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Abstract:  As smart grid systems continue to evolve through the integration of advanced communication 

technologies and an increasing number of interconnected devices, the imperative for robust cybersecurity 

measures has become paramount. This study examines the current state of smart grid cybersecurity, 

emphasizing the challenges arising from heterogeneous environments and the integration of Internet of Things 

(IoT) components. It investigates various machine learning methodologies designed to enhance threat 

detection, response capabilities, and overall system resilience. Furthermore, this study identified significant 

deficiencies in the existing architecture, particularly regarding protocol compatibility and data aggregation 

security. To address these issues, a novel proposal for a unified IPv6-based communication layer is 

introduced, which simplifies connectivity, mitigates security vulnerabilities, and facilitates direct Internet 

access for all devices. This framework not only improves the efficiency of data transmission but also 

strengthens the security posture of smart grids through the implementation of IP-based security protocols. 

These findings underscore the necessity of advancing cybersecurity measures in smart grids and delineate 

future research directions aimed at developing comprehensive strategies to ensure the integrity and resilience 

of this critical infrastructure against evolving cyber threats. 

 

Index Terms: Cyber Security, Information and Communication Technologies (ICT), Internet of Things, 

Networks, and Smart Grid. 

 

1. INTRODUCTION 

The global transition towards smart grids represents a significant milestone in the modernization of energy 

infrastructure, combining the traditional power grid with advanced information and communication 

technologies (ICT).This fusion allows for more efficient and sustainable management of electricity, 

particularly with the integration of distributed renewable energy sources near areas of consumption [1-2]. As 

energy systems evolve, smart grids introduce bidirectional power flows that enable dynamic energy exchange 

between utilities and consumers through sophisticated two-way communication networks [3-5]. This shift 

away from a centralized, utility-owned grid creates new opportunities for innovation and collaboration among 

a wide range of stakeholders. The National Institute of Standards and Technology (NIST) conceptual model 

highlights the complexity of the smart grid by identifying seven key sectors: large-scale power generation, 

transmission, distribution, consumption, service providers, operations, and markets [6-8]. By leveraging these 

components, smart grids can achieve high levels of efficiency, resilience, and flexibility in terms of energy 

management.   

Additionally, companies such as IBM have developed advanced models for smart grids, which provide 

further insights into the role of computing platforms, data storage, and communication infrastructure. These 

models emphasize the importance of scalable technologies such as Software as a Service (SaaS) and 

Infrastructure as a Service (IaaS) in supporting device connectivity, while addressing crucial factors such as 

protocol capacity, resilience, bandwidth, latency, and security [9]. Through these advancements, smart grids 

have paved the way for a more responsive and sustainable energy future. 
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The smart grid's architecture is built on multiple layers, each serving distinct functions to ensure efficient 

operation and integration, as shown in Figure 1. 

 Software Layer: This layer includes tools for evaluating meter data, managing billing, monitoring 

outages, controlling overloads, and integrating devices for both field technicians and users. It also 

incorporates geographic information systems (GIS), wide-area management systems, and customer 

information systems. 

 System Integration Platform: The system integration platform handles the coordination of 

applications and data, network and security management, and computing frameworks necessary for 

grid operation. 

 Communication Layer: This layer consists of various communication networks, including 

centralized, office, external, access,and black hole networks, as well as in-home, neighborhood, and 

central networks. It supports both wired and wireless communication across short and long distances.  

 Physical Layer: The physical layer encompasses energy production, distribution, transmission, 

consumption, renewable energy sources, and energy storage systems within the smart grid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Conceptual Framework for Smart Grid 

In the framework of the NIST conceptual model, Figure 1 replicates the IBM model [9], showing that 

approximately 70% of the smart grid infrastructure consists of Information and Communication 

Technology (ICT) layers [10]. 

A detailed examination of the communication layer revealed that multiple wired and wireless networks 

are essential for connectivity across various distances. The software layer further integrates tools for 

managing  grid operations, requiring access for different user groups, such as operators, home owners, field 

engineers, service providers, and marketing staff. However, the widespread access inherent in these 

systems introduces significant cybersecurity risks. To mitigate these threats, strong permission and 

authentication mechanisms are necessary to protect the grid from unauthorized intrusions. 

1.1 Uses of Machine Learning Techniques for Cyber Security of Smart Grid 

Machine learning (ML) methods are often categorized based on their various applications within smart 

grids (SGs), although they do not always focus on cyber security, or by their learning types (e.g., 

supervised, unsupervised, and reinforcement learning). The works thus far typically highlight the 

limitations, benefits, and drawbacks in detail. While some mention future directions, they often do not 

address the specific area of interest. In this regard, it is essential to provide clear, actionable guidelines on 

"how to implement" solutions. Furthermore, most studies  do not offer specific recommendations on model 

selection or reconstruction, nor do they explain the criteria for choosing a particular ML model. 
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To address these gaps and offer a more focused evaluation of ML applications in SG cyber security, this 

study focuses on  the following: 

 Presenting a comprehensive solution to "how to solve attack detection problems" using ML tools, 

thus addressing model selection challenges. 

 Developing a flowchart that provides guidance on "which criteria to use for selecting a specific ML 

model," making it easier to choose the appropriate model based on different data characteristics. 

 Offering an enhanced classification of ML models focused on SG cyber security, improving on 

previous efforts by ranking ML tools according to the CIA (Confidentiality, Integrity and 

Availability) security model to provide a clearer application of ML techniques to SG security 

challenges. 

 We provide a categorization of ML models by complexity—comparing conventional learning and 

deep learning—to clarify the different levels of complexity in data handling. 

 It covers all earning paradigms, including supervised, unsupervised, and reinforcement learning, 

and discusses modeling approaches, such as traditional, hybrid, and ensemble methods. 

 Compile a list of datasets, systems, and types of attacks to quickly locate relevant applications and 

common security threats. 

 Summarize the benefits, drawbacks, and challenges of ML-based cybersecurity approaches in 

power grids. 

 The key areas for future research are highlighted. 

This study was based on a thorough literature search, focusing on recent studies from the past five years, 

with particular emphasis on the most relevant papers published in the last three years from major databases. 

The proposed model and identified drawbacks are both derived entirely from a review of the existing 

literature. Carefully chosen keywords related to ML and cyber security in smart grids were used to guide 

this search. The analysis indicates that most studies concentrate on detecting attacks, with relatively few 

addressing mitigation or correction measures. It is important to note that this focus on detection reflects the 

trends in the papers analyzed, rather than an intentional bias toward that area. 

 

1.2 Goals and Requirements for Protection 

The smart grid comprises numerous interconnected devices that share two primary types of data: 

informational and operational. Informational data include power usage bills, trends, logs, tags, historical 

reports, geographic locations, customer information, and emails [11].Operational data, on the other hand, 

include real-time voltage and current readings, transformer tap positions, capacitor banks, transformer 

feeder loads, fault locations, relay statuses, and circuit breaker conditions [12-13].Owing to its critical 

nature, operational data requires a high level of security to protect the smart grid from potential threats and 

vulnerabilities that could lead to blackouts. 

The key protection objectives and requirements for the smart grid are as follows: 

 Availability: Ensuring timely access to information within the smart grid. Lack of availability could 

prevent authorized users from accessing the system, potentially disrupting power delivery. Denial 

of Service (DoS) attacks, which aim to disrupt data transmission and make resources inaccessible, 

target system availability. 

 Integrity: Preventing unauthorized changes to data or systems. A loss of integrity in the smart grid 

can alter the process values or sensor readings, negatively impacting power management. 

 Confidentiality: Restricting access for unauthorized individuals to safeguard personal privacy and 

security. Smart grid networks transmit data with varying levels of sensitivity, ranging from 

consumption statistics to private customer information. 

 Authentication: Verifying the true identity of the parties involved in communication. Both human 

and machine authentication are crucial, as breaches can allow hackers access to private data or 

unauthorized devices to exploit smart grid resources. 
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 Authorization: Managing access to systems and data, known as access control. An authorization 

system is essential in a smart grid to handle a wide variety of devices and users, ensuring proper 

access to data and resources. 

 Non-Repudiation: Ensuring that actions taken by a system or user cannot be denied later. This is 

particularly important when sensitive information and valuable resources are involved. 

2. SECURITY GAPS AND SOLUTIONS IN THE SMART GRID 

2.1 Security Gaps in Smart Grid 

Smart grids face several risks and challenges, particularly in terms of cybersecurity. This section 

explores various security concerns and the techniques employed to safeguard smart grid systems. 

 Connectivity: The smart grid communication network is highly intricate, incorporating a wide 

range of compatible devices. Owing to their decentralized nature, these systems require robust 

defenses against potential attacks and vulnerabilities. Such attacks can give attackers control over 

the grid, leading to physical harm, blackouts, and decreased efficiency [14]. 

 Trust: The interconnected nature of smart grid systems has led to a shift in design principles, 

moving away from assuming that all consumers can be trusted. Some users may deliberately cause 

harm, such as tampering with smart meters to report incorrect power consumption data at lower 

costs. 

 Customer Privacy: Preserving customer privacy is critical in any system, including smart grids. 

The deployment of smart meters raises privacy concerns, as they can potentially expose sensitive 

information about users' daily routines and home presence. This information can be exploited by 

criminals, companies, marketers, or competitors. Therefore, it is crucial to safeguard user privacy 

during data transmission and storage. 

 Software Flaws: Smart grids are vulnerable to software flaws, including malware. Malicious 

software or updates targeting Supervisory Control and Data Acquisition (SCADA) systems pose a 

significant threat. Such systems often exhibit well-known vulnerabilities that require patching. 

However, the high costs and potential downtime associated with patching make it difficult for 

critical systems such as smart grids [15]. 

2.2 Techniques for Securing Smart Grid Systems 

Cyber security in smart-grid systems is a topic of great interest to researchers and industry professionals. 

Although some solutions have been proposed, numerous vulnerabilities persist. This section examines 

current strategies to address cyber security issues in smart grid technologies. 

2.2.1 Cyber Security on Networks 

One of the most common attacks on smart grid networks is the denial of service(DoS) attack, which 

aims to disrupt the normal operations of the target system. To defend against such attacks, smart-grid 

systems employ various detection and mitigation techniques [16]. 

A. Detection of DoS 

Smart grid systems must detect DoS attacks in real time to implement appropriate defenses, especially 

against Distributed Denial of Service (DDoS) attacks. Methods for detecting DoS attacks include the 

following: 

 Flow Entropy Method: Analyzing network traffic and measuring flow entropy to identify 

abnormal behavior indicative of a DoS attack [17-19]. 

 Signal Intensity Analysis: Assessing energy levels to detect jamming attempts in wireless 

networks [20]. 

 Sensing Time Measurement: Using Carrier Sense Multiple Access (CSMA)to detect unusually 

long channel sensing times, which may indicate a jamming attack [21]. 

 Transmission Failure Count: Monitoring transmission errors to detect jamming attacks based on 

a failure threshold [21]. 

 Signature Detection: Matching known attack behaviors and characteristics to detect DoS attacks 

[20]. 
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B. DoS Mitigation 

Mitigating DoS attacks involves network and physical layer strategies. 

 Pushback: Sending attack information to upstream routers to block malicious traffic [20]. 

 Rate Limiting: Reduces data transmission rates of suspicious users [20]. 

 Filtering: Blocking packets from black-listed IP addresses [20]. 

 Reconfiguration: Network topology is adjusted to allocate more resources to victims or isolate 

attackers [20]. 

 Cleaning Center: Rerouting traffic through a specialized node that filters and handles potential 

attacks [20]. 

At the physical layer, techniques such as Frequency Hopping Spread Spectrum (FHSS), Direct Sequence 

Spread Spectrum (DS), and Chirp Spread Spectrum (CSS) are used to counteract frequency jamming 

attacks. These methods spread data across multiple frequencies to protect against interference [22-23]. 

2.2.2 Information Security 

Securing data and authenticating devices is another critical aspect of protecting smart grid networks. 

Encryption techniques such as public-key encryption and symmetric-key encryption are used to protect 

user information and communications. Public key encryption provides better security, whereas symmetric 

encryption is more efficient for devices with limited processing power. 

Authentication must also be efficient, fault-tolerant, resilient to attacks, and support multicast 

communication, which is essential for smart grids. Various techniques for multicast authentication include 

secret information asymmetry, time asymmetry, and hybrid asymmetry. 

2.2.3 Key management 

Effective key management is crucial for maintaining encryption and authentication in a smart grid. This 

includes symmetric key management and public key infrastructure (PKI). PKI verifies the authenticity of 

communicating parties using certificates, whereas symmetric key management handles the creation, 

distribution, storage, and updating of keys. Scalability, efficiency, and resolvability are key factors for 

managing keys in a vast smart-grid network [6]. 

2.2.4 Network security protocols 

Creating secure network frameworks and protocols is essential for smart grid security. Many smart grid 

systems rely on internet-based protocols such as TLS and IPSec. Additionally, secure protocols tailored to 

smart grid requirements, such as Secure DNP3, IEC61850, and IEC62351, are used to enhance 

communication security. 

Smart grid networks typically use one of two architectures for secure infrastructure: 

• Trust-based architecture: Devices authenticate each other by assigning trust levels. 

• Role-based network architecture: Devices are assigned roles and permissions within specific 

domains. 

2.2.5 Compliance audits 

Compliance audits are conducted using automated tools to assess each system component and ensure 

that configurations meet security standards. These tools help identify potential vulnerabilities, which are 

critical in preventing security breaches in vital systems such as smart grids [24]. 

By addressing these security gaps and implementing robust solutions, smart grids can become more 

resilient to cyber threats, thereby ensuring the safe and efficient operation of modern power systems. 

3. ROLE OF MACHINE LEARNING TECHNIQUES IN CYBER SECURITY 

3.1 Cyber-Attack Types and Frequency in Smart Grids 

The smart grid ecosystem is complex and dynamic, integrating various communication and control 

systems to ensure efficient energy distribution. However, with this level of connectivity, there is a significant 

vulnerability to cyber-attacks. The types of cyber-attacks that target smart grids vary in terms of 

sophistication, impact, and frequency. To better understand these threats, analyzing the distribution of cyber-

attacks that have historically affected smart grids is essential. 
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3.1.1 Cyber-Attack Distribution in Smart Grids 

The chart below represents the distribution of the different types of cyber-attacks commonly 

encountered in smart grids in Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Different Cyber-Attacks in Smart Grid 

As illustrated, DDoS attacks represent the most frequent type of attack, accounting for 40% of incidents, 

followed by malware attacks at 30%. Phishing, data breaches, and insider threats occur less frequently but 

remain significant threats. These attack types target the grid's critical infrastructure with the aim of 

disrupting operations or stealing sensitive information. 

3.1.2 Attack Types: 

 DDoS (Distributed Denial of Service) Attacks: These overwhelm grid communication networks, 

disrupting services and impairing the grid's operational capacity. 

 Malware: This infiltrates control systems, allowing unauthorized access to grid data and control 

mechanisms. 

 Phishing: Exploits human errors, often targeting employees to gain access to grid control systems. 

 Data Breaches: Targets sensitive customer or operational data, leading to privacy concerns and 

operational risks. 

 Insider Threats: Involve malicious actions by trusted personnel within the grid ecosystem, often 

resulting in more sophisticated, hard-to-detect compromises. 

This distribution highlights the importance of multilayered security solutions and machine learning 

models that can dynamically respond to a variety of threats, ensuring the resilience of the smart grid against 

cyber-attacks. 

This survey underscores the need for advanced cyber security strategies, integrating real-time detection 

mechanisms, robust authorization protocols, and machine learning models to anticipate and mitigate these 

cyber threats 

3.2 Machine Learning Techniques In Cyber Security 

In the past decade, machine learning (ML) techniques have become pivotal in enhancing the cyber 

security of smart grids. Researchers have implemented various algorithms to effectively detect and mitigate 

cyber threats. The chart in Figure 3 highlights the growing use of prominent machine learning models, such 

as Support Vector Machines (SVM), Random Forests, and Deep Learning, from 2015 to 2024, based on 

surveyed studies. 

The chart shows a steady increase in the application of these techniques over time. 

 SVM: Initially popular for its effectiveness in classification, SVM usage saw significant growth 

until 2020, after which it stabilized. 

 Random forests: Their ability to handle large datasets and provide accurate predictions has led to 

consistent growth, making them one of the preferred models by 2024. 

 Deep learning: As data complexity and volumes have increased, deep learning has become the 

dominant approach from 2020 onward, particularly with advancements in neural networks. 
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This analysis illustrates the trend towards more complex and data-driven models, indicating that future 

smart grid cyber security will likely rely more heavily on deep learning techniques, driven by their superior 

performance in detecting sophisticated attacks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Machine Learning Techniques Used for Cyber Security in Smart Grids (2015-2024) 

This section outlines the historical evolution of machine learning models in securing smart grids, 

emphasizing the need for scalable and adaptable models to address the emerging cyber security challenges.  

3.3 Comparison of Detection Rates by Algorithms 

Accurate detection of cyber-attacks is critical for maintaining the security of smart grids. Different machine 

learning algorithms exhibit varying degrees of accuracy in detecting these attacks. The bar chart below 

compares the detection accuracy rates of several machine learning models applied to smart grid 

cybersecurity tasks (Figure 4). 

 Deep Learning: Achieving the highest detection accuracy at 95%, deep learning models are 

particularly effective in identifying complex and evolving threats owing to their ability to learn 

from large volumes of data. 

 Random Forests: With accuracy rate of 90%,random forests are highly effective in detecting 

cyber-attacks, especially those involving structured data. 

 SVM (Support Vector Machines): While SVM performs well, achieving an 85% accuracy rate, 

it is less effective compared to more advanced models such as deep learning. 

 KNN (K-nearest neighbors): At 80%, KNN provides moderate accuracy but struggles with large, 

high-dimensional datasets. 

 Naive Bayes: With the lowest detection accuracy of 75%, Naïve Bayes is less capable of handling 

complex attack patterns but remains useful for simpler classification tasks. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.Detection Accuracy Rates of Machine Learning Models 
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This comparison highlights that while traditional models such as SVM and Naïve Bayes still have their 

place, more advanced techniques such as deep learning and random forests are increasingly favored for 

cyber security applications in smart grids owing to their superior detection capabilities. 

3.4 Comparison of Different Existing Works 

An overview of the work done on machine learning techniques and their application in enhancing cyber 

security for smart grids is provided in Table 1. Each study addressed different aspects of smart grid security, 

such as anomaly detection, intrusion detection systems (IDS), and attack prevention. 

Table1. Work done on Machine Learning Techniques for Smart Grid Cyber Security 

 

S. No. Ref. Year of 

Publication 

Method Used Description Limitations 

1 27 2020 Anomaly 

Detection, IDS, 

Classification 

Algorithms 

A comprehensive review of ML 

techniques for securing smart 

grids focusing on anomaly 

detection and IDS. 

Limited to traditional 

ML models without 

discussing recent 

advancements. 
2 28 2013 Machine 

Learning 

Techniques 

Discusses specific cyber security 

challenges in smart grids and ML-

based solutions for cyber-Attack 

detection. 

Focused mainly on 

case studies, lacks in- 

depth comparison of 

Modern ML methods. 
3 29 2015 Intrusion 

Detection 

Systems (IDS) 

Reviews ML-based IDS for real-

time data analysis and attack 

prevention in smart grids. 

Does not address deep 

learning or hybrid 

models. 

4 30 2016 Machine 

Learning 

Techniques 

Outlines current cyber security 

threats to smart grids and 

Explores ML techniques to 

counter them.  

Future research 

directions are 

suggested, but lacks 

practical 

Implementation details. 
5 31 2018 Deep Learning 

(CNNs, RNNs) 
Focuses on deep learning 

methods for attack detection in 

smart grid 
communication and power layers. 

More focus on deep 
Learning ;

 traditional 
models not covered. 

6 32 2021 Supervised and 

Unsupervised 
Learning 

Evaluates supervised and 

unsupervised learning strategies 

for securing data 
transmission in smart grids. 

Mainly discusses 

Attack detection 
Without addressing 

scalability. 

7 33 2020 Decision Trees, 

SVMs, Neural 

Networks 

Covers various ML techniques for 

anomaly detection in smart grids 

to identify potential threats. 

Does not explore 

hybrid or ensemble 

models. 
8 34 2019 Machine 

Learning- based 

Intrusion 

Detection 

Surveys ML-based cyber security 

measures for securing smart grid 

communication and preventing 

insider 
threats. 

Focuses on specific 

attack types, lacks 

coverage on broader 

threat landscape. 

9 35 2023 Machine 

Learning- based 

Intrusion 

Detection 

Systems 

Explores ML techniques for 

intrusion detection in smart grids 

and outlines future directions for 

enhanced Cyber security. 

Needs practical 

implementation and 

validation on large- 

scale datasets. 

10 36 2022 Deep 

Reinforcement 

Learning 

Investigates the use of DRL for 

mitigating cyber-attacks on smart 

grids and proposes a DRL-based 

security framework. 

Limited evaluation in 

real-world smart grid 

scenarios. 

11 37 2022 Block chain and 

Machine Learning 

Comprehensive review of 

integrating block chain and ML 

for smart grid Cyber security, 

emphasizing data integrity. 

Lacks empirical 

comparison between 

block chain  and 

traditional security 
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methods. 

 

Shaukat et al. [27] and Wang et al. [28] offered broad surveys on machine learning techniques and the 

specific challenges faced by smart grids. Lopez et al. [29] and Zakaria et al. [30] discussed current threats 

like malware and data breaches, categorizing machine learning models used in real-time threat detection. 

Joudaki et al.[31]developed into deep learning methods like CNNs and RNNs for securing the 

communication and power infrastructure. Mazhar et al. [32] and Burgos et al. [33] evaluated different 

supervised and unsupervised learning strategies for anomaly detection. Sahani et al. [34] focused on 

machine learning-based measures to safeguard data privacy and defend against advanced cyber threats such 

as phishing and insider attacks. Collectively, these studies highlight the critical role of AI in enhancing 

smart grid security and outline future research directions. 

3.5 Smart Grid Cyber Security Incidents 

Smart grid cybersecurity incidents are critical events that target the technological infrastructure of modern 

power grids, posing severe risks to both grid stability and national security. These incidents often exploit 

vulnerabilities in the complex and interconnected components of smart grids, including Industrial Control 

Systems (ICS), Supervisory Control and Data Acquisition (SCADA) systems, and Internet of Things (IoT) 

devices. Notable incidents, such as the 2015 Ukraine Power Grid cyber-attack, the Mirai botnet attack on 

IoT devices in 2016, and the 2020 Solar Winds supply chain attack, illustrate a shift towards more 

sophisticated and targeted assaults. These attacks disrupt operations, cause power outages, and potentially 

compromise sensitive data. Responses have evolved by incorporating advanced intrusion detection 

systems, machine-learning-based anomaly detection, and more stringent regulatory measures to enhance 

the resilience of smart grids against such threats. The timeline of Smart Grid Cyber security incidents along 

with the mapping of significant events and attacks over the years are mentioned in Table 2. The content of 

the table discusses cyber-attack sophistication and evolved responses for the smart grid. 

Table 2. Time line of smart grid cyber security incidents 

Year Incident Details Impact Response Paper 

2015 Ukraine 

Power Grid 

Cyber attack 

Attackers remotely 

Accessed and disabled 

substations in Ukraine, 

causing Wide spread 

power outages. 

Service 

Disruption for 

225,000 people. 

Heightened focus On 

securing control 

Systems and 

Advanced intrusion 

detection. 

Cherepanov et. al, 

Industroyer: Biggest 

Threat to Industrial 

Control Systems Since 

Stuxnet. Retrieved From 

ESET Research. 

2016 Mirai Botnet 

Attack 

Mirai botnet Linked to 

Disruptions in Smart 

grids, Highlighting IoT 

vulnerabilities. 

Large-scale 

service 

Interruptions 

and data 

breaches. 

Adoption of stricter 

IoT security 

Protocols and 

Enhanced 

monitoring. 

Dragos ,Inc., Ukraine 

Cyber-attacks: ICS 

Cyber Kill Chain 

Analysis. Retrieved 

From Dragos. 

2017 Industroyer 

Malware 

Industroyer malware 

Targeted industrial 

Control systems, 

Causing severe 

outages. 

Severe service 

outages and 

potential 

Damage to 

infrastructure. 

Introduction of 

Advanced threat 

detection Techniques 

using ML. 

 

Cherepanov et.al, 

Industroyer: Biggest 

Threat to Industrial 

Control Systems Since 

Stuxnet. Retrieved From 

ESET Research. 

2018 Attack on 

U.S. Power 

Utility 

A cyber attack 

Targeted an U.S. 

utility, resulting 

In data breaches 

But no outages. 

Concerns About 

data Integrity 

and 

Confidentiality. 

Use of AI-driven 

Anomaly detection 

To monitor grid 

activity. 

U.S. Cyber security & 

Infrastructure Security 

Agency (CISA). 

Colonial Pipeline 

Ransomware Attack 

Report. 

Retrieved from CISA. 

2019 North 

American 

Electric 

Reliability 

Corporation 

NERC issued a Cyber 

security advisory, 

Warning against state-

sponsored Cyber-

attacks. 

Increased 

Awareness of 

critical 

infrastructure 

vulnerabilities. 

Strengthened 

regulatory 

Compliance and 

updated 

Frame works. 

North American Electric 

Reliability Corporation 

(NERC). Cyber security 

Advisory for Critical 

Infrastructure. Retrieved 
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(NERC) 

Alert 

from NERC. 

2020 Solar Winds 

Supply 

Chain 

Attack 

Solar Winds Software 

attack 

Affected utilities, 

Exposing grid data. 

Global 

implications 

on grid 

management 

software 

security.  

Focused on supply 

Chain security and 

Integrated ML 

Models for real-time 

monitoring. 

Solar Winds. Solar 

Winds Supply Chain 

Attack Report 

Retrieved from Solar 

Winds. 

2021 Colonial 

Pipeline 

Ransomware 

Attack 

Ransomware Attack on 

The Colonial Pipeline 

highlighted the risks to 

interconnected grid 

systems. 

Service 

Disruption and 

Panic buying 

Of fuel. 

Strengthened 

Response plans and 

Use of predictive ML 

models for 

Ransomware 

patterns. 

U.S. Cyber security & 

Infrastructure Security 

Agency (CISA). 

Colonial Pipeline 

Ransomware Attack 

Report 

Retrieved from CISA. 

2023 Emerging 

IoT-based 

Attacks 

Minor attacks Targeted 

IoT- 

Based devices, 

exploiting 

Vulnerabilities In edge 

components. 

No major 

outages but data 

breaches and 

Slowdowns. 

Increasing reliance 

On AI and ML- 

Based tools for 

Attack prediction 

And neutralization. 

Mohamed M et.al, 

Emerging applications of 

IoT and cyber security 

for electrical power 

systems 

4. PROPOSED SOLUTION IN SMART GRID COMMUNICATION ARCHETECTURE 

Compatibility and interoperability challenges remain a significant concern in the smart grid environment 

owing to the diversity of devices and communication protocols. Smart grid networks consist of many 

components, ranging from basic low-power sensors to sophisticated high-performance processors. This 

heterogeneity makes seamless integration difficult and often leads to security vulnerabilities during the data 

aggregation processes, as highlighted in the IBM model [9]. For example, when different protocols interact, 

incompatibilities can create blind spots in the network, thereby exposing critical data to cyber threats. 

To address these issues, this paper proposes a shift towards a unified, IPv6- based communication 

system. IPv6, when deployed over low-power wireless personal area networks (6LoWPAN) [25-26], offers 

the advantage of unique addressability and direct Internet connectivity for all smart grid components. This 

approach simplifies the communication architecture by eliminating the need for multilayer data 

aggregation, thereby reducing security risks and improving the overall system efficiency. Instead of relying 

on intermediary aggregation points, data can be transmitted directly to the application layer using standard 

IP-based protocols over Wi-Fi or 4G networks, as illustrated in the enhanced version of the smart grid 

architecture diagram. This solution leverages the vastly expanded address space of IPv6—capable of 

supporting 2^128 unique addresses—compared to the 4 billion addresses available under IPv4 (2^32). This 

capacity is critical for scaling IoT deployments within smart grids, ensuring that each device, from edge 

sensors to control systems, can be uniquely identified and managed securely. 

The proposed model represents a Smart Electric Grid system that connects various devices and platforms 

through a cloud-based architecture using the World Wide Web (WWW), as shown in Figure 5. It integrates 

in-home devices, smart meters, substation/grid devices, and distributed energy resources with different 

layers of software and system management to enable efficient control and real-time data analysis. The key 

components of the proposed architecture are as follows: 
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1. Device Layer: This layer comprises different types of devices connected to the smart grid. 

 In-home Devices (IP0, IP1, IP2): Smart appliances, home automation systems, and energy 

management devices are some examples. These devices monitor and control electricity 

consumption at the consumer level. 

 Smart Meter (IP3): It acts as the central gateway between in-home devices and the rest of the 

grid. Measures electricity usage, supports two-way communication, and manages demand-

response operations. 

 Substation and Grid Devices (IP4 and IP5): This includes intelligent sensors, voltage regulators, 

and automated switches located at substations or distribution lines. It facilitates grid reliability, 

real-time monitoring, and automated fault detection. 

 Mobile Devices (IP6, IP7): This comprises mobile control systems and field devices used by 

operators for remote management and data collection. 

 Distributed Resources (IPn): Distributed Energy Resources (DERs), such as solar panels, wind 

turbines, and battery storage units. It contributes to power generation, energy storage, and grid 

stabilization. 

2. System Integration Platforms: The integration layer manages the interoperability and coordination 

between the different components of the smart grid. 

 Computer Infrastructure: Represents the hardware and network infrastructure that supports data 

storage, processing, and secure communication. 

 System Management: Software and control systems that handle grid operations, load balancing, 

resource optimization, and fault management. 

 Application & Data Integration: Middleware platform that aggregates data from various devices, 

standardizes formats, and enables seamless integration across multiple layers. 

3. Software Layers: This segment deals with the interface and analytical tools for decision-making 

and user interactions: 

 Presentation Layer: User interfaces, graphical dashboards, and visualization tools for 

stakeholders to monitor the grid performance and health status. 

 Apps and Analytics Layer: This layer comprises applications and analytical tools for data-driven 

decision-making. This also supports functions such as predictive maintenance, demand 

forecasting, and optimization of energy resources. 

4. Connectivity Via The World Wide Web (Www) 

 All the components were interconnected through the World Wide Web, highlighting a cloud-based 

architecture. 

 This connectivity enables real-time data exchange, remote monitoring, and control across the grid 

using secure Internet protocols. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5. Proposed smart grid model 
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The proposed model integrates distributed devices, advanced system management platforms, and 

software layers to achieve a flexible, scalable, and intelligent electric grid system. Through this architecture, 

real-time monitoring, efficient resource management, and proactive maintenance are achieved, enhancing 

the overall grid stability and reliability. 

 

5. CONCLUSION 

The rapid evolution of smart grids has introduced unprecedented opportunities and significant 

cybersecurity challenges. As smart grid systems incorporate more interconnected devices, including 

sensors, smart meters, and IoT components, the attack surface expands, rendering traditional security 

measures insufficient. This review examines various machine learning models and approaches that have 

been employed to address these challenges, focusing on enhancing the detection and mitigation of cyber 

threats. The analysis highlights that while machine learning and artificial intelligence are promising tools 

for developing robust security frameworks, there are still critical gaps in compatibility, data aggregation 

security, and protocol standardization. 

To overcome these challenges, this paper proposes transitioning to a unified IPv6-based communication 

layer, which simplifies data exchange, reduces security risks, and allows for the direct connectivity of all 

devices. This approach, along with the integration of advanced security protocols such as IP sec, can 

enhance the real-time detection and response capabilities of smart grid systems, making them more resilient 

to cyber-attacks. Future research should focus on refining these models to address merging threats, ensuring 

scalability, and creating comprehensive solutions that account for both edge device security and system-

wide protection. By aligning research efforts with these goals, it is possible to build a more secure and 

reliable smart grid infrastructure capable of withstanding sophisticated cyber threats. 
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