

Apicoectomy – A Surgical Review

AUTHORS Dr.Kanimozhi Senguttuvan MDS,FI00[Oral Oncology]¹ , Dr.Nafisa²,Dr.Lakshana³ , Dr.Pradeep Christopher Professor [Head of the department]⁴. Dr.Thenaruvi Marimuthu MDS ,FMC,MCHT⁵

ABSTRACT

Apicoectomy, also known as root-end resection, is a surgical endodontic procedure performed to remove the apex of a tooth's root and the surrounding periapical infected tissue when conventional root canal therapy has failed or is not feasible[1]. It serves as a conservative approach to preserve natural dentition by eliminating persistent periapical pathology and promoting peri radicular healing. The success of an apicoectomy depends on precise case selection, thorough diagnosis, advanced surgical techniques, and the use of biocompatible root-end filling materials. Recent advancements, including the use of magnification with dental operating microscopes, ultrasonic retrograde instrumentation, and bioactive materials such as mineral trioxide aggregate (MTA) and Bio dentine, have significantly improved treatment outcomes. This review discusses the indications, surgical procedures, materials, success rates, and future trends associated with apicoectomy, emphasizing its importance in modern endodontic microsurgery.

KEYWORDS: Apicoectomy, Mineral trioxide aggregate(MTA), root end surgery, biodentine, Endodontic surgery, healing ,root canal

INTRODUCTION

Endodontic therapy aims to eliminate infection from the root canal system and promote healing of periapical tissues. Although conventional root canal treatment and retreatment are highly successful, certain cases fail to resolve due to persistent periapical infection, anatomical complexities, or procedural limitations. In such situations, surgical endodontic intervention becomes necessary to preserve the affected tooth.[2]

This review aims to provide a comprehensive overview of apicoectomy, focusing on its indications, surgical techniques, materials used, prognosis, and the recent developments that have enhanced its clinical outcomes in modern endodontic practice.

HISTORICAL BACKGROUND

The concept of surgical intervention at the root apex has existed for more than a century and has evolved significantly with advancements in endodontic science and technology. The earliest records of apical surgery date back to the late 19th century, when the procedure was primarily performed to remove chronic periapical infections that failed to heal after root canal therapy. At that time, the technique was crude, often involving excessive bone removal and limited understanding of periapical healing.

In 1907, Partsch introduced the concept of curettage of periapical lesions and *root-end resection*, marking one of the first documented apical surgical procedures. Later, in the 1920s and 1930s, improvements in radiography enhanced diagnosis and treatment planning for periapical pathologies. During this period, the procedure began to be recognized as an adjunct to endodontic therapy rather than a last resort.

By the 1950s and 1960s, apicoectomy techniques became more standardized, with the introduction of root-end cavity preparations and retrograde filling materials such as amalgam, zinc oxide eugenol, and EBA cement. However, limitations in visualization and materials often led to variable success rates.

The 1990s marked a major turning point with the advent of endodontic microsurgery, incorporating the use of dental operating microscopes and microsurgical instruments. This era also saw the introduction of ultrasonic root-end preparation and biocompatible materials like Mineral Trioxide Aggregate (MTA), which significantly improved sealing ability and tissue healing.[4]

In recent years, the integration of cone-beam computed tomography (CBCT), laser-assisted surgery, and bioactive regenerative materials has further refined apicoectomy into a minimally invasive, predictable, and highly successful procedure.

INDICATIONS

- **Persistent Periapical Infection**

Chronic periapical lesions, such as apical periodontitis or cystic formations, that fail to resolve following endodontic therapy.

- **Blocked or Inaccessible Root Canals**

When canal access is obstructed due to calcification, fractured instruments, posts, or other impediments that restrict adequate cleaning and shaping.

- **Failure of Nonsurgical Retreatment**

Continued pain, swelling, or radiographic evidence of infection even after root canal retreatment

- **Apical Perforations or Root-End Fractures**

Surgically accessible and repairable perforations or fractures located at the root apex.

- **Overfilled or Underfilled Canals**

When excessive or insufficient root filling materials compromise periapical healing, necessitating apical correction.[5]

- **Unexplained Persistent Symptoms**

Cases where patients report tenderness or discomfort in a previously treated tooth, despite normal radiographic findings, requiring surgical exploration.

- **Complex Root Anatomy**

Anatomical variations such as severely curved, blocked, or accessory canals that prevent effective orthograde treatment.

- **Diagnostic or Biopsy Purposes**

When excision and histopathological examination of periapical tissue are required to confirm diagnosis.

CONTRAINdications

- **Compromised Periodontal Support**

Teeth with significant bone loss or high mobility are poor candidates for surgical management.

- **Extensive Structural Damage**

When there is inadequate remaining tooth structure to support a definitive restoration.

- **Vertical Root Fracture**

Complete fractures extending along the root surface make the tooth non-restorable.

- Difficult Surgical Access**

Cases where the tooth apex lies close to vital anatomical structures such as the mandibular canal, maxillary sinus, or mental foramen.

- Uncontrolled Medical Conditions**

Patients with systemic diseases like uncontrolled diabetes, hypertension, bleeding disorders, or immunocompromised states should not undergo the procedure.

- Poor Oral Hygiene and Compliance**

Individuals unable to maintain oral hygiene or adhere to postoperative care instructions.

- Better Alternative Treatments Available**

When extraction followed by implant placement or prosthetic replacement offers a more predictable and long-term solution.[10]

Anatomical Considerations for Apicoectomy

A sound understanding of the surrounding anatomical structures is essential for performing an apicoectomy safely and effectively. Proper knowledge helps avoid injury to vital areas and ensures complete removal of pathological tissue.

Maxillary Region

In the anterior maxilla, the root apices of incisors and canines lie close to the nasal floor and canine fossa, requiring caution to prevent perforation. In the posterior maxilla, the premolar and molar apices are often near the maxillary sinus, increasing the risk of sinus perforation. Preoperative CBCT imaging is recommended to assess sinus proximity.

Mandibular Region

In the anterior mandible, the apices are near the labial cortical plate and mental symphysis, while in the premolar area, care must be taken to protect the mental foramen and mental nerve to prevent postoperative paraesthesia. In the posterior mandible, the inferior alveolar canal runs close to molar roots, posing a risk of nerve injury if not properly evaluated.[11]

Bone and Root Considerations

The thickness of the buccal cortical bone influences access and visibility. Thinner bone in anterior regions allows easier entry, whereas thicker posterior bone may require greater osteotomy. Root curvature and inclination should also be assessed to minimize unnecessary bone removal.

Soft Tissue Considerations

Flap design should respect muscle attachments, frena, and mucogingival lines to ensure adequate exposure and tension-free closure during healing.

SURGICAL TECHNIQUE

1. Administration of Local Anaesthesia

Adequate local anaesthesia is administered to achieve complete analgesia and haemostasis. A vasoconstrictor-containing anaesthetic is preferred to minimize bleeding and enhance visibility in the surgical field.

2. Flap Design and Reflection

A mucoperiosteal flap is designed to provide sufficient access and visibility to the root apex and surrounding bone. Common flap designs include triangular, rectangular, or submarginal (Ochsenbein-Luebke) flaps. The flap is gently reflected using a periosteal elevator, taking care not to tear the tissue.

3. Osteotomy (Bone Removal)

A small window is created in the alveolar bone over the root apex using a low-speed surgical handpiece with copious saline irrigation to prevent overheating. The size of the osteotomy is kept minimal to preserve bone structure.

4. Root-End Resection (Apical Resection)

Approximately 2–3 mm of the root apex is resected using a fissure bur or microsurgical tip at a 0–10° bevel angle to remove apical delta branches and reduce leakage pathways. This step eliminates the infected or non-sealed portion of the root.

5. Root-End Cavity Preparation

A 3-mm deep retrograde cavity is prepared along the long axis of the canal using ultrasonic tips under magnification. The cavity should be in centre and parallel to the canal to ensure a proper seal.

6. Root-End Filling

The prepared cavity is filled with a biocompatible root-end material such as Mineral Trioxide Aggregate (MTA), Biodentine, or IRM. These materials promote sealing and periapical healing by preventing microleakage.

7. Management of the Periapical Lesion

All pathological tissue from the periapical area is curetted and sent for histopathological examination if necessary. The bone cavity is irrigated with sterile saline to remove debris.

8. Flap Repositioning and Suturing

After haemostasis, the flap is repositioned carefully and sutured using resorbable or non-resorbable sutures. The tissue edges are approximated without tension to facilitate healing.

9. Postoperative Care

A sterile dressing may be applied. The patient is advised on postoperative instructions, including medication, cold compress application, and maintaining oral hygiene. Sutures are usually removed after 5–7 days.[11]

MATERIAL USED

The selection of appropriate materials is critical for achieving successful outcomes in apicoectomy, as they ensure proper sealing, biocompatibility, and promote periapical tissue healing. Commonly used materials include:

- **Mineral Trioxide Aggregate (MTA)**
 - Highly biocompatible and bioactive
 - Provides an excellent seal at the root end and encourages cementum formation
 - Widely regarded as the standard material for retrograde fillings

- **Biodentine**
 - A calcium silicate-based material
 - Sets faster than MTA and offers good sealing properties
 - Supports regeneration of periapical tissues
- **Intermediate Restorative Material (IRM)**
 - Zinc oxide-eugenol-based cement
 - Provides a reliable temporary or permanent seal
 - Easier to handle but less biocompatible compared to MTA or Biodentine
- **Super-EBA (Ethoxybenzoic Acid Cement)**
 - Offers good sealing ability and mechanical strength
 - Less frequently used today due to the advantages of MTA and Biodentine
- **Amalgam**
 - Traditional root-end filling material
 - Rarely used now because of concerns regarding microleakage and biocompatibility[8]

RECENT ADVANCES

- **Dental Operating Microscope (DOM)**
 - Provides magnification and better illumination
 - Improves visualization of root-end anatomy and accessory canals
- **Ultrasonic Instruments**
 - Allow for precise preparation of the root-end cavity
 - Minimize unnecessary bone removal and preserve tooth structure
- **Cone-Beam Computed Tomography (CBCT)**
 - Offers 3D imaging of root anatomy and periapical lesions
 - Aids in accurate treatment planning and risk assessment
- **Laser-Assisted Surgery**
 - Reduces bleeding, enhances sterilization, and promotes healing
 - Offers a minimally invasive approach in selected cases[12]
- **Bioactive and Regenerative Materials**
 - Materials such as MTA and Biodentine support tissue regeneration
 - Promote periapical healing and deposition of new cementum
- **Minimally Invasive Techniques**
 - Smaller osteotomies and flap designs reduce trauma
 - Lead to faster recovery and less postoperative discomfort

POST OPERATIVE CARE AND HEALING

Immediate Care

- Apply gentle pressure with gauze if there is minor bleeding.
- Take prescribed pain relief or anti-inflammatory medicine to reduce discomfort.
- Use cold packs on the face for the first day to control swelling.

Oral Hygiene

- Keep the mouth clean, but avoid brushing the surgery area for a few days.
- Use antiseptic mouthwash if recommended to prevent infection.

Diet and Eating

- Eat soft foods for the first few days to avoid stressing the operated tooth.
- Avoid hot, hard, or sticky foods that can disturb the healing site.

Sutures and Follow-Up

- Sutures are usually removed after 5–7 days.
- Regular follow-up visits are important to check healing and detect any problems early.

Healing Process

- The gum tissue usually heals in one to two weeks.[9]
- Bone and tissue around the root may take a few months to fully regenerate.
- Proper sealing of the root-end helps the bone and tissues heal effectively.

Avoiding Problems

- Follow instructions carefully to reduce risks of infection, pain, or swelling.
- Contact your dentist if there is unusual pain, pus, or swelling that lasts longer than expected

COMPLICATIONS AND MANAGEMENT

Apicoectomy is generally a safe procedure, but like any surgery, it can sometimes lead to issues. Understanding these complications and how to manage them helps ensure proper recovery.

1. Pain and Swelling

- Some discomfort and swelling are normal after surgery.
- **Management:** Use prescribed painkillers and apply cold packs on the face for the first day. Symptoms usually decrease within a few days.

2. Infection

- Infection can develop if bacteria reach the surgical site.
- **Management:** Maintain oral hygiene, use recommended antiseptic rinses, and take antibiotics if prescribed.

3. Bleeding

- Minor bleeding may occur immediately after surgery.
- **Management:** Apply gentle pressure with gauze. If bleeding persists, contact your dentist.

4. Nerve Effects

- Sometimes nerves near the surgical area can be irritated, causing temporary numbness or tingling.
- **Management:** Most cases resolve naturally over time. Careful surgical planning can reduce this risk.

5. Delayed Healing

- Occasionally, bone or soft tissue may take longer to heal, or the infection may persist.
- **Management:** Follow-up appointments with X-rays are important. Additional treatment may be needed in some cases.

6. Flap or Tissue Problems

- If the gum flap is not handled carefully, it can tear or heal slowly.
- **Management:** Proper flap design and gentle handling of tissues help prevent these issues.

7. Sinus Complications (Upper Jaw)

- In upper molars, the surgery may accidentally open the maxillary sinus.
- **Management:** Avoid excessive bone removal near the sinus. Small openings often heal on their own; larger ones may need minor repair.[5]

FUTURE PERSPECTIVES

1. Less Invasive Approaches

Future procedures are expected to use smaller incisions and limited bone removal. This will reduce tissue trauma, lower pain levels, and allow faster recovery for patients.

2. Advanced Imaging Techniques

High-resolution imaging tools, including 3D scans and real-time navigation, may help dentists precisely locate root tips and avoid critical structures. This will improve safety and treatment accuracy.

3. Microsurgery Enhancements

Better microscopes and finer instruments will allow dentists to perform root-end surgery with greater precision, preserving surrounding tissues and improving the success rate.

4. Regenerative and Bioactive Materials

New materials that actively promote healing and tissue regeneration are expected. These could stimulate bone and ligament repair, improving long-term stability of treated teeth.

5. Laser and Ultrasonic Technology

The use of lasers and advanced ultrasonic devices may become more common, providing cleaner cuts, reduced bleeding, and better sterilization of the surgical site.[4]

6. Digital Planning and Guides

Computer-aided design and surgical guides could help standardize procedures, reduce errors, and make surgery faster and more predictable.

7. Patient-Focused Outcomes

Future developments will likely focus on minimizing discomfort, reducing recovery time, and improving overall satisfaction while maintaining high success rates.

CONCLUSION

Apicoectomy continues to be an essential tool in modern dental practice for managing teeth that cannot be fully treated with conventional root canal therapy. The procedure allows the removal of persistent infection and diseased tissue at the root apex while preserving the natural tooth, which is always preferable to extraction.

The success of apicoectomy relies on thorough preoperative assessment, careful surgical technique, and the use of biocompatible materials that promote healing and tissue regeneration. Advances such as dental operating microscopes, ultrasonic instruments, high-resolution imaging, and bioactive root-end filling materials have significantly improved precision, predictability, and long-term outcomes.

Postoperative care and patient compliance are equally important, as proper healing of soft tissue and bone takes time, and attention to hygiene, diet, and follow-up appointments reduces the risk of complications. Although minor issues such as pain, swelling, or delayed healing can occur, careful management ensures that these rarely compromise overall success.[12]

Looking forward, the future of apicoectomy is promising. Innovations in minimally invasive techniques, digital surgical guides, regenerative materials, and enhanced imaging are expected to make the procedure faster, safer, and more comfortable for patients. These developments will further improve success rates and support the long-term preservation of natural teeth.

In conclusion, apicoectomy represents a reliable and evolving surgical approach in endodontics. With continued technological advancements and careful clinical practice, it remains a key method for treating persistent periapical disease, enhancing oral health, and maintaining natural dentition over the long term.

REFERENCE

1. Peterson LJ, Ellis E, Hupp JR, Tucker MR.

Peterson's Principles of Oral and Maxillofacial Surgery. 3rd ed. BC Decker; 2008.

2. Hupp JR, Ellis E III, Tucker MR.

Contemporary Oral and Maxillofacial Surgery. 7th ed. Elsevier; 2019.

3. Fragiskos FD.

Oral Surgery. Springer; 2007.

4. Malik N.

Textbook of Oral and Maxillofacial Surgery. 3rd ed. Jaypee Brothers; 2012.

5. Killey HC, Kay LW.

Killey and Kay's Outline of Oral Surgery. Wright; 1990.

6. Howe GL.

Minor Oral Surgery. John Wright & Sons; 1985.

7. Malamed SF.

Handbook of Local Anesthesia. 6th ed. Mosby; 2012.

8. Moore JR, Williams E.

Oral and Maxillofacial Surgery for the Clinician. Wiley-Blackwell; 2014.

9. Pogrel MA, Dodson TB, Fuhrman GM.

Oral and Maxillofacial Surgery. 2nd ed. Wiley-Blackwell; 2014.

10. Scully C, Cawson RA.

Medical Problems in Dentistry. 6th ed. Churchill Livingstone; 2010.

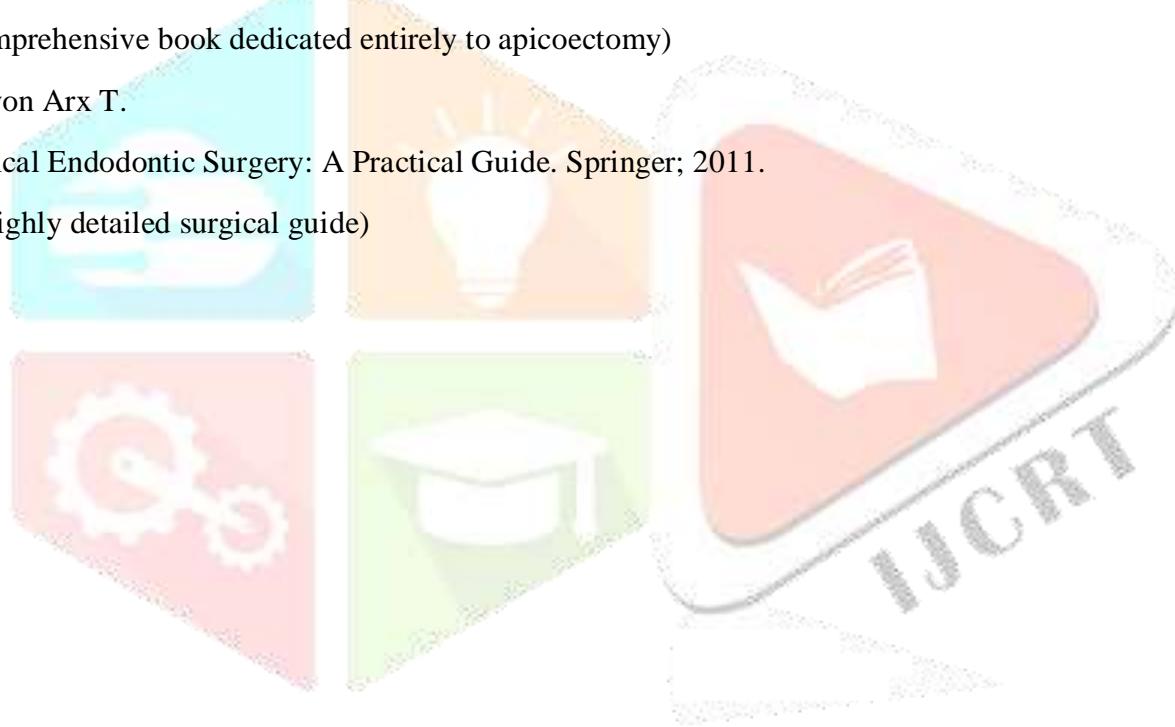
(Useful for contraindications & systemic risk and contraindications)

11. Kim S, Pecora G, Rubinstein R.

Color Atlas of Microsurgery in Endodontics. Saunders; 2001.

(The main textbook for microsurgical apicoectomy techniques)

12. Pitt Ford TR, Rhodes JS.


Endodontic Surgery. CRC Press; 2012.

(Comprehensive book dedicated entirely to apicoectomy)

13. von Arx T.

Clinical Endodontic Surgery: A Practical Guide. Springer; 2011.

(A highly detailed surgical guide)

