:

1. Regulation of Heart Function

The ANS manages how fast your heart beats, how hard it squeezes, also keeps blood pressure in check.

When you're stressed, your heart beats faster while blood pressure goes up.

When the parasympathetic system kicks in, the heartbeat drops.

2. Control of Smooth Muscle

Smooth muscles in the gut, arteries, airways, or bladder get controlled by the autonomic nervous system.

SNS opens airways, so you can breathe easier.

PNS boosts gut activity.[5]

3. Endocrine and Metabolic Regulation

The ANS affects how hormones are released by parts like the adrenal medulla, also the pancreas, along with the liver.

When your body gets stressed, it shoots out adrenaline while pulling sugar into the bloodstream.

When the parasympathetic system kicks in, it boosts insulin output while also helping digestion along.[6]

4. Thermoregulation

The sympathetic setup tweaks sweat levels, shifts blood movement in the skin, also alters body heat by changing metabolism.

5. Pupillary and Eye Function

ANS control helps pupils grow larger when it's dark (SNS), yet shrink when it's sunny (PNS). Plus, it manages how much tears and spit your body makes.

All these things happen nonstop, so your body runs well without you having to think about it.[7]

Neurotransmitters of the ANS

The chat inside the ANS uses tiny chemicals known as neurotransmitters. One key player is Acetylcholine, or ACh - another big one's Norepinephrine, NE. These two handle most of the signaling work across the system.[7]

1. Acetylcholine (ACh)

ACh works mainly as a chemical messenger in:

All preganglionic sympathetic fibers along with parasympathetic ones

All parasympathetic fibers after ganglia

Nerves after the ganglion go to skin's sweat parts[8]

Functions of ACh:

- Slows heart rate
- Stimulates digestive processes
- Relaxes gut muscles slightly
- Influences how much fluid these glands release, such as the ones making spit or tears
- ACh works on muscarinic or nicotinic sites - so it's key for cholinergic signaling.[8]

2. Norepinephrine (NE)

Norepinephrine runs most nerves after ganglia in the sympathetic system. Because of it, your body reacts fast when stressed.

- Functions of NE:

- Raises heartbeat speed while making contractions stronger
- Narrows nearly every blood vessel
- Dilates pupils
- Inhibits digestion
- Mobilizes energy from fat - also pulls from glucose reserves
- NE works mostly through alpha plus beta adrenergic sites.[9]

Communication Pathway in the ANS

Each part of the ANS uses a pair of nerve cells to send signals to body organs - linked one after another like steps in a pathway

1. Preganglionic neuron

2. Postganglionic neuron

The preganglionic nerve cell lets out ACh, linking up with the ganglion. After that, the next nerve cell sends out ACh (for PNS) or else NE (in SNS), depending on what's needed by the organ.

This setup gives precise handling while adapting fast to what the body requires.

Integration of Sympathetic and Parasympathetic Functions

The ANS doesn't work alone. While many organs get signals from two sides, one comes from sympathetic nerves, the other from parasympathetic ones.[10]

Example:

- Heart: SNS ↑ heart rate, PNS ↓ heart rate
- Gastrointestinal tract: SNS ↓ motility, PNS ↑ motility
- Eye: SNS dilates pupil, PNS constricts pupil
- This two-part system keeps things moving smoothly, so organs stay in check without stiffness - using adaptability plus accuracy.

Why the ANS is Important in Pharmacology ?

Many today's meds for heart issues, breathing troubles, brain-related illnesses, or mental health struggles target the ANS to have an effect. These treatments may alter how this system functions[11]

Stimulate receptors

Block receptors

Raise or reduce how much neurotransmitter is released

Adjust how responsive body parts are

Figuring out how the ANS works matters a lot when creating treatments that hit the target better, do less harm, yet perform stronger.

Overview of ANS Pharmacology

Autonomic nervous system (ANS) pharmacology looks at how medicines impact the body's automatic nerve signals using various brain chemicals and docking sites. Because this system manages key jobs like heartbeat, breath control, fluid balance, organ activity, plus gut movement, drugs tapping into it can strongly shape health results. Today's focus is crafting medications that hit exact targets, working selectively to limit downsides but boost healing success.[12]

Mechanism of Neurotransmission in Adrenergic & Cholinergic Pathways

The main nerve signal routes in the ANS include:

1. Cholinergic route - driven through acetylcholine (ACh)
2. Adrenergic pathway - triggered through norepinephrine (NE), also influenced by epinephrine

These two routes work alike when sending signals, yet use different chemicals, target distinct receivers, also trigger varied body reactions.

1. Cholinergic Neurotransmission (ACh-Mediated)

Cholinergic nerves let out acetylcholine - this substance targets muscarinic or nicotinic spots. Instead of pairing up, they work through separate channels.

The steps include:

- Building ACh using choline along with acetyl-CoA
- Storage of ACh in synaptic vesicles
- When calcium gets into nerve endings, ACh is let out
- Attaching to cholinergic receptors in working body parts
- Stopping happens when acetylcholinesterase splits up ACh without delay
- Cholinergic transmission handles most parasympathetic actions - like slowing the heartbeat, -boosting gut activity, tightening bladder muscles, or triggering glands to release fluids.[13]

2. Adrenergic Neurotransmission (NE-Mediated)

Adrenergic nerves give out norepinephrine - this substance targets adrenergic receptors, like alpha or beta kinds.

Steps involved:

- Synthesis of NE from tyrosine
- Storage in vesicles
- Signal sent when nerves fire
- Attaching to adrenaline-like receptor sites
- Reabsorption by the nerve ending - this is how signals usually stop
- Metabolism by MAO and COMT enzymes[14]

Adrenergic signaling triggers responses tied to alertness - heart speeds up while breathing tubes widen; at the same time, pupils expand because digestion slows down.

Fresh meds might tweak each stage - boosting, copying, or stopping regular brain signals.

Receptor Classification in ANS Pharmacology

The way neurotransmitters act relies on which receptors they connect to - so figuring out receptor types is key for making new medicines.

A. Adrenergic Receptors[15]

These receptors react to norepinephrine along with epinephrine; they split into:

1. Alpha (α) Receptors

$\alpha 1$ receptors – found in smooth muscle areas like blood vessels, also the bladder, plus the eyes
Cause narrowing of blood vessels, make pupils widen - also tighten the bladder's closing muscle
 $\alpha 2$ receptors – located on nerve endings plus spread through the central nervous system
Block norepinephrine output while calming nervous system action[16]

2. Beta (β) Receptors

$\beta 1$ receptors – mostly found in the heart
Raise how fast your heart beats while making each squeeze stronger
 $\beta 2$ receptors – found in airways, womb, blood vessels of muscles
Cause airways to widen while relaxing muscles smoothly
 $\beta 3$ receptors – located in fat cells as well as the urinary bladder
Burn fat faster while helping your bladder stay relaxed

Every kind of receptor triggers unique body reactions, so medicines can be made to target just one type using specific signals.[17]

B. Cholinergic Receptors

These receptors react to acetylcholine, falling into two main kinds:

1. Nicotinic Receptors

Found in:

- Autonomic ganglia
- Neuromuscular junction
- Adrenal medulla[18]

Activation causes:

- Ganglionic transmission
- Muscle contraction
- Flood of adrenaline from the adrenal gland when stress hits[19]

2. Muscarinic Receptors

Five subtypes (M1–M5):

- M1 affects the brain plus stomach cells - boosts thinking, ups digestive juices
- M2 – affects the heart by reducing its rhythm
- M3 affects airways, urinary storage, plus secretory organs - triggers muscle tightening or mucus release
- M4 plus M5 - mostly active in the brain (handle thinking, actions, or how we move)

Since every receptor type sits in a different spot and does its own job, meds now target them way better than before.[20]

Physiological Effects Mediated by Each Receptor Subtype

Focusing on specific receptors can show what a drug might do inside people.

Adrenergic Receptor Effects

- α_1 activation leads to tightening of blood vessels, which raises blood pressure while making pupils expand
- α_2 gets turned on → less NE let out, cutting nerve activity
- Stimulating β_1 receptors raises heartbeat speed while boosting how much blood the heart pumps
- β_2 kicks in → opens up airways, eases tension in muscles
- β_3 activation leads to fat breakdown - also eases bladder tension[21]

Cholinergic Receptor Effects

Nicotinic activation leads to muscle contractions - also triggers adrenaline output

M1 turned on leads to better recall while boosting stomach fluids

M2 activation leads to slower heartbeat

M3 triggers cause airways to tighten - also boosting spit production while making the bladder squeeze

M4/M5 switch on → helps control brain signals using different pathways instead of just one method[22]

Importance of ANS Pharmacology in Modern Medicine

ANS meds drive care for many health issues,

-Hypertension, Asthma, Cardiac arrhythmias, Glaucoma, Gastrointestinal disorders, Brain disorders like dementia or mental health issues

Today's studies focus on creating precise medicines that hit only certain receptors, which helps reduce unwanted reactions. Thanks to these steps forward, therapies now work better, cause less trouble, also fit people's lives more easily.[23]

Advances in Adrenergic Drugs

Adrenergic meds are key for handling heart, lung, sugar, or nerve issues. They kick in by hitting certain body switches - called alpha and beta - that react to natural chemicals like adrenaline. In recent years, research boosted options with picks that target more precisely, last longer, stay gentler on the system. Newer versions focus on helping more without raising pulse, shaking hands, or shifting blood pressure much. Here's a look at what's changed most in this drug group lately.[24]

1. Development of New Selective α_1 , α_2 , β_1 , and β_2 Agonists and Antagonists

Selective adrenergic meds matter a lot now since they hit just the right spots in the body while skipping unrelated areas. Because of this focus, side effects drop - treatment works better as a result.[25]

A. α_1 -Selective Agents

New alpha-1 blockers are now made to target specific receptors, so they can manage high blood pressure or enlarged prostate with fewer side effects.

Examples include:

Silodosin

Naftopidil

Their better focus on α 1A receptors eases prostate muscle tension while keeping blood pressure more stable.[26]

B. α 2-Selective Agents

Today's alpha-2 blockers are now used for brain-related issues, calming patients, or helping with discomfort - also showing promise beyond old uses.

Modern α 2 meds work like this:

Dexmedetomidine (highly selective, used in ICUs)

Guanfacine helps with ADHD - works without hitting the heart so hard[27]

These medicines lower nerve activity while boosting mental focus through direct brain action. Thanks to better targeting, they lead to fewer drowsy feelings and blood pressure drops compared to earlier options such as clonidine.[28]

C. β 1-Selective Drugs

New β 1 antagonists ("cardioselective β -blockers") improve heart failure and hypertension treatment with fewer respiratory side effects.[29]

Examples:

Nebivolol

Bisoprolol

They mostly target heart β 1 receptors, which helps keep breathing steady - key for people with asthma or COPD.[30]

D. β 2-Selective Drugs

Newer beta-2 stimulants are now key for managing asthma or COPD thanks to how they loosen tight airway muscles. They help open breathing passages but don't stir up heart activity much.

Examples:

Formoterol

Indacaterol

Their pickiness keeps down fast heartbeats and shakes - often seen with earlier β 2 meds.[31]

2. Ultra-Long Acting β 2 Agonists (e.g., Indacaterol)

A big step forward in adrenaline-related medicine came with super long-lasting beta-2 drugs (ULABAs). One shot keeps working for a full day - or even longer - thanks to their design, which helps patients stick to treatment while keeping symptoms in check.[32]

Indacaterol stands out among ULABAs - yet it's not alone in doing well.

Key benefits include:

Once-daily dosing

Rapid bronchodilation

Stable effect throughout the day

Better daily living for people with COPD thanks to easier breathing and steady energy

ULABAs cut down how often symptoms act up, while also lessening the need for quick-relief inhalers. These days, doctors lean toward them when dealing with ongoing issues that demand steady management.[33]

3. Highly Selective α_2 Agonists for CNS Disorders

Scientists are looking into alpha-2 stimulants to help with brain-related issues like focus troubles, stress, trouble sleeping, or discomfort.[34]

Examples and Advantages

Guanfacine ER helps focus while calming kids down - it's good for ADHD since it works gently. The medicine targets symptoms but doesn't speed up the brain like some others do.[35]

Dexmedetomidine works well for calming patients - keeps them relaxed but awake, without slowing breathing much.

These medications target α_2 receptors in the brain, which reduces excess nerve activity while boosting communication between mind and body. Because they're more precise, they tend to cause less strain on the heart than earlier treatments.[36]

4. Novel β -Blockers with Vasodilatory Action (e.g., Nebivolol)

Old beta-blockers lower blood pressure yet often lead to tiredness, chilly hands or feet, also less stamina from tight blood vessels. Drugs such as nebivolol have shifted that idea instead.[37]

What Makes Nebivolol Unique?

It's a type of blocker that targets beta-1 receptors, shielding the heart.

It can start off nitric oxide being released, which leads to wider blood vessels.

This double effect boosts circulation while easing strain on the heart.[38]

Benefits include:

Better endurance when working out

Better grip on high blood pressure

Fewer metabolic disturbances

Lower chance of sexual issues when stacked against earlier beta blockers

Its mix of heart-focused action along with blood vessel relaxation turns nebivolol into a standout beta blocker right now.[39]

5. Target-Specific Drugs Minimizing Cardiovascular Side Effects

A main aim in adrenergic drug studies is cutting down issues like fast heartbeat, irregular rhythms, or high blood pressure. Lately, scientists have been looking into:

A. Receptor-Subtype Precision

Making medicines that target just one kind of receptor - like hitting β_2 without touching β_1 .

This stops the heart from being stimulated when working on the lungs or organs involved in metabolism.[40]

B. Tissue-Selective Delivery

Nanocarriers along with inhalation setups send meds straight to spots such as the lungs, cutting down body-wide spread.

C. Biased Agonism

Some newer medicines trigger helpful effects without causing damage by skipping bad reactions.

Folks might need meds to open airways but skip the racing heartbeat.

D. Combined Mechanisms

New agents mix adrenergic effects with extra perks - like fighting oxidative damage or triggering nitric oxide output.[41]

These upgrades boost how safe and helpful treatment can be - particularly for ongoing issues such as high blood pressure, COPD, or weak heart function

Advances in Cholinergic Drugs

Cholinergic medicines affect the body's rest-and-digest system by targeting acetylcholine spots in nerves. These spots come in two main kinds - muscarinic types M1 through M5, along with nicotinic ones. In the past ten years, progress has sped up because scientists now get how these receptors work, how cells talk to each other, and what goes wrong in illness. Today's medications aim at one target only, last longer, cause fewer problems, so stuff like too much drool, slow heartbeat, or belly issues happens less often.

This part checks out new updates on cholinergic drugs, while looking at what they mean for treatment.[42]

1. New Muscarinic Receptor (M1–M5) Selective Modulators

Muscarinic receptors show up across the brain, lungs, heart, bladder, glands, or the gut. Old cholinergic meds hit several receptor types at once - this usually led to side effects no one wanted. Lately, scientists have been working on compounds that act more precisely, zeroing in on just one kind of receptor.[43]

A. M1 boosters that work only on purpose

M1 receptors are key for thinking, also help with picking up new stuff or recalling things.

New M1 activators along with boosters target better thinking skills while skipping body side effects.[44]

Applications:

Alzheimer's disease

Age-related cognitive decline

Schizophrenia (improving thinking and behavior)[45]

Such agents keep M2 and M3 receptors from getting too active, so issues such as slow heart rate or heavy sweating happen less often.

B. M2 Smart Helpers

M2 receptors sit mostly in the heart. Researchers are checking fresh compounds that could help with:

Bradyarrhythmias

Certain kinds of fast heartbeat

Selective targeting avoids the breathing or stomach issues that often come with broad-acting muscarinic meds - instead, it focuses only on specific areas.[46]

C. M3 switch-tuned regulators

M3 receptors handle how muscles tighten in airways, gut, and urinary bladder - working through signals that shift with each area.

New M3 blockers give improved handling of:

Overactive bladder

Asthma and COPD

Gastrointestinal hypermotility

Most modern respiratory antimuscarinics (like tiotropium) work primarily through M3 selectivity.[47]

D. M4 or rather M5 controllers

Mostly seen in the brain, these types affect mood actions along with dopamine signals.

New picky switches could assist in handling:

Psychotic disorders

Addiction

Movement disorders[48]

Going after M4 plus M5 helps treat while skipping heartbeat changes or fluid release from glands.[49]

2. Long-Acting Antimuscarinics for Respiratory Diseases

Antimuscarinic meds play a key role in handling breathing issues such as asthma or COPD.

Recent advancements have focused on developing long-acting muscarinic antagonists (LAMAs) that provide 24-hour bronchodilation.[50]

Examples of Modern LAMAs:

Tiotropium

Aclidinium

Glycopyrronium

Umeclidinium

Advantages of Newer Agents

One dose each day makes it easier for patients to stick with treatment

Strong and sustained bronchodilation

Fewer sudden worsening episodes

Breathing stays stronger for longer when lungs are shielded more effectively

These medicines target M3 receptors in the airways, stopping muscles from tightening without affecting heart-related M2 receptors. As a result, they're safer and cause fewer issues with the heart.[51]

3. Cholinesterase Inhibitors for Neurodegenerative Disorders

Cholinesterase blockers stop acetylcholine from breaking down, so more stays active in nerve connections. Such drugs get used a lot for brain-related illnesses - Alzheimer's in particular - where the cells using acetylcholine take serious damage.[52]

Newer Advancements Include:

Rivastigmine skin patches that work nonstop

New versions of donepezil that work with one daily dose

Agents that work on cholinesterase as well as amyloid processes at the same time[53]

Therapeutic Benefits

Better recall with sharper thinking

Slowed disease progression

Better chats with people, also easier every-day tasks

New studies aim to create cholinesterase blockers that cause less stomach trouble - often seen with earlier versions - by using different chemical paths instead.[54]

4. Selective Nicotinic Receptor Agonists for Cognitive Enhancement

Nicotinic receptors are turning into key spots for boosting thinking, focus, and how we take in what we see or hear. Instead of using old-style nicotine meds, newer ones pick their targets better - so they skip the habit-forming side effects and don't lose strength over time.[55]

Examples & Uses

A4b2 nicotinic activators might help focus - looked at in ADHD research

α7 nicotine triggers to boost memory - looked at in Alzheimer's plus schizophrenia[56]

Major Benefits

Sharper attention plus better short-term recall
Better understanding along with quicker thinking
Better mood regulation
These updated agents tweak particular nicotinic receptor types while skipping excessive activation in body tissues - this cuts down side effects[57]

5. Emerging Drugs Targeting M4/M5 Receptors for Psychiatric Conditions

One fresh focus in choline-based meds targets M4 and M5 receptor types. Since these affect brain circuits tied to emotion, motivation, or mental breaks.[58]

M4 Targeted Therapies

Selective M4 agonists and PAMs may treat:
Schizophrenia
Bipolar disorder
Drug addiction
Anxiety disorders[59]

They tweak dopamine levels without direct action, so they're safer than old-school antipsychotics - those can lead to extra pounds or shaky movements.

M5 Targeted Therapies

M5 receptors aren't found everywhere, yet they help with:
Blood vessel tightness inside the head
Reward processing
Emotional behavior
M5 blockers might help cut cravings while also lifting mood issues - though results can vary. Still, early signs point to real benefits when used carefully.

Receptor Selectivity and Molecular Mechanisms

Receptor selectivity matters a lot in today's autonomic nervous system meds. Old ANS medicines hit several receptor kinds at once - helped sometimes, yet brought lots of unexpected issues. Thanks to progress in gene science, chemical shape studies, or digital simulation tools, now we can craft pills aimed only at certain receptor versions, turn on useful cell signals, while skipping damaging actions. Because of this precision, patients see better results when dealing with heart, lung, brain, or mental health problems. This section discusses the major scientific ideas behind selectivity and the modern molecular approaches used to develop safer and more precise autonomic drugs.[60]

1. Structure-Activity Relationship (SAR) Improvements

A drug's shape can change how it works in the body. When scientists figure out which parts click into certain receptors, medicines hit their target better.

A. Better sticking to cell receptors

Researchers today rely on 3D models of molecules to guess how medicines latch onto target sites in cells - using digital shapes to simulate real-world fits; this helps them see what sticks, what slips, why some compounds work while others don't.

This makes it easier to create molecules that stick tightly to just one type of receptor - yet skip the rest.

For example:

Changing parts of β 2 agonists might make them target lungs better

Tweaking ring structures in alpha-1 blockers might lower heart-related side effects[61]

B. Tweaking chemical groups

Even tiny tweaks - like tossing in hydrogen-bond helpers or polar bits - might shift how a medicine sticks to its target.

These adjustments influence:

Potency

Selectivity

Duration of action

Metabolism

The new SAR method helps scientists upgrade medicines in a planned way - instead of guessing.

C. Making medicines last longer

Changing how atoms stick together lets researchers design medicines that don't break down fast in the body, which means they last longer

Lasts a bit longer

Reduced dosing frequency

Still better results when treating patients

This matters a lot for breathing meds, such as slow-release β 2 activators.[62]

2. Biased Agonism and Allosteric Modulators

Old ideas said each receptor acted one set way once turned on. But now we know they can use different routes to send signals, while medicines might switch on just the helpful paths.

A. Biased Agonism

Biased agonism happens when a medicine turns on one cell signal but skips a different one.

This lets scientists create medicines that help treat illnesses while avoiding dangerous reactions.

Example:

Some beta-arrestin-focused compounds for adrenaline-linked cell sensors might:

Reduce inflammation

Offer gentle loosening of tight muscles

Keep the heart muscle from getting too much excitement

This kind of targeted signal is a big step up from old meds that affected everything.[63]

B. Allosteric Modulators

Allosteric modulators attach at a spot on the receptor - not the primary one, but another nearby location - hooking onto a separate area instead of the usual active zone.

They adjust how receptors work.

Types include:

PAMs (Positive Allosteric Modulators): enhance receptor response

NAMs (Negative Allosteric Modulators): reduce receptor response

Allosteric tweaks work well for muscarinic receptors M1 to M5 since their main binding spots look almost the same - so crafting precise traditional meds becomes a real challenge.

Hitting hidden spots on proteins helps today's meds work better without causing many unwanted reactions.

3. Genetic & Molecular Techniques in Drug Discovery

Genetic methods changed how we study ANS drugs, letting scientists test specific cells, mimic illnesses, or track receptors. While doing so, they opened new paths in research without relying on guesswork - just precise tweaks and real-time feedback shaped each breakthrough.

A. Gene knockout but also knock-in setups

With today's gene tools, researchers are able to remove certain receptor genes from creatures. At the same time, they can also add new ones where needed. These changes help study how receptors work in living bodies.

This helps identify:

The precise job of every receptor type

Predictable therapeutic effects

Potential risks or unwanted reactions

For example:

M3 receptor knockout mice have less airway tightening - this helps shape meds that target only M3 receptors for lung problems.

B. CRISPR-Based Techniques

CRISPR lets scientists tweak DNA with accuracy when exploring genetic functions

Receptor structure

Signaling pathways

Disease-associated mutations

This quickens finding drug targets while supporting tailored treatments.

C. Receptor Crystallography

Using modern imaging tools like X-ray crystallography or Cryo-EM, researchers are able to see receptor shapes clearly.

This understanding helps them create medicines fitting receptors just right - using shape clues from research.

Figuring out receptors with crystal shapes has sped up progress in -

Ultra-selective β 2 agonists

Slick alpha-2 triggers

Selective muscarinic modulators (M1, M4, M5) [64]

4. Advances in Drug-Receptor Interaction Analysis

Fancy computer tools along with lab methods let scientists guess what medicines do inside us

A. Molecular Docking

This approach guesses how tightly a medicine sticks to its target, while also showing what kind of connections form during attachment.

It can sort through tons of molecules in no time.

B. Pharmacophore Modeling

A pharmacophore's the key setup of traits in space that a molecule needs to work.

Researchers rely on pharmacophore patterns to:

Create fresh layout changes using different shapes or forms

Improve selectivity, Reduce toxicity

C. Systems Pharmacology

Rather than looking at receptors alone, systems pharmacology checks how meds influence cell webs across body tissues.

This way makes it easier to guess what might happen next, so you don't get hit by surprises.[65]

Therapeutic Applications of Modern ANS Drugs

Nowadays, medications aimed at the body's automatic control network have changed how we handle long-term health issues. Since these treatments influence nerve signals in key organs - like the heart, lungs, gut, head, and bladder - they can bring real help if applied right. Better targeting plus smarter ways

to deliver pills or shots means doctors get stronger results with fewer side problems. Here's a look at where these modern nerve-affecting drugs make the biggest difference.[66]

1. Cardiovascular Disorders

Adrenergic meds are key for treating heart issues since the body's stress response controls how fast the heart beats, blood force in vessels, also how tight those vessels get.

Selective β 1-blockers - like nebivolol or bisoprolol - are often prescribed for high blood pressure, angina, and ongoing heart issues. Because they mainly target heart-specific β 1 receptors, breathing problems are less likely compared to non-selective types. This makes them a better fit for people who have asthma or COPD. Nebivolol stands out since it boosts nitric oxide levels, which gently opens up blood vessels while disturbing metabolism way less.

Still, meds like prazosin or updated ones such as silodosin treat high blood pressure along with enlarged prostate issues. They work by stopping α 1 signals, which helps loosen tight muscles in blood vessels and the bladder path.

In tough situations, drugs like norepinephrine or phenylephrine help keep blood pressure up during septic or allergic shock - triggering α receptors while boosting vessel tightness. [67]

2. Respiratory Diseases (Asthma & COPD)

Respiratory treatment got a big boost from slow-release adrenaline-like medicines - also helped by steady-acting nerve blockers that calm airway spasms.

β 2-agonists are still top choice for asthma and COPD since they loosen airway muscles. Drugs like indacaterol or vilanterol last a full day, so breathing stays easier. That helps people stick to their treatment without hassle.

Meanwhile, the parasympathetic side helps tighten airways too. Because of that, meds like tiotropium or glycopyrronium were made to last longer. They shut down M3 spots in lung tissue, stopping narrowed breathing tubes along with excess mucus flow.

Today's care usually uses LABAs with LAMAs, working together to ease breathing - one blocks tightness signals, while the other helps open lung passages.[68]

Adverse Effects & Safety Challenges

Even though today's ANS meds work better, they aren't always safe. A typical problem? Drugs hitting wrong receptors - when medicine attaches where it shouldn't. That might lead to side effects such as fast heartbeat, shaky hands, less saliva, or feeling lightheaded.

One issue? The body can get used to a drug over time. As that happens, the cells don't react as strongly. So, you might need more of it to get the same effect. That's what often occurs with beta-2 inhalers when treating asthma.

Using medicines that affect the brain can lead to reliance - this is particularly true for α 2 agonists.[69]

Medicines mixing together might cause problems - especially older folks taking several at once. When they affect blood pressure or heartbeat in similar ways, trouble can start. Some impact brain signals too, which adds risk without warning.[70]

Current Research Trends & Future Directions

Scientists are starting to focus more on custom treatments. So, they use gene tests to see who benefits most from certain meds.

Nanotech's now getting tested to boost how meds are delivered - hitting exact spots like organs or key receptors on their own.[71]

Some newer treatments aim to hit two targets at once - tweaking adrenaline-related pathways while also adjusting acetylcholine signals, which may lead to smoother symptom control. [72]

AI is becoming more important in finding new medicines. Because of smart algorithms, scientists get faster results when testing how drugs work. These tools help tweak chemical shapes so they fit better. As a result, creating treatments takes less time overall.[73]

Literature Review

Over twenty years, studies into how medicines affect the body's automatic functions have grown fast - thanks to better tools for spotting cell changes, identifying targets, stronger methods for getting drugs where they're needed. This paper pulls together key results from older work that helped build today's knowledge about treatments tied to adrenaline-like and acetylcholine-related systems.[74]

Back in 1948, Ahlquist's early look at adrenergic receptors set things off - introducing the idea of α and β types. That split opened doors to drugs that could target one without messing up the other. His findings basically kicked off today's tailored treatments. Later on, Lands and his team dug deeper, splitting β receptors even more into β_1 and β_2 kinds. This shift made it possible to design meds like specific β -blockers or airway relaxers. As time went by, loads of research showed pills such as bisoprolol or nebivolol cut heart-related deaths better - and bothered lungs less. Because of this edge, they've become go-to choices across clinics.[75]

In respiratory medicine, several papers found long-lasting beta-2 drugs work well. Studies on indacaterol along with vilanterol revealed these very-long-acting options open airways for a full day, boost breathing ability, while cutting down symptom swings in people with COPD. Work also pointed out gains when pairing those beta stimulants with slow-blocking agents like tiotropium. Using both types together was shown to ease airflow blockage better than using one type by itself, making this mix more valuable in handling ongoing lung issues.[76]

Cholinergic studies have expanded a lot lately. At first, work on M1 to M5 receptors showed they each do different jobs in the body - this helped shape better-targeted meds. Take darifenacin - it hits just the M3 type, easing bladder issues while skipping brain fog most older drugs cause. Drugs like donepezil or rivastigmine slow memory loss in mild Alzheimer's, helping people manage everyday tasks. Still, newer trials point out these don't last long enough and can bring risks we'd rather avoid.[77]

Recent studies looked at a drug called guanfacine, aimed at the brain, helping people with ADHD focus better while managing impulsive actions. Unlike earlier meds, this one tends to cause less drowsiness and fewer heart-related side effects - so it's often seen as a more reliable option over time.[78]

A fresh wave in current studies focuses on skewed activation and indirect receptor control. Work from Kenakin's team shows medicines hitting different spots on receptors - or turning on only specific cell signals - might treat conditions minus the usual downsides. That shift sparked fresh routes for crafting gentler autonomic drugs.[79]

Results and Discussion

The latest studies on ANS meds point to real gains in accuracy, lower risks, and sharper treatment focus. Newer adrenaline- and acetylcholine-based medicines now hit specific receptors better - this cuts unwanted reactions while helping patients get stronger results for various health issues. Looking at how these drugs are evolving brings up a few key takeaways.

One big win? Better targeting of receptors by modern adrenergic and cholinergic meds. Research keeps showing drugs like nebivolol - hitting only β_1 - and guanfacine, which targets just α_2 , are safer than old broad-acting ones. That's because focusing on one receptor type avoids messing up unrelated body parts. Take new β_1 blockers - they're less likely to tighten airways. Meanwhile, antimuscarinics that lock onto only M3 receptors tend to fog the brain way less than their scatter-shot cousins.

Another thing - studies clearly show long-lasting meds work well for ongoing health issues. For example, drugs such as indacaterol keep lung performance steady through the day while cutting down symptom swings from morning to night; this also makes it easier for people to stick with their treatment plans. In similar ways, LAMAs help those dealing with COPD or bladder control problems by offering lasting relief. All of that adds up to fewer doses each day, which means better comfort for patients and less pressure on medical systems.

A different big result was how well mix treatments worked. Using LABA together with LAMA often led to stronger airway opening, fewer flare-ups, also better results for people versus one-drug treatment. In heart care, similar gains came when β -blockers were paired with blood-vessel relaxers - like how nebivolol boosts nitric oxide. Overall, hitting several parts of a sickness at once, either by combo meds or broad-acting pills, seems more effective than targeting just one piece.

Conclusion

The autonomic nervous system handles key bodily processes, yet treatments hitting its adrenergic or cholinergic routes are still crucial today. Since then, knowledge on receptors has grown, alongside sharper meds and better ways to deliver them. These steps forward mean ANS treatment now can be safer, work better, while fitting individuals more closely.

The big takeaway? Receptor targeting changed how we use meds in the autonomic system. Old-school drugs hit several receptor types at once, which often caused messy side effects across the body. Thanks to better understanding of how these receptors are built and work, modern treatments - like those affecting adrenaline or acetylcholine systems - are designed to latch onto just one kind, say β 1, β 2, α 2, or M3. By narrowing their focus, they cause fewer problems while doing more good where it counts. That's why heart medications now lean heavily on β 1-specific blockers, and drugs tuned to M3 help people with overactive bladders or breathing issues like COPD.

Another key takeaway? Long-lasting meds are becoming a bigger deal. For ongoing issues like asthma, high blood pressure, COPD, or Alzheimer's, steady treatment matters - no spikes or dips. Today's nerve system drugs - like indacaterol or tiotropium - stay active longer, so people stick to their plans easier. Because they don't need constant dosing, these options fit better into daily life, boosting results over time. The review finds combo treatments work better when dealing with issues tied to several body systems at once. Success seen with LABAs along with LAMAs for COPD, or β -blockers that relax blood vessels in high pressure, shows hitting multiple targets helps manage illness more fully. That shift suggests drugs tackling two - or even three - nervous system actions might soon be the norm.

Latest treatments targeting the nervous system are helping a lot with issues like ADHD and memory loss. Drugs such as guanfacine, along with medicines that boost brain chemicals tied to thinking, show how fine-tuning nerve signals improves focus and behavior. Still, problems like unwanted reactions, reduced effectiveness over time, or mixed results in people point to lingering challenges - better ways to deliver these drugs plus compounds that act more precisely on brain cells might be needed.

One big takeaway? New molecular tricks - like allosteric modulators or biased agonists - could really change things. These smarter methods tweak how receptors work without going overboard. They turn on helpful signals, but skip the ones that cause problems. So, fewer downsides, better results

gs let us treat things more safely, also in a cleaner way. That's moving past old-school meds, instead getting how receptors really work.

References

1. Brodal, A. (2004). The Central Nervous System: Structure and Function. Oxford University Press.
2. Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., LaMantia, A. S., McNamara, J. O., & White, L. E. (Eds.). (2018). Neuroscience (6th ed.). Sinauer Associates.
3. Gibbons, C. H. (2007). Sympathetic nervous system testing. *Handbook of Clinical Neurology*, 83, 227-241.

4. McCorry, L. K. (2007). Physiology of the Autonomic Nervous System. *American Journal of Pharmaceutical Education*, 71(4), 78.
5. Cannon, W. B. (1932). *The Wisdom of the Body*. W.W. Norton & Company.
6. Tank, D. W., & Lee, D. (2015). Neural control of the cardiovascular system. *Cold Spring Harbor Perspectives in Medicine*, 5(7), a017571.
7. Burnstock, G. (2007). Physiology and pathophysiology of purinergic neurotransmission. *Physiological Reviews*, 87(2), 659-797.
8. Young, J. B., & Landsberg, L. (2010). Catecholamines and the adrenal medulla. In S. Melmed, K. S. Polonsky, P. R. Larsen, & H. M. Kronenberg (Eds.), *Williams Textbook of Endocrinology* (12th ed., pp. 582-656). Saunders.
9. Romanovsky, A. A. (2014). The thermoregulation system and the defense response to systemic inflammation. *Pharmacology & Therapeutics*, 141(1), 1-19.
10. Lowenstein, W. R. (2004). *The Touchstone of Life: Molecular Information, Cell Communication, and the Foundations of Life*. Oxford University Press.
11. Zigmond, M. J., Bloom, F. E., Landis, S. C., Roberts, J. L., & Squire, L. R. (Eds.). (1999). *Fundamental Neuroscience*. Academic Press.
12. Taylor, P. (2001). Anticholinesterase agents. In J. G. Hardman, L. E. Limbird, & A. G. Gilman (Eds.), *Goodman & Gilman's The Pharmacological Basis of Therapeutics* (10th ed., pp. 175-191). McGraw-Hill.
13. Kopin, I. J. (1995). Catecholamine metabolism: A brief review. *Neuroscience & Biobehavioral Reviews*, 19(3), 473-479.
14. Waxman, S. G. (2020). *Clinical Neuroanatomy* (29th ed.). McGraw-Hill Education.
15. Benarroch, E. E. (2007). The central autonomic network: functional organization, dysfunction, and perspective. *Mayo Clinic Proceedings*, 82(9), 1109-1121.
16. Rang, H. P., Dale, M. M., Ritter, J. M., Flower, R. J. & Henderson, G. (2020). *Rang and Dale's Pharmacology* (9th ed.). Elsevier.
17. Goodman, L. S., & Gilman, A. (1941). *The Pharmacological Basis of Therapeutics*. The Macmillan Company.
18. Cooper, J. R., Bloom, F. E. & Roth, R. H. (2003), *The Biochemical Basis of Neuropharmacology* (8th ed.). Oxford University Press.
19. Wess, J. (2004). Muscarinic acetylcholine receptor knockout mice: novel insights into receptor function. *Nature Reviews Neuroscience*, 5(9), 769-781.
20. Trendelenburg, U. (1991), The metabolizing enzymes monoamine oxidase and catechol-O-methyltransferase, *Circulation Research*, 68(5), 1395-1415.
21. Brunton, L. L., Knollmann, B. C., & Hilal-Dandan, R. (Eds.). (2018). *Goodman & Gilman's The Pharmacological Basis of Therapeutics* (13th ed.). McGraw-Hill Education,
22. Bylund, D. B. (1992). Molecular pharmacology of 1- and 2-adrenergic receptors. *The Journal of Pharmacology and Experimental Therapeutics*, 263(1), 1-13.
23. Hieble, J. P., & Bondinell, W. E. (1995). The 1-adrenoceptor. *Current Opinion in Chemical Biology*, 2(5), 373-380.
24. Baker, J. G. (2005). The -adrenoceptor. *Current Opinion in Pharmacology*, 5(2), 159-164.
25. Caulfield, M. P., & Birdsall, N. J. (1998). International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. *Pharmacological Reviews*, 50(2), 279-290.
26. Zouridakis, M., & Zappia, M. (2003). Nicotinic acetylcholine receptors: Molecular structure, function and clinical relevance. *Journal of Chemical Neuroanatomy*, 25(1-2), 11-23
27. Wess, J. (2004). Muscarinic acetylcholine receptor knockout mice: novel insights into receptor function. *Nature Reviews Neuroscience*, 5(9), 769-781.
28. Ganong, W. F. (2016). *Review of Medical Physiology* (25th ed.). McGraw-Hill Education.
29. Ruffolo, R. R., Jr., Bond, R. A., & Feuerstein, G. Z. (1995). Adrenoceptors as a target for cardiovascular drug development. *Pharmacology & Therapeutics*, 67(1), 1-28.

30. Wess, J. (2004). Muscarinic acetylcholine receptor knockout mice: novel insights into receptor function. *Nature Reviews Neuroscience*, 5(9), 769-781

31. Katzung, B. G., Masters, S. B., & Trevor, A. J (2021). *Basic & Clinical Pharmacology* (15th ed.). McGraw-Hill Education.

32. Task Force for Diagnosis and Treatment of Acute and Chronic Heart Failure (2016). ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. *European Heart Journal* 37(27), 2129-2200.

33. Ruffolo, R. R., Jr., Bond, R. A., & Feuerstein, G. Z. (1995). Adrenoceptors as a target for cardiovascular drug development. *Pharmacology & Therapeutics*, 67(1), 1-28

34. Roehrborn, C. G., & Schwinn, D. A. (2004). « 1-adrenergic receptors and their inhibitors in lower urinary tract symptoms and benign prostatic hyperplasia. *The Journal of Urology*, 171(3), 1029-1035.

35. Gertler, A. (2019). 2-Adrenergic agonists in psychiatric disorders. *CNS Spectrums*, 24(2), 195-207.

36. Baker, J. G. (2005). The adrenoceptor. *Current Opinion in Pharmacology*, 5(2), 159-164.

37. Cazzola, M., Page, C. P., Calzetta, L., & Matera, M. G. (2013). /2-agonists in respiratory medicine. *British Journal of Pharmacology*, 170(7). 1185-1195

38. Matera, M. G., Rogliani, P., Cazzola, M., & Calzetta, L. (2017). Ultra-long-acting 2-agonists (ULABAs) in the treatment of COPD. *Expert Review of Respiratory Medicine*, 11(10), 823-832.

39. Gertler, A. (2019). 2-Adrenergic agonists in psychiatric disorders. *CNS Spectrums*, 24(2), 195-207.

40. Löwe, B., Kretzschmar, P., & Kuhlmann, O. (2007). Nebivolol: a 1-selective adrenoceptor antagonist that has vasodilator properties. *Vascular Health and Risk Management*, 3(6), 803-810.

41. Bond, R. A., & Ruffolo, R. R., Jr. (1995). The -adrenoceptor. *Current Opinion in Cardiology*, 10(2), 177-183.

42. Newman, S. P., & Ganderton, D. (2016). Drug delivery to the lungs: challenges and opportunities. *Therapeutic Delivery*, 7(12), 779-787.

43. Matera, M. G., Rogliani, P., Cazzola, M., & Calzetta, L. (2017). Ultra-long-acting 12-agonists (ULABAs) in the treatment of COPD. *Expert Review of Respiratory Medicine*, 11(10), 823-832.

44. Violin, J. D. (2014). Biased agonism: an emerging concept in GPCR drug discovery. *Trends in Pharmacological Sciences*, 35(6), 308-316.

45. Task Force for Diagnosis and Treatment of Acute and Chronic Heart Failure (2016). ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. *European Heart Journal* 37(27), 2129-2200.

46. Wess, J. (2004). Muscarinic acetylcholine receptor knockout mice: novel insights into receptor function. *Nature Reviews Neuroscience* 5(9), 769-781

47. Wess, J, Manin, A., & Briand, L. (2017). Muscarinic receptor agonists and antagonists: from molecular mechanisms to disease therapy. *Annual Review of Pharmacology and Toxicology*, 57, 423-449.

48. Newhouse, P. A., Kellar, K. J. & Kaskie, J. R. (2011). Nicotinic alpha-7 receptors and the regulation of cognitive function, *international Journal of Neuropsychopharmacology*, 14(7), 939-951

49. Taylor, P. (2001). Anticholinesterase agents. In J. G. Hardman, L. E. Limbird, & A. G. Gilman (Eds.), *Goodman & Gilman's The Pharmacological Basis of Therapeutics* (10th ed., pp. 175-191). McGraw-Hill

50. Cazzola, M., Page, C. P., Calzetta, L., & Matera, M. G. (2013). /2-agonists in respiratory medicine. *British Journal of Pharmacology*, 170(7), 1185-1195,

51. Wess, J. Manin, A., & Briand, L. (2017). Muscarinic receptor agonists and antagonists: from molecular mechanisms to disease therapy. *Annual Review of Pharmacology and Toxicology*, 57, 423-449

52. Matera, M. G. Rogliani, P., Cazzola, M., & Calzetta, L. (2017). Ultra-long-acting 12-agonists (ULABAs) in the treatment of COPD. *Expert Review of Respiratory Medicine*, 11(10), 823-832

53. Nordberg, A. (2001). Cholinesterase inhibitors in the treatment of Alzheimer's disease. *Annals of the New York Academy of Sciences*, 929, 21-29

54. Newhouse, P. A, Kellar, K. J., & Kaskie, J. R. (2011). Nicotinic alpha-7 receptors and the regulation of cognitive function, *International Journal of Neuropsychopharmacology*, 14(7), 939-951

55. Wess, J., Manin, A., & Briand, L. (2017). Muscarinic receptor agonists and antagonists: from molecular mechanisms to disease therapy. *Annual Review of Pharmacology and Toxicology*, 57, 423-449.

56. Wess, J., Manin, A., & Briand, L. (2017). Muscarinic receptor agonists and antagonists: from molecular mechanisms to disease therapy. *Annual Review of Pharmacology and Toxicology*, 57, 423-449.

57. Wess, J., Manin, A., & Briand, L. (2017). Muscarinic receptor agonists and antagonists: from molecular mechanisms to disease therapy. *Annual Review of Pharmacology and Toxicology*, 57, 423-449.

58. Kenakin, T. P. (2019). The path to bespoke pharmacology. *Trends in Pharmacological Sciences*, 40(7), 448-456.

59. Ruffalo, R. R., Jr., Bond, R. A., & Feuerstein, G. Z (1995). Adrenoceptors as a target for cardiovascular drug development, *Pharmacology & Therapeutics*, 67(1), 1-28.

60. Wess, J. (2004). Muscarinic acetylcholine receptor knockout mice: novel insights into receptor function. *Nature Reviews Neuroscience*, 5(9), 769-781.

61. Wess, J. (2004). Muscarinic acetylcholine receptor knockout mice: novel insights into receptor function. *Nature Reviews Neuroscience*, 5(9), 769-781.

62. Matera, M. G., Rogliani, P., Cazzola, M., & Calzetta, L. (2017). Ultra-long-acting 2-agonists (ULABAs) in the treatment of COPD. *Expert Review of Respiratory Medicine*, 11(10), 823-832.

63. Kenakin, T. P. (2019). The path to bespoke pharmacology. *Trends in Pharmacological Sciences*, 40(7), 448-456.

64. Violin, J. D. (2014). Biased agonism: an emerging concept in GPCR drug discovery. *Trends in Pharmacological Sciences*, 35(6), 308-316.

65. Christopoulos, A. (2014). Allosteric modulation of G protein-coupled receptors in drug discovery. *Nature Reviews Drug Discovery*, 13(12), 922-943.

66. Kenakin, T. P. (2019). The path to bespoke pharmacology. *Trends in Pharmacological Sciences*, 40(7), 448-456.

67. Wess, J. (2004). Muscarinic acetylcholine receptor knockout mice: novel insights into receptor function. *Nature Reviews Neuroscience*, 5(9), 769-781.

68. Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. *Science*, 346(6213), 1258096.

69. Katritch, V., Cherezov, V., & Stevens, R. C. (2010). Structure-function of the G protein-coupled receptor superfamily. *Annual Review of Pharmacology and Toxicology*, 50, 551-579.

70. Kenakin, T. P. (2019). The path to bespoke pharmacology. *Trends in Pharmacological Sciences*, 40(7), 448-456.

71. Doman, T. N., Luengo, Y., & Hartenfeller, M. (2019). Molecular docking and virtual screening. *Trends in Pharmacological Sciences*, 40(7), 448-456.

72. Wess, J. (2004). Muscarinic acetylcholine receptor knockout mice: novel insights into receptor function. *Nature Reviews Neuroscience*, 5(9), 769-781.

73. Klabunde, T. (2007). Systems pharmacology: bridging systems biology and personalized medicine. *Expert Opinion on Drug Discovery*, 2(11), 1599-1605.

74. Katzung, B. G., Masters, S. B., & Trevor, A. J. (2021). *Basic & Clinical Pharmacology* (15th ed.). McGraw-Hill Education.

75. Task Force for Diagnosis and Treatment of Acute and Chronic Heart Failure (2016). ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. *European Heart Journal*, 37(27), 2129-2200.

76. Global Initiative for Chronic Obstructive Lung Disease (GOLD). (2024). Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease.

77. Brunton, L. L., Knollmann, B. C., & Hilal-Dandan, R. (Eds.). (2018). *Goodman & Gilman's The Pharmacological Basis of Therapeutics* (13th ed.). McGraw-Hill Education.

78. Kenakin, T. P. (2019). The path to bespoke pharmacology. *Trends in Pharmacological Sciences*, 40(7), 448-456.

79. Kopin, I. J. (1995). Catecholamine metabolism: A brief review. *Neuroscience & Biobehavioral Reviews*, 19(3), 473-479.

