

Review On Gut Mocrobiota And Its Role In Drug Metabolism

¹Darshan Rajput , ²Omkar Gore, ³ Vijaykumar kale , ⁴ Mahesh Thakare , ⁵ Vaibhav Narwade

¹Student, Kasturi Shikshan Sanstan College of Pharmacy, Shikrapur, Pune

²Assistant Professor, Kasturi Shikshan Sanstan College of Pharmacy, Shikrapur, Pune

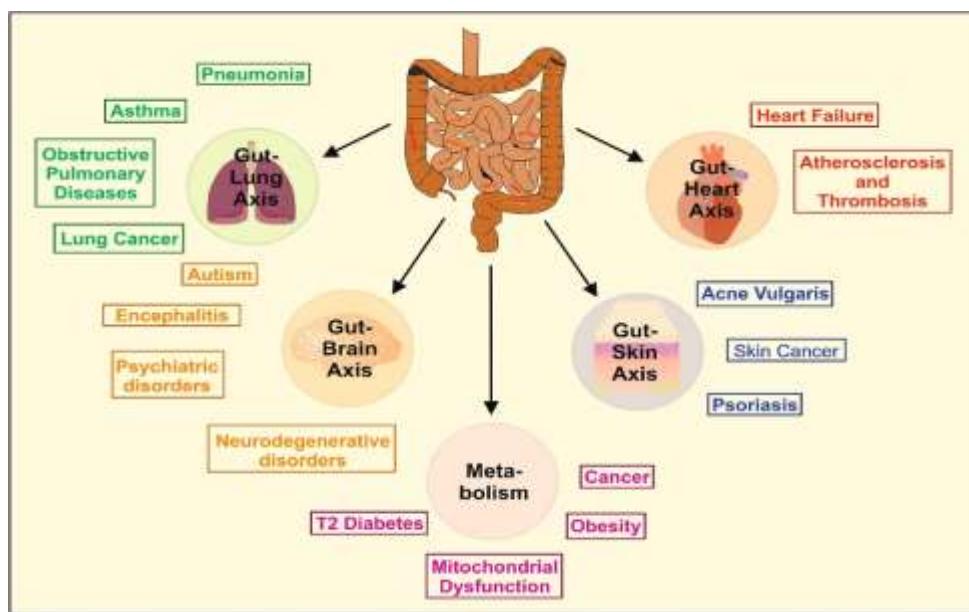
³Principle, Kasturi Shikshan Sanstan College of Pharmacy, Shikrapur, Pune

⁴ Head of Department, Kasturi Shikshan Sanstan College of Pharmacy, Shikrapur, Pune

⁵Assistant Professor, Kasturi Shikshan Sanstan College of Pharmacy, Shikrapur, Pune

¹Department of Pharmacy

¹Kasturi Shikshan Sanstan College of Pharmacy, Shikrapur, Pune

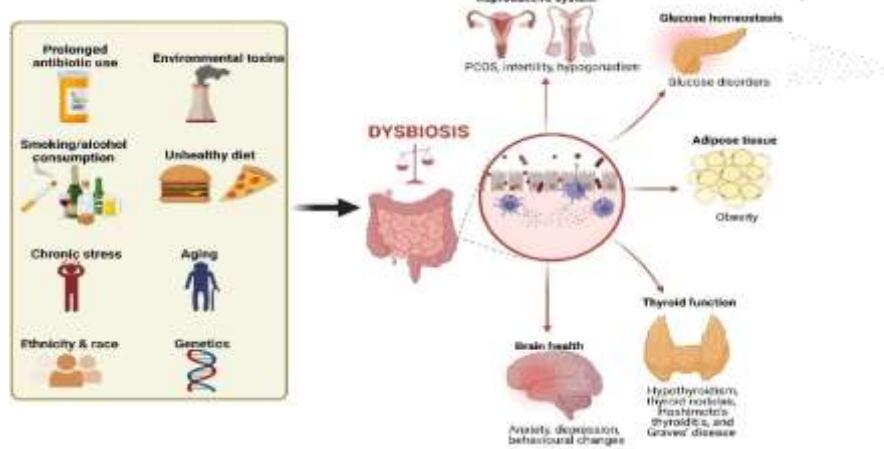

Abstract: The ability of the body's systems to process and respond to prescription medications is influenced greatly by the presence of bacteria in the gastrointestinal tract. Gut bacteria have both directly or indirectly an effect on how a person metabolizes medications; they alter the effectiveness and safety of any given medication. In some cases the gut bacteria are necessary to activate certain medications. For example, prodrugs that contain the azo group are metabolized by the presence of bacteria to their active form sulfanilamide. In addition to activating some drugs, the gut flora are also responsible for many other types of biochemical changes to drugs, including acetylation, deacetylation, decarboxylation, dehydroxylation, demethylation, and dehalonation. The gut flora also undergo conjugate hydrolysis, which is associated with many forms of drug-induced toxicity. Furthermore, gut flora have indirect effects upon drug metabolism and thereby influence how and where drugs are distributed, eliminated, and/or metabolized by their hosts by producing metabolites that compete with the prescribed medications for the same pathways. Additionally, there are reciprocal relationships between the gut microorganism and medications that can alter the composition of the gut flora and overall health of the gut. These relationships illustrate the interconnectedness of human biology with these small living things.

IndexTerms- Gut microbiota, Drug metabolism, Prodrugs, Azo-reductase, Conjugate hydrolysis, Microbial metabolites, Drug-induced toxicity, Reciprocal interactions

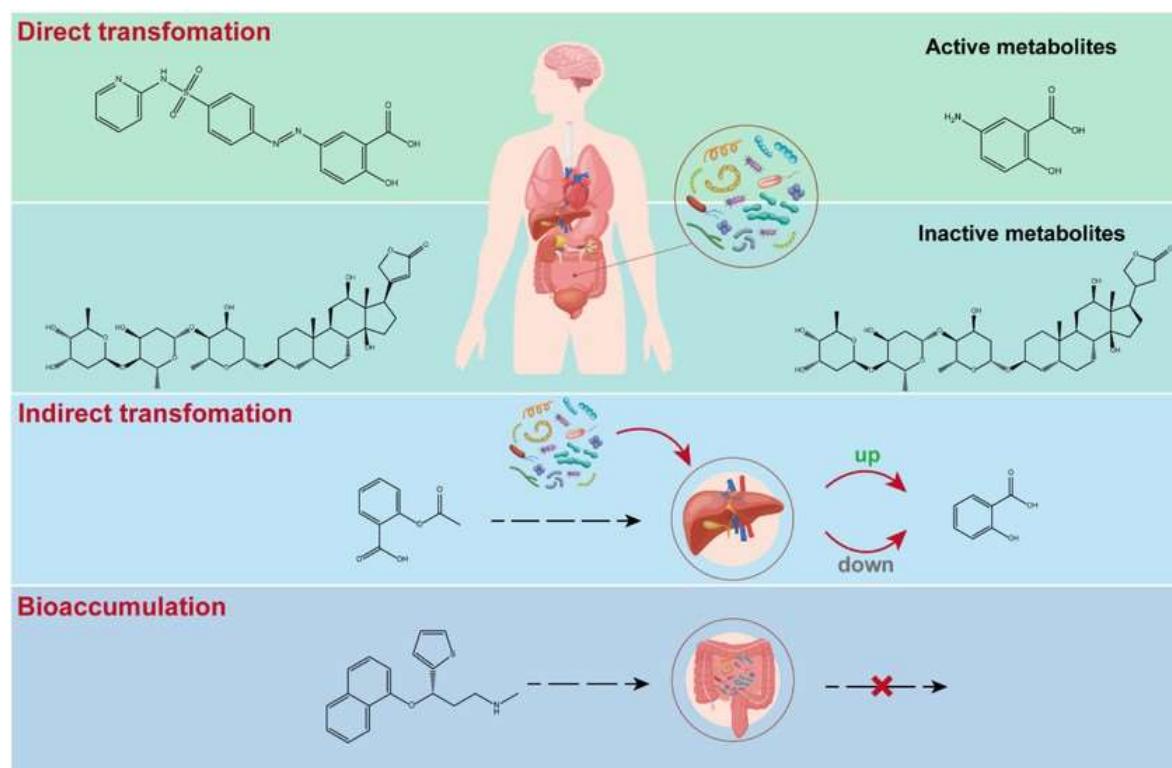
1. INTRODUCTION

Research for drug metabolism and drug toxicity primarily explores the factors that contribute to how ineffective certain drugs can be or how they can create harmful reactions. Understanding these aspects will lead to the development of safer and more effective medications.[1][2]

Historically, many scientists have been aware of the gut microbiome (or gut microbiota); however, they had largely assumed it to be an isolated and unimportant factor in drug research[3]. Recently, advancements in molecular biology have provided a more complete understanding of the complexity of the gut microbiome and its impact on the functioning of the human body.[4]



1. Effect Fig Of Probiotic On Gut Mictobiota


Each adult human has approximately 1 kilogram of bacteria in their gut, consisting mainly of the genera Bacteroides, Clostridium, Lactobacillus, Escherichia, and Bifidobacterium, along with numerous strains of yeast and other viruses. Collectively, there are over 2,000 different species of microorganisms found within the gut microbiota, with varying compositions of microbes found in different sections of the gastrointestinal tract.[5]

- **Probiotic And Prebiotic**

These microorganisms are not just passive passengers; they are active partners that help us in many ways. The body uses these substances to obtain energy from food while they also defend against dangerous bacteria and they function as connectors between our immune system and nervous system. The process enables them to affect drug mechanisms and drug toxicity levels. [6]

- Function and Mechanism

Scientists now view the microbiome as a possible drug target which researchers can modify to achieve better health outcomes. The treatment approach includes probiotics and prebiotics which work to enhance gut health through their ability to support beneficial bacterial development. The use of antibiotics creates an unintended threat to the gut microbiome which results in enduring adverse effects on the microbial community. The permanent nature of these changes requires scientists to include microbiome assessment during drug safety evaluations for new medical treatments.[6]

The human body maintains an intricate connection with its gut microbiome system. The prediction of microbiome changes on drug behavior requires scientists to develop innovative research techniques while collecting substantial additional information. [6]

Research from earlier times demonstrated gut bacteria participate in drug metabolism yet pharmacology and toxicology scientists failed to recognize its significance. The situation has begun to transform. Research now recognizes the gut microbiome as a vital element which helps explain why people react differently to medication.[7]

Aim

The research investigates how gut microbiota bacteria affect the way drugs are processed by the body and their resulting effects. The research will examine three main aspects which include drug- microorganism interactions in intestinal bacteria and antibiotic-induced microbiome alterations that impact drug responses and probiotic potential for enhancing treatment effectiveness and minimizing adverse reactions. The research aims to demonstrate how microbiome-based methods will become essential for individualized medical treatment during the upcoming years [3]

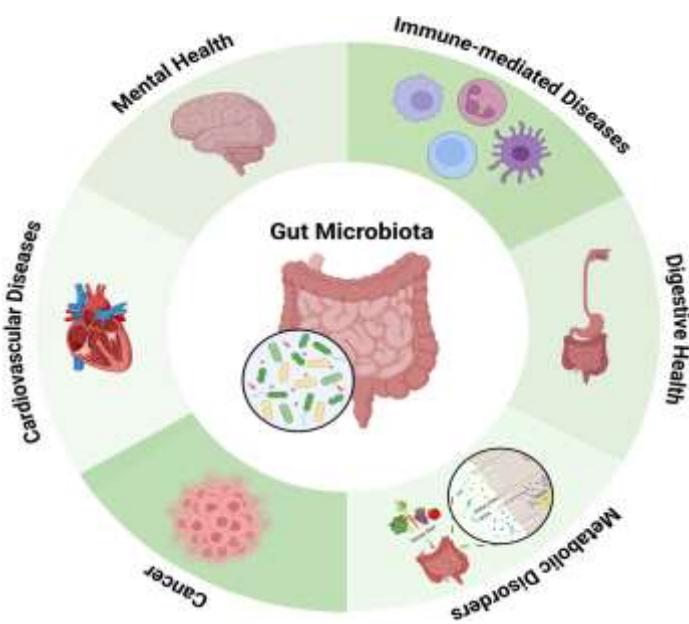
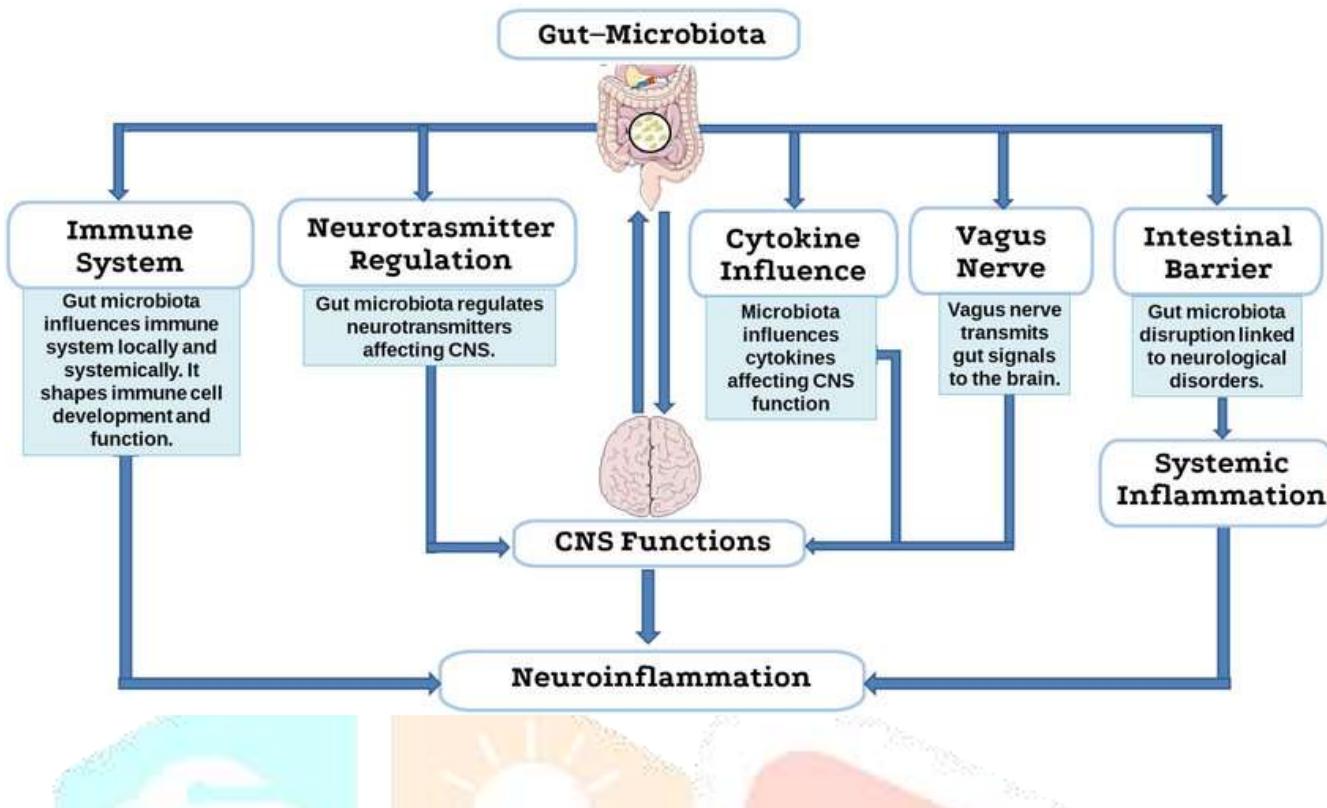


Fig 4. Driven Therapeutic Microbiome

Objectives

1. The research aims to study how gut microbiota affects drug metabolism and how it influences the results of medical treatments.

The research will study how gut bacteria influence drug absorption and distribution and metabolism and excretion (ADME) processes and how individual microbial profiles result in different drug reactions. [3]


2. The research investigates how microbial enzymes affect drug activation and inactivation processes and toxic compound formation. The research will identify the exact biochemical routes which gut bacteria use to transform medications into their active or inactive states or dangerous compounds. The drug development process creates both positive effects and negative consequences for drug treatment. [4]

3. The research aims to determine how antibiotic treatments modify microbial communities which then influence how drugs respond to the body. The research investigates antibiotic effects on microbial communities and their impact on drug metabolism and absorption and drug effectiveness which could result in decreased treatment success and elevated adverse reactions. [8]

4. The research evaluates how probiotics could help people achieve better microbial equilibrium while their drug treatment becomes more effective. The research objective examines how probiotic interventions enable the restoration of microbial health while improving drug absorption and treatment outcomes and minimizing side effects and enabling personalized medical approaches. [9]

5. To explore the clinical relevance and future potential of therapies targeting the gut microbiome in drug treatment. We will look at emerging therapeutic approaches like engineered probiotics, microbial biomarkers, and microbiome-modulation therapies. We will consider how these might be integrated into clinical practice for better and more personalized drug therapy. [10]

Gut–Microbiota–Brain Axis Communication Pathways

Mechanism

1. Their ability to activate prodrugs enables them to transform inactive compounds into active medical treatments. Sulfasalazine represents a well-known example because bacterial azoreductases convert this compound into its active form 5-ASA. [11]
2. The substances also have the ability to make active medications useless by blocking their operational power. The cardiac medication Digoxin becomes inactive when it encounters the gut microbe *Eggerthella lenta* in certain individuals which results in reduced heart benefits.[12,13]
3. The gut microbiome produces effects on absorption and transport processes in addition to its direct chemical transformations. The compounds modify gut pH levels and intestinal movement patterns and gut permeability and they also affect the expression of transport proteins in gut wall cells. The process of drug absorption into our bloodstream becomes affected by all these factors. [14,15]
4. Microbes can also affect toxicity. The anticancer drug Irinotecan serves as a well-documented example. The body activates this compound into SN-38 G before it gets eliminated through bile. The intestinal enzymes from gut bacteria known as β -glucuronidase break down SN-38 into its active form which leads to severe diarrhea. [16]
5. The host immune system and enzymatic responses undergo modulation through gut microbiota which affects drug metabolism by controlling the host immune system and inflammatory responses and metabolic enzyme expression of cytochrome P450 (CYP) enzymes. The liver and intestinal tissues depend on these enzymes to perform drug breakdown functions. The microbiota causes immune system imbalance and triggers

inflammation which results in CYP enzyme expression changes that affect drug metabolism rates. [15]

Type of Microbiom -drug interaction

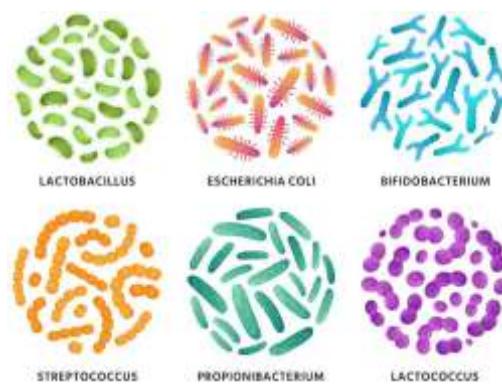


Fig ."Major Types of Gut Microbiota"

A3. The gut microbiota plays an essential role in our health because it determines how medications will respond to our body. The following list presents the primary interaction types.

1. *Metabolism:*

The gut microbiome produces enzymes which perform chemical transformations on medications. The process activates the enzyme while it either becomes inactive or produces dangerous compounds. Example: The drug Digoxin becomes inactive after exposure to the gut microbe *Eggerthella lenta*. The drug Sulfasalazine requires microbial enzymes to break it down before it becomes available for absorption. [12,17]

2. *Transport:*

The microbiome creates a mechanism which affects drug absorption and gut removal processes thus determining drug concentration in the body. The drug Metformin demonstrates varying absorption patterns and treatment outcomes which depend on the specific makeup of the microbiome. [18]

3. *Immune modulation:*

Mechanism: The microbiota controls immune system operations and inflammation levels which determine the effectiveness of immune-based drugs including cancer immunotherapies. Example: Research shows that immune checkpoint inhibitors used in cancer therapy produce different treatment results based on the specific gut bacteria which exist in patients because these bacteria affect the immune system. [19]

4. *Drug excretion/reactivation:*

Mechanism: The process of drug or metabolite conjugation which makes substances water-soluble for elimination becomes possible for gut microbes to de-conjugate these substances which results in their reactivation and increased toxicity. Example: The chemotherapy drug Irinotecan becomes more toxic because gut bacteria activate its β -

glucuronidase enzyme which leads to increased drug toxicity. [20]

Effect of antibiotics on Gut Microbiota and drug Response :-

The use of antibiotics leads to an imbalance of gut microbes because it disrupts their natural distribution. The disturbance creates problems which affect drug interactions and body responses to medications. The gut ecosystem experiences damage or permanent changes after antibiotic treatment which affects drug interactions with the microbiome.

Consequences of antibiotic-driven dysbiosis

1. **Reduced drug effectiveness:** The destruction of microbiota which activate or support drugs will make these medications ineffective. [3]
2. The loss of microbial drug processing safety would lead to higher drug side effects and toxic reactions. [21]
3. **Greater risk of infections:** The modification of your microbiome structure leads to weakened immune defenses and body barriers which subsequently affects your drug safety.[21]
4. **Changed pharmacokinetics:** The way drugs enter the body and how they are processed and eliminated through metabolism and excretion becomes different because of microbial activity which affects drug behavior in the body.[21]

Specific examples

1. **Warfarin:** The use of broad-spectrum antibiotics leads to decreased vitamin K production in the gut because these antibiotics kill the microorganisms which produce vitamin K. The combination of warfarin with these antibiotics increases the danger of bleeding because warfarin functions as a blood thinner.[22]
2. **Digoxin:** The use of antibiotics will decrease E. lenta numbers which normally break down digoxin so patients become at risk for developing digoxin toxicity.[23]
3. **Metformin:** The glucose-lowering effect of metformin becomes altered when antibiotics disrupt the gut microbiome. Research indicates that metformin effectiveness depends on the condition of a person's microbiome according to certain scientific investigations.[24]

Role of Probiotic as Pharmacological Agent

1. Restoring the microbiota after antibiotic therapy

When a patient receives broad-spectrum antibiotics, the gut microbiota often suffers. Beneficial species decline, pathogen overgrowth may occur, and the ecological balance is disturbed. Probiotics act as “friendly reinforcements” to help restore this balance.

Mechanically, probiotics may colonize or temporarily occupy the gut, compete with pathogens for nutrients or attachment sites, produce antimicrobial substances, and boost immune responses. Research shows that using probiotics can significantly cut down on antibiotic-associated diarrhea. In one review, AAD occurred in about 8.0% of the probiotic group versus 17.7% of the control group (relative risk about 0.49). It's crucial to note that the effect depends on the strain used, and the timing and dose are important. Thus, in pharmacological terms, probiotics can

be seen as a therapy added alongside antibiotics to lower the risk of dysbiosis-related side effects and quicken the recovery of gut flora. [25]

2. Reducing drug toxicity (e.g., chemotherapy or other drug gastrointestinal toxicity)

Beyond antibiotics, many drugs—especially those affecting the gastrointestinal tract—can cause toxicity, partly by impacting the microbiota, mucosa, or barrier function. Probiotics can offer protection.

A recent study on irinotecan showed that this chemotherapy drug changes gut microbial composition. Probiotics, such as *Lactiplantibacillus plantarum*, *Lactobacillus acidophilus*, and *Lacticaseibacillus rhamnosus*, reduced the expression of bacterial β -glucuronidase, an enzyme related to the drug's toxic metabolites, and lessened oxidative stress and inflammation in mice. Practically, this suggests that probiotics might serve as supplementary agents during chemotherapy or radiotherapy to lower gastrointestinal toxicity, improve comfort, and help patients stay on treatment. However, this data is still developing.[4,26]

3. Improving drug absorption and bioavailability

A healthy gut barrier and balanced microbiota can affect how well orally taken drugs are absorbed and metabolized. Probiotics may improve drug absorption and bioavailability by enhancing gut barrier integrity and changing microbial composition.

Mechanically, probiotics strengthen tight junctions, boost mucin production, affect gut transit time, and reduce mild inflammation—factors that influence drug absorption. From a pharmacology perspective, if gut integrity or microbiota are weak (such as after antibiotics or in GI diseases), variability in drug absorption may rise. By restoring gut health, probiotics may decrease this variability and thus improve predictability in drug responses.[27,28]

4. Improving immune therapy response in cancer

The gut microbiota appears to influence how the immune system reacts to medical treatments which include immune checkpoint inhibitors. Probiotics have the ability to modify the microbiota which results in improved treatment outcomes. Research findings demonstrate that the gut microbiota serves as a treatable element which affects how chemotherapy and immunotherapy work and their side effects through its ability to activate or deactivate drugs and control gene expression and immune system function and create metabolic products. Research shows that particular bacteria from *Lactobacillaceae* and *Bacteroides fragilis* groups create positive results for patients with gastrointestinal tumors. The scientific evidence does not establish causality but probiotics could function as additional treatments which might improve both immune system preparedness and the results of cancer immunotherapy. [29]

5. The body needs to decrease its inflammatory response while it works to enhance its gut barrier system. Probiotics function as a broad therapeutic agent because they reduce gut inflammation while protecting mucosal surfaces and maintaining body homeostasis.[30] The body uses multiple mechanisms to achieve its benefits which include increasing short-chain fatty acid production to feed colon cells and enhancing mucin and IgA production and fighting pathogens for surface attachment and controlling toll-like receptor activity and lowering inflammatory markers. [31] The gut barrier improvement results in reduced bacterial and toxic substance transfer from the gut to the bloodstream which produces decreased body-wide inflammation and reduced drug-related side effects. The additional therapy of probiotics supports gut balance which plays an essential role in drug metabolism and immunity and overall health maintenance. [32]

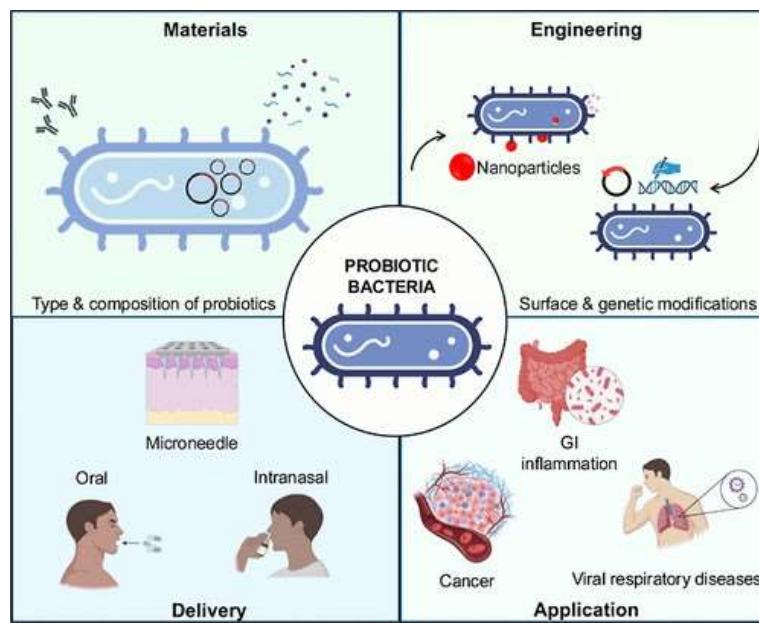


Fig 8. Probiotic Bacteria As Therapeutic agent

Literature Review

Sulfasalazine serves as a treatment option for patients who have inflammatory bowel disease. The substance functions as a "pro-drug" which needs bacterial assistance to transform into its active form. The enzymes azoreductase which bacteria in the colon produce enable them to break down the azo bond in the compound. The process reveals the active substance 5-Aminosalicylic acid (5- ASA) to the outside. The microbial processing of Sulfasalazine makes the drug more effective than it would be without this biological transformation.[11,33] The cardiac glycoside Digoxin becomes inactive when it encounters the gut bacterium *Escherichia coli*. The microbe exists as a gut resident in certain individuals who possess its various forms. The drug becomes less effective because bacterial enzymes transform Digoxin into an inactive compound.[12,13]

The Parkinson's disease medication L-Dopa experiences brain dopamine production when gut bacteria transform it into dopamine before brain arrival. The drug delivery process becomes less efficient because the drug fails to reach its intended targets in the nervous system which results in reduced effectiveness. Irinotecan functions as an anticancer treatment but it contains a dangerous element. The liver detoxifies its active metabolite SN-38 through glucuronide group attachment. The body uses this process to send waste material to the gut where it will be eliminated. The gut microbial enzyme β -glucuronidase present in the gut removes the glucuronide group from SN-38 which results in the formation of active SN-38 that causes severe gastrointestinal side effects including diarrhea in numerous patients. [34,35]

The gut microbial community becomes dysbiotic when broad-spectrum antibiotics disrupt its natural balance. The reduction in beneficial bacteria numbers leads to changes in drug absorption and processing patterns. The use of an antibiotic can produce secondary effects which affect how well other medications work and their potential side effects when patients take them simultaneously. [36]

Research indicates that probiotic strains including *Lactobacillus* and *Bifidobacterium* demonstrate potential to restore gut bacteria while decreasing inflammation which might help minimize drug- related gastrointestinal side effects. Probiotics help drugs function more effectively while reducing their potential adverse reactions when they improve gut health. [34]

The pharmacological definition of probiotics describes them as "live microbial adjuvants." The WHO/FAO definition describes them as living organisms which function as beneficial agents for hosts instead of traditional small-molecule drugs. The compounds operate through multiple pathways which include their ability to control

microbial-host interactions and their power to stop pathogens and their effect on immune system strength and their influence on drug absorption and metabolism processes. Their responsibilities have expanded throughout the development of contemporary medical practices. The scientific community uses these compounds to study their potential role in gut health maintenance while researchers also investigate their ability to decrease toxic substances and boost immune function and improve drug absorption and protect drug delivery barriers.[37]

Common probiotic strains and their benefits

Probiotic strain	Main benefits	Ideal for	Found in...
<i>Lactobacillus acidophilus</i>	- Improves digestion - Helps digest lactose - Enhances nutrient absorption	Mild lactose intolerance, general digestive health	Natural yogurts, some Greek yogurts, supplements
<i>Lactobacillus casei</i>	- Boosts immune system - Reduces mild diarrhea - Supports gut flora after antibiotics	Immunity, post-antibiotic support	Actimel, Yakult, some bifidus yogurts
<i>Lactobacillus rhamnosus GG</i>	- Relieves diarrhea (infectious or antibiotic-related) - May reduce atopic dermatitis in children - Strengthens gut barrier	Children, recurrent diarrhea, low immunity	Some supplements, children's yogurts (U.S.)
<i>Lactobacillus plantarum</i>	- Reduces intestinal inflammation - Decreases gas and bloating - Protects against harmful bacteria	IBS (Irritable Bowel Syndrome), heavy digestion	Some artisanal or premium yogurts, supplements
<i>Bifidobacterium animalis</i>	- Improves bowel movements - Relieves constipation - Eases bloating	Chronic constipation, slow digestion	Activia, bifidus-type yogurts
<i>Bifidobacterium longum</i>	- Reduces inflammation - Improves food tolerance - Possible effect on mood	Digestive stress, immunity, emotional well-being	Supplements, fortified yogurts
<i>Streptococcus thermophilus</i>	- Ferments milk - Helps digest lactose - Protects gut microbiota	Lactose intolerance, base for other probiotics	Natural and traditional yogurts

Evaluation Parameter :

The way people react to drugs depends on their individual microbiome patterns which exist in the same way as fingerprints do. The same drug produces different effects when administered to different individuals because of individual variations in drug response. Some patients may experience strong positive effects. The treatment brings no advantage to certain patients while it creates negative reactions in others. The study of microbiomes enables scientists to understand why different patients react differently to medications. [39]

The body experiences pharmacokinetic changes because gut microbes produce enzymes which alter drug compounds. The bloodstream becomes inaccessible to medicines because these microbial enzymes either activate them or deactivate them or completely destroy them. The body processes drugs through four stages which these factors control to determine drug absorption and distribution and metabolism and elimination patterns. The microbiome determines the appropriate dosage needed for safe and effective treatment. [39,40]

The use of antibiotics leads to both microbiome diversity reduction and drug metabolism changes. The antibiotic treatment which targets dangerous bacteria also leads to the destruction of useful gut bacteria. The body experiences an unbalanced state of microorganisms which scientists call dysbiosis which decreases microbial diversity and disrupts drug processing systems. The use of antibiotics leads to two possible outcomes which include medication resistance and increased drug side effects. The study of this effect holds significance because it helps medical professionals prevent unanticipated results from their treatments. [40]

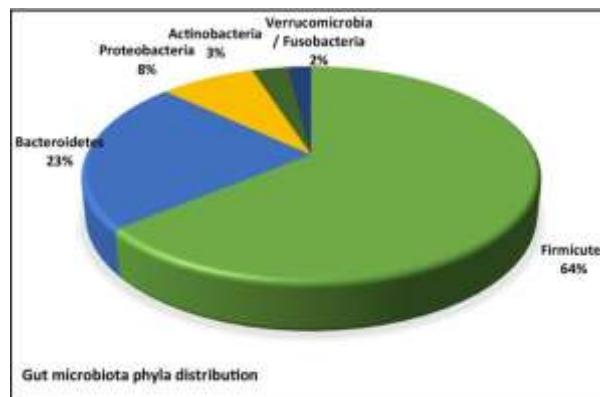


Fig. Colonic Microbota

Probiotics help decrease drug-induced toxicity by their beneficial live microorganisms which defend the body against drug-related damage. The substances help maintain gut health by supporting beneficial bacteria while they enhance digestion and minimize inflammation. The breakdown of toxic drug metabolites by probiotics results in safer medical treatment which patients can tolerate better. [41]

Healthcare professionals can create better treatment plans through their ability to study and control the gut microbiome which leads to improved patient results and faster recovery times. The implementation of this approach results in enhanced treatment outcomes and shorter recovery times and shorter hospital stays which lead to better patient life quality. The microbiome monitoring process leads to better clinical results in the long run.[42].

Result And Discussion

The research established that the gut microbiota functions as an essential active system which determines drug responses in the human body. The process required microbial enzymes to function for the following purposes.

1. Prodrug Activation:

The process of transforming Sulfasalazine and other inactive compounds into their active therapeutic versions.

2. Drug Inactivation/Toxicity:

The enzymes in *E. lenta* lead to Digoxin inactivation which results in treatment failure and β - glucuronidase causes Irinotecan toxic metabolite reactivation that produces severe side effects.

3. Variability:

The microbial processes within different people's bodies show significant differences between each other. The text demonstrates how people react differently to medications while showing how they experience drug-related adverse reactions.

The research data demonstrated that antibiotic treatment leads to dysbiosis which interferes with the essential drug-microbial interactions. The unpredictable changes in drug levels become more dangerous because they lead to higher chances of experiencing negative side effects. The research showed that probiotics function as effective microbial partners which proved to be promising. The treatment approach enables doctors to restore microbial equilibrium while decreasing toxic substances which makes drugs including immune therapy medications more potent.

Conclusions

The research accomplished its objectives through proof that gut microbiota functions as a modifiable biological system which influences drug metabolic processes and their therapeutic value and toxic side effects. The wide range of gut microbiota patterns between people provides a biological explanation for why patients react differently to identical medical treatments.

The present pharmacology methods require transformation to implement pharmacomicobiomics principles. . The development of specific treatments including new probiotic strains and fecal microbiota transfer methods represents a key aspect of this approach. The development of safer medical treatments which deliver better results through individualized care requires scientists to study the gut microbiome during drug creation and patient monitoring processes

Reference

1. Park, B.K., Kitteringham, N.R., Kenny, J.R. et al. "Drug metabolism and drug toxicity." *Inflammopharmacology* 9: 183–199 (2001).
2. Baillie, T.A. "Metabolism and Toxicity of Drugs. Two Decades of Progress in Industrial Drug Metabolism." *Chemical Research in Toxicology* 21(1): 129–137 (2008).
3. Dikeocha, I. J., et al. (2022). "Pharmacomicobiomics: Influence of gut microbiota on drug disposition, efficacy and toxicity." *FASEB Journal*, 36(7), e22345.
4. Zhao, Q., et al. (2023). "Drug–microbiota interactions: an emerging priority for precision medicine." *Signal Transduction and Targeted Therapy*, 8(1).
5. Ghatak, S., Reddy, B., & Rao, C. V. (2022). Human gut microbiota in health and disease. *Frontiers in Microbiology*, 13, 999001.
6. Wilson, I. D. & Nicholson, J. K. (2016). Gut microflora interactions with drug metabolism, efficacy and toxicity. *Translational Research*, 167(1), 37-47. Available via PMC.
7. the future of microbiome-based therapeutics by E.L. Gulliver et al., *Alimentary Pharmacology & Therapeutics*, 2022
8. Li, H., et al. (2015). The influence of gut microbiota on drug metabolism and absorption. *Frontiers in Microbiology*, 6, 200.
9. Dahiya, D., Watzl, B., & Bohra, A. (2023). Biotherapy Using Probiotics as Therapeutic Agents to Restore Gut Microbiome Balance and Improve Health Outcomes. *Frontiers in Nutrition*, 9, 10052502.
10. Lynch, L. E. & Pedersen, O. (2025). "Present and future of microbiome-targeting therapies." *Journal of Clinical Investigation*.
11. Crouwel, F., et al. (2021). "Gut microbiota-driven drug metabolism in inflammatory bowel disease." *Journal of Crohn's & Colitis*, 15(2), 307-324.

12. Eggerthella lenta and drug inactivation: Haiser H.J., Gootenberg D.B., Chatman K., et al. (2013). Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. *Science*, 341(6143), 295-298.

13. Koppel N., Bisanz J.E., Pandelia M.-E., Turnbaugh P.J., Balskus E.P. (2018). Discovery and characterization of a prevalent human gut bacterial enzyme sufficient for the inactivation of a family of plant toxins. *eLife*, 7, e33953.

14. Zhang X., et al. "The influence of the gut microbiota on the bioavailability of oral drugs." *Frontiers in Microbiology*, 11: 601963 (2020).

15. Wang S., Ju D., Zeng X. "Mechanisms and Clinical Implications of Human Gut Microbiota- Drug Interactions in the Precision Medicine Era." *Biomedicines*, 12(1), 194 (2024).

16. Irinotecan (CPT-11) metabolism and the role of gut microbial β -glucuronidases in regenerating its active metabolite SN-38 from SN-38G is well described in "Microbiota-Host-Irinotecan Axis: A New Insight Toward Irinotecan Chemotherapy" by Yue et al. (2021).

17. Gut microbial activation of the pro-drug Sulfasalazine: Zheng, H., et al. (2017). Modulation of gut microbiome composition and function: implications for the effectiveness of IBD treatment. *Frontiers in Microbiology*, 8, 1703.

18. de la Cuesta-Zuluaga, J., Mueller, N. T., Corrales-Agudelo, V., Velásquez-Mejía, E. P., Carmona, J. A., et al. (2017). "Metformin is associated with higher relative abundance of mucin- degrading **Akkermansia muciniphila* and several short-chain fatty acid-producing microbiota in the gut." *Diabetes Care*, 40(1), 54-62.

19. Lu, Y., et al. (2022). Gut microbiota influence immunotherapy responses. *Journal of Hematology & Oncology*, 15, 47.

20. Yue, B., et al. (2021). Microbiota-Host-Irinotecan Axis: A New Insight Toward Irinotecan Chemotherapy. *Frontiers in Cellular and Infection Microbiology*, 11:710945.

21. Patangia, D. V., et al. (2022). Impact of antibiotics on the human microbiome and consequences for host health and drug interactions. *Frontiers in Cellular and Infection Microbiology*, 12, 871545.

22. Warfarin & antibiotics Wong, C. Y., Liew, A., & Ang, H. X. (2023). Interaction between warfarin and antibiotics: A review. *Journal of Clinical and Translational Research*, 9(3), 123– 132.

23. Digoxin Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R., & Goodman, AL. (2019). Mapping human microbiome drug metabolism by gut bacteria and their genes. *Nature*, 570(7762), 462–467.

24. Metformin & microbiome Sun, L., Xie, C., Wang, G., Wu, Y., Wu, Q., Wang, X., ... & Ling, Q. (2020). Gut microbiota and drug metabolism. *Annual Review of Pharmacology and Toxicology*, 60, 477–493.

25. Goodman, C., et al. (2021). Probiotics for the prevention of antibiotic-associated diarrhea – a systematic review and meta-analysis. *Journal of Clinical Gastroenterology and Hepatology*, 19(4), 457–468.

26. Zhou, Y. (2021). Microbiota-Host-Irinotecan Axis: A New Insight Toward Irinotecan Chemotherapy. *Frontiers in Cellular and Infection Microbiology*, 11, 710945.

27. Chandrasekaran, P. (2024). Effects of Probiotics on Gut Microbiota: An Overview. *International Journal of Molecular Sciences*, 25 (11), 6022.

28. Zhang, X., H. and Zhao, C., & Zeng, Y. (2020). The influence of the gut microbiota on the bioavailability of oral drugs. *Frontiers in Microbiology*, 11, 601963.

29. Gopalakrishnan, V., Helmink, B. A., Spencer, C. N., Reuben, A., & Wargo, J. A. (2018). The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. *Cancer Cell*, 33(4), 570-580.

30. Zheng, Y., Zhang, H., Tang, H., Wu, X., Zhang, J., Li, S., Wang, H., Wan, X., Yao, H., & Yuan, J. (2023). Probiotics fortify intestinal barrier function: A systematic review and meta-analysis. *Gut Microbes*, 15(1), 2151384.

31. Guo, H.-Z., Zhang, Y.-L., Ren, L.-F., Li, Z.-J., & Zhang, L. (2022). How do intestinal probiotics restore the intestinal barrier? *Frontiers in Microbiology*, 13, 929346.

32. Liu, Q., Zheng, Y., & Wang, J. (2024). Effects of probiotics on gut microbiota: An overview. *International Journal of Molecular Sciences*, 25(11), 6022.

33. Becker et al. (2023) – It states that intestinal bacteria are essential for the activation of sulfasalazine by bacterial azoreductases.

34. Yue, B., Yang, Y., Xu, C., Zhu, L., & Zhou, Y. (2021). Microbiota-Host-Irinotecan Axis: A New Insight Toward Irinotecan Chemotherapy. *Frontiers in Cellular and Infection Microbiology*, 11, 710945.

35. Chamseddine et al. (2019) – Reviews role of intestinal bacterial β -glucuronidase in irinotecan-induced diarrhea.

36. Becker et al. (2023) – “Current evidence and clinical relevance of drug-microbiota interactions” includes antibiotic-driven dysbiosis and drug metabolism.

37. Wallace, B. D., Wang, H., Lane, K. T., Scott, J. E., Orans, J., Koo, J. S., ... & Redinbo, M. R. (2015). Structure and inhibition of microbiome β -glucuronidases: From key target to therapy. *ACS Chemical Biology*, 10(6), 1584-1593.

38. Trepka, K. R., et al. (2024). How the gut microbiome contributes to variations in drug response. *Annual Review of Pharmacology and Toxicology*, 64, 1-22.

39. Zhao, Q., et al. (2023). Drug–microbiota interactions: an emerging priority for precision medicine. *Signal Transduction and Targeted Therapy*, 8, 16.

40. Konstantinidis, T., et al. (2020). Effects of antibiotics upon the gut microbiome: A review of the published literature. *Microbiome*, 8, 1-21.

41. Purdel, C., et al. (2023). Exploring the potential impact of probiotic use on drug pharmacokinetics, dynamics and safety. *European Journal of Pharmaceutical Sciences*, 178, 106462.

42. Mafe, A. N., & Büselberg, D. (2025). Microbiome integrity enhances the efficacy and safety of anticancer drug therapy. *Biomedicines*, 13(2), 42.