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Abstract: As smart grid systems continue to evolve through the integration of advanced communication
technologies and an increasing number of interconnected devices, the imperative for robust cybersecurity
measures has become paramount. This study examines the current state of smart grid cybersecurity,
emphasizing the challenges arising from heterogeneous environments and the integration of Internet of Things
(1oT) components. It investigates various machine learning methodologies designed to enhance threat
detection, response capabilities, and overall system resilience. Furthermore, this study identified significant
deficiencies in the existing architecture, particularly regarding protocol compatibility and data aggregation
security. To address these issues, a novel proposal for a unified IPv6-based communication layer is
introduced, which simplifies connectivity, mitigates security vulnerabilities, and facilitates direct Internet
access for all devices. This framework not only improves the efficiency of data transmission but also
strengthens the security posture of smart grids through the implementation of IP-based security protocols.
These findings underscore the necessity of advancing cybersecurity measures in smart grids and delineate
future research directions aimed at developing comprehensive strategies to ensure the integrity and resilience
of this critical infrastructure against evolving cyber threats.

Index Terms: Cyber Security, Information and Communication Technologies (ICT), Internet of Things,
Networks, and Smart Grid.

1. INTRODUCTION

The global transition towards smart grids represents a significant milestone in the modernization of energy
infrastructure, combining the traditional power grid with advanced information and communication
technologies (ICT).This fusion allows for more efficient and sustainable management of electricity,
particularly with the integration of distributed renewable energy sources near areas of consumption [1-2]. As
energy systems evolve, smart grids introduce bidirectional power flows that enable dynamic energy exchange
between utilities and consumers through sophisticated two-way communication networks [3-5]. This shift
away from a centralized, utility-owned grid creates new opportunities for innovation and collaboration among
a wide range of stakeholders. The National Institute of Standards and Technology (NIST) conceptual model
highlights the complexity of the smart grid by identifying seven key sectors: large-scale power generation,
transmission, distribution, consumption, service providers, operations, and markets [6-8]. By leveraging these
components, smart grids can achieve high levels of efficiency, resilience, and flexibility in terms of energy
management.

Additionally, companies such as IBM have developed advanced models for smart grids, which provide
further insights into the role of computing platforms, data storage, and communication infrastructure. These
models emphasize the importance of scalable technologies such as Software as a Service (SaaS) and
Infrastructure as a Service (laaS) in supporting device connectivity, while addressing crucial factors such as
protocol capacity, resilience, bandwidth, latency, and security [9]. Through these advancements, smart grids
have paved the way for a more responsive and sustainable energy future.
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The smart grid's architecture is built on multiple layers, each serving distinct functions to ensure efficient

operation and integration, as shown in Figure 1.

» Software Layer: This layer includes tools for evaluating meter data, managing billing, monitoring
outages, controlling overloads, and integrating devices for both field technicians and users. It also
incorporates geographic information systems (GIS), wide-area management systems, and customer
information systems.

» System Integration Platform: The system integration platform handles the coordination of
applications and data, network and security management, and computing frameworks necessary for
grid operation.

» Communication Layer: This layer consists of various communication networks, including
centralized, office, external, access,and black hole networks, as well as in-home, neighborhood, and
central networks. It supports both wired and wireless communication across short and long distances.

» Physical Layer: The physical layer encompasses energy production, distribution, transmission,

consumption, renewable energy sources, and energy storage systems within the smart grid.

I

I SystemIntegration |

" Communication Layer

l Physical Layer

Figure 1: Conceptual Framework for Smart Grid
In the framework of the NIST conceptual model, Figure 1 replicates the IBM model [9], showing that

approximately 70% of the smart grid infrastructure consists of Information and Communication
Technology (ICT) layers [10].

A detailed examination of the communication layer revealed that multiple wired and wireless networks
are essential for connectivity across various distances. The software layer further integrates tools for
managing grid operations, requiring access for different user groups, such as operators, home owners, field
engineers, service providers, and marketing staff. However, the widespread access inherent in these
systems introduces significant cybersecurity risks. To mitigate these threats, strong permission and
authentication mechanisms are necessary to protect the grid from unauthorized intrusions.

1.1 Uses of Machine Learning Techniques for Cyber Security of Smart Grid

Machine learning (ML) methods are often categorized based on their various applications within smart
grids (SGs), although they do not always focus on cyber security, or by their learning types (e.g.,
supervised, unsupervised, and reinforcement learning). The works thus far typically highlight the
limitations, benefits, and drawbacks in detail. While some mention future directions, they often do not
address the specific area of interest. In this regard, it is essential to provide clear, actionable guidelines on
"how to implement" solutions. Furthermore, most studies do not offer specific recommendations on model
selection or reconstruction, nor do they explain the criteria for choosing a particular ML model.
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To address these gaps and offer a more focused evaluation of ML applications in SG cyber security, this
study focuses on the following:

> Presenting a comprehensive solution to "how to solve attack detection problems” using ML tools,
thus addressing model selection challenges.

> Developing a flowchart that provides guidance on "which criteria to use for selecting a specific ML
model,” making it easier to choose the appropriate model based on different data characteristics.

» Offering an enhanced classification of ML models focused on SG cyber security, improving on
previous efforts by ranking ML tools according to the CIA (Confidentiality, Integrity and
Auvailability) security model to provide a clearer application of ML techniques to SG security
challenges.

» We provide a categorization of ML models by complexity—comparing conventional learning and
deep learning—to clarify the different levels of complexity in data handling.

> It covers all earning paradigms, including supervised, unsupervised, and reinforcement learning,
and discusses modeling approaches, such as traditional, hybrid, and ensemble methods.

» Compile a list of datasets, systems, and types of attacks to quickly locate relevant applications and
common security threats.

» Summarize the benefits, drawbacks, and challenges of ML-based cybersecurity approaches in
power grids.

» The key areas for future research are highlighted.

This study was based on a thorough literature search, focusing on recent studies from the past five years,
with particular emphasis on the most relevant papers published in the last three years from major databases.
The proposed model and identified drawbacks are both derived entirely from a review of the existing
literature. Carefully chosen keywords related to ML and cyber security in smart grids were used to guide
this search. The analysis indicates that most studies concentrate on detecting attacks, with relatively few
addressing mitigation or correction measures. It is important to note that this focus on detection reflects the
trends in the papers analyzed, rather than an intentional bias toward that area.

1.2 Goals and Requirements for Protection

The smart grid comprises numerous interconnected devices that share two primary types of data:
informational and operational. Informational data include power usage bills, trends, logs, tags, historical
reports, geographic locations, customer information, and emails [11].Operational data, on the other hand,
include real-time voltage and current readings, transformer tap positions, capacitor banks, transformer
feeder loads, fault locations, relay statuses, and circuit breaker conditions [12-13].0wing to its critical
nature, operational data requires a high level of security to protect the smart grid from potential threats and
vulnerabilities that could lead to blackouts.

The key protection objectives and requirements for the smart grid are as follows:

» Availability: Ensuring timely access to information within the smart grid. Lack of availability could
prevent authorized users from accessing the system, potentially disrupting power delivery. Denial
of Service (DoS) attacks, which aim to disrupt data transmission and make resources inaccessible,
target system availability.

» Integrity: Preventing unauthorized changes to data or systems. A loss of integrity in the smart grid
can alter the process values or sensor readings, negatively impacting power management.

» Confidentiality: Restricting access for unauthorized individuals to safeguard personal privacy and
security. Smart grid networks transmit data with varying levels of sensitivity, ranging from
consumption statistics to private customer information.

» Authentication: Verifying the true identity of the parties involved in communication. Both human
and machine authentication are crucial, as breaches can allow hackers access to private data or
unauthorized devices to exploit smart grid resources.
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» Authorization: Managing access to systems and data, known as access control. An authorization
system is essential in a smart grid to handle a wide variety of devices and users, ensuring proper
access to data and resources.

» Non-Repudiation: Ensuring that actions taken by a system or user cannot be denied later. This is
particularly important when sensitive information and valuable resources are involved.

2. SECURITY GAPS AND SOLUTIONS IN THE SMART GRID
2.1 Security Gaps in Smart Grid

Smart grids face several risks and challenges, particularly in terms of cybersecurity. This section

explores various security concerns and the techniques employed to safeguard smart grid systems.

» Connectivity: The smart grid communication network is highly intricate, incorporating a wide
range of compatible devices. Owing to their decentralized nature, these systems require robust
defenses against potential attacks and vulnerabilities. Such attacks can give attackers control over
the grid, leading to physical harm, blackouts, and decreased efficiency [14].

» Trust: The interconnected nature of smart grid systems has led to a shift in design principles,
moving away from assuming that all consumers can be trusted. Some users may deliberately cause
harm, such as tampering with smart meters to report incorrect power consumption data at lower
costs.

» Customer Privacy: Preserving customer privacy is critical in any system, including smart grids.
The deployment of smart meters raises privacy concerns, as they can potentially expose sensitive
information about users' daily routines and home presence. This information can be exploited by
criminals, companies, marketers, or competitors. Therefore, it is crucial to safeguard user privacy
during data transmission and storage.

» Software Flaws: Smart grids are vulnerable to software flaws, including malware. Malicious
software or updates targeting Supervisory Control and Data Acquisition (SCADA) systems pose a
significant threat. Such systems often exhibit well-known vulnerabilities that require patching.
However, the high costs and potential downtime associated with patching make it difficult for
critical systems such as smart grids [15].

2.2 Techniques for Securing Smart Grid Systems

Cyber security in smart-grid systems is a topic of great interest to researchers and industry professionals.
Although some solutions have been proposed, numerous vulnerabilities-persist. This section examines
current strategies to address cyber security issues in smart grid technologies.
2.2.1 Cyber Security on Networks

One of the most common attacks on smart grid networks is the denial of service(DoS) attack, which
aims to disrupt the normal operations of the target system. To defend against such attacks, smart-grid
systems employ various detection and mitigation techniques [16].

A. Detection of DoS

Smart grid systems must detect DoS attacks in real time to implement appropriate defenses, especially
against Distributed Denial of Service (DDoS) attacks. Methods for detecting DoS attacks include the
following:

» Flow Entropy Method: Analyzing network traffic and measuring flow entropy to identify
abnormal behavior indicative of a DoS attack [17-19].

» Signal Intensity Analysis: Assessing energy levels to detect jamming attempts in wireless
networks [20].

» Sensing Time Measurement: Using Carrier Sense Multiple Access (CSMA)to detect unusually
long channel sensing times, which may indicate a jamming attack [21].

» Transmission Failure Count: Monitoring transmission errors to detect jamming attacks based on
a failure threshold [21].

» Signature Detection: Matching known attack behaviors and characteristics to detect DoS attacks
[20].
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B. DoS Mitigation
Mitigating DoS attacks involves network and physical layer strategies.
» Pushback: Sending attack information to upstream routers to block malicious traffic [20].
Rate Limiting: Reduces data transmission rates of suspicious users [20].
Filtering: Blocking packets from black-listed IP addresses [20].
Reconfiguration: Network topology is adjusted to allocate more resources to victims or isolate
attackers [20].
» Cleaning Center: Rerouting traffic through a specialized node that filters and handles potential
attacks [20].

At the physical layer, techniques such as Frequency Hopping Spread Spectrum (FHSS), Direct Sequence
Spread Spectrum (DS), and Chirp Spread Spectrum (CSS) are used to counteract frequency jamming
attacks. These methods spread data across multiple frequencies to protect against interference [22-23].
2.2.2 Information Security

Securing data and authenticating devices is another critical aspect of protecting smart grid networks.
Encryption techniques such as public-key encryption and symmetric-key encryption are used to protect
user information and communications. Public key encryption provides better security, whereas symmetric
encryption is more efficient for devices with limited processing power.

Authentication must also be efficient, fault-tolerant, resilient to attacks, and support multicast
communication, which is essential for smart grids. Various techniques for multicast authentication include
secret information asymmetry, time asymmetry, and hybrid asymmetry.

2.2.3 Key management

Effective key management is crucial for maintaining encryption and authentication in a smart grid. This
includes symmetric key management and public key infrastructure (PKI). PKI verifies the authenticity of
communicating parties using certificates, whereas symmetric key management handles the creation,
distribution, storage, and updating of keys. Scalability, efficiency, and resolvability are key factors for
managing keys in a vast smart-grid network [6].

2.2.4 Network security protocols

Creating secure network framewaorks and protocols is essential for smart grid security. Many smart grid
systems rely on internet-based protocols such as TLS and IPSec. Additionally, secure protocols tailored to
smart grid requirements, such as Secure DNP3, IEC61850, and IEC62351, are used to enhance
communication security.

Smart grid networks typically use one of two architectures for secure infrastructure:

«  Trust-based architecture: Devices authenticate each other by assigning trust levels.

* Role-based network architecture: Devices are assigned roles and permissions within specific
domains.

2.2.5 Compliance audits

Compliance audits are conducted using automated tools to assess each system component and ensure
that configurations meet security standards. These tools help identify potential vulnerabilities, which are
critical in preventing security breaches in vital systems such as smart grids [24].

By addressing these security gaps and implementing robust solutions, smart grids can become more
resilient to cyber threats, thereby ensuring the safe and efficient operation of modern power systems.

3. ROLE OF MACHINE LEARNING TECHNIQUES IN CYBER SECURITY
3.1 Cyber-Attack Types and Frequency in Smart Grids
The smart grid ecosystem is complex and dynamic, integrating various communication and control

systems to ensure efficient energy distribution. However, with this level of connectivity, there is a significant
vulnerability to cyber-attacks. The types of cyber-attacks that target smart grids vary in terms of
sophistication, impact, and frequency. To better understand these threats, analyzing the distribution of cyber-
attacks that have historically affected smart grids is essential.
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3.1.1 Cyber-Attack Distribution in Smart Grids

The chart below represents the distribution of the different types of cyber-attacks commonly
encountered in smart grids in Figure 2.

Cyberattack Typas and Frequency in Smart Grids

404

Fhahng DOS

Figure 2. Different Cyber-Attacks in Smart Grid
As illustrated, DDoS attacks represent the most frequent type of attack, accounting for 40% of incidents,

followed by malware attacks at 30%. Phishing, data breaches, and insider threats occur less frequently but
remain significant threats. These attack types target the grid's critical infrastructure with the aim of
disrupting operations or stealing sensitive information.
3.1.2 Attack Types:
» DDoS (Distributed Denial of Service) Attacks: These overwhelm grid communication networks,
disrupting services and impairing the grid's operational capacity.
» Malware: This infiltrates control systems, allowing unauthorized access to grid data and control
mechanisms.
> Phishing: Exploits human errors, often targeting employees to gain access to grid control systems.
» Data Breaches: Targets sensitive customer or operational data, leading to privacy concerns and
operational risks.
» Insider Threats: Involve malicious actions by trusted personnel within the grid ecosystem, often
resulting in more sophisticated, hard-to-detect compromises.

This distribution highlights the importance of multilayered security solutions and machine learning
models that can dynamically respond to a variety of threats, ensuring the resilience of the smart grid against
cyber-attacks.

This survey underscores the need for advanced cyber security strategies, integrating real-time detection
mechanisms, robust authorization protocols, and machine learning models to anticipate and mitigate these
cyber threats
3.2 Machine Learning Techniques In Cyber Security

In the past decade, machine learning (ML) techniques have become pivotal in enhancing the cyber
security of smart grids. Researchers have implemented various algorithms to effectively detect and mitigate
cyber threats. The chart in Figure 3 highlights the growing use of prominent machine learning models, such
as Support Vector Machines (SVM), Random Forests, and Deep Learning, from 2015 to 2024, based on
surveyed studies.

The chart shows a steady increase in the application of these techniques over time.
» SVM: Initially popular for its effectiveness in classification, SVM usage saw significant growth

until 2020, after which it stabilized.

» Random forests: Their ability to handle large datasets and provide accurate predictions has led to
consistent growth, making them one of the preferred models by 2024.

> Deep learning: As data complexity and volumes have increased, deep learning has become the
dominant approach from 2020 onward, particularly with advancements in neural networks.
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This analysis illustrates the trend towards more complex and data-driven models, indicating that future
smart grid cyber security will likely rely more heavily on deep learning techniques, driven by their superior
performance in detecting sophisticated attacks.

Machine Learming Technigues Used for Cybersecurity in Srmart Grids {2015-2024)
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Figure 3. Machine Learning Techniques Used for Cyber Security in Smart Grids (2015-2024)

This section outlines the historical evolution of machine learning models in securing smart grids,
emphasizing the need for scalable and adaptable models to address the emerging cyber security challenges.
3.3 Comparison of Detection Rates by Algorithms
Accurate detection of cyber-attacks is critical for maintaining the security of smart grids. Different machine
learning algorithms exhibit varying degrees of accuracy in detecting these attacks. The bar chart below
compares the detection accuracy rates of several machine learning models applied to smart grid
cybersecurity tasks (Figure 4).

» Deep Learning: Achieving the highest detection accuracy at 95%, deep learning models are
particularly effective in identifying complex and evolving threats owing to their ability to learn
from large volumes of data.

» Random Forests: With accuracy rate of 90%,random forests are highly-effective in detecting
cyber-attacks, especially those involving structured data.

» SVM (Support Vector Machines): While SVM performs well, achieving an 85% accuracy rate,
it is less effective compared to more advanced models such as deep learning.

» KNN (K-nearest neighbors): At 80%, KNN provides moderate accuracy but struggles with large,
high-dimensional datasets.

> Naive Bayes: With the lowest detection accuracy of 75%, Naive Bayes is less capable of handling
complex attack patterns but remains useful for simpler classification tasks.

Detection Accuracy |%)

Rancom Forests Deep Leaming Nalve Dayes

Figure 4.Detection Accuracy Rates of Machine Learning Models
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This comparison highlights that while traditional models such as SVM and Naive Bayes still have their
place, more advanced techniques such as deep learning and random forests are increasingly favored for
cyber security applications in smart grids owing to their superior detection capabilities.

3.4 Comparison of Different Existing Works

An overview of the work done on machine learning techniques and their application in enhancing cyber
security for smart grids is provided in Table 1. Each study addressed different aspects of smart grid security,

such as anomaly detection, intrusion detection systems (IDS), and attack prevention.
Tablel. Work done on Machine Learning Techniques for Smart Grid Cyber Security

S.No. |Ref.| Year of Method Used Description Limitations
Publication
1 27 2020 Anomaly A comprehensive review of ML Limited to traditional
Detection, IDS, techniques for securing smart ML models without
Classification grids focusing on anomaly discussing recent
Algorithms detection and IDS. advancements.
2 | 28 2013 Machine Discussesspecific cyber security Focused mainly on
Learning challenges in smart grids and ML- | case studies, lacks in-
Techniques based solutions for cyber-Attack depth comparison of
detection. Modern ML methods.
3 | 29 2015 Intrusion Reviews ML -based IDS for real- | Does not address deep
Detection time data analysis and attack learning or hybrid
Systems (IDS) prevention in smart grids. models.
4 | 30 2016 Machine Outlines current cyber security Future research
Learning threats to smart grids and directions are
Techniques Explores ML techniques to suggested, but lacks
counter them. practical
Implementation details.
o | 31 2018 Deep Learning Focuses on deep learning More focus on deep
(CNNs, RNNS) | methods for attack detection in Learning ;.
smart grid traditional
communication and power layers. | MOdels not covered.
6 | 32 2021 Supervised and Evaluates supervised and Mainly discusses
Unsupervised unsupervised learning strategies Attack detection
Learning for securing data Without addressing
transmission in smart grids. scalability.
7| 33 2020 Decision Trees, | Covers various ML techniques for Does not explore
SVMs, Neural anomaly detection in smart grids hybrid or ensemble
Networks to identify potential threats. models.
8 | 34 2019 Machine Surveys ML-based cyber security | Focuses on specific
Learning- based | measures for securing smart grid attack types, lacks
Intrusion communication and preventing coverage on broader
Detection insider threat landscape.
threats.
9 | 35 2023 Machine Explores ML techniques for Needs practical
Learning- based | intrusion detection in smart grids implementation and
Intrusion and outlines future directions for validation on large-
Detection enhanced Cyber security. scale datasets.
Systems
10 | 36 2022 Deep Investigates the use of DRL for | Limited evaluation in
Reinforcement | mitigating cyber-attacks on smart | real-world smart grid
Learning grids and proposes a DRL-based scenarios.
security framework.
1 | 37 2022 Block chain and Comprehensive review of Lacks empirical
Machine Learning| integrating block chain and ML comparison between
for smart grid Cyber security, block chain and
emphasizing data integrity. traditional security
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methods.

Shaukat et al. [27] and Wang et al. [28] offered broad surveys on machine learning techniques and the
specific challenges faced by smart grids. Lopez et al. [29] and Zakaria et al. [30] discussed current threats
like malware and data breaches, categorizing machine learning models used in real-time threat detection.
Joudaki et al.[31]developed into deep learning methods like CNNs and RNNs for securing the
communication and power infrastructure. Mazhar et al. [32] and Burgos et al. [33] evaluated different
supervised and unsupervised learning strategies for anomaly detection. Sahani et al. [34] focused on
machine learning-based measures to safeguard data privacy and defend against advanced cyber threats such
as phishing and insider attacks. Collectively, these studies highlight the critical role of Al in enhancing
smart grid security and outline future research directions.

3.5 Smart Grid Cyber Security Incidents

Smart grid cybersecurity incidents are critical events that target the technological infrastructure of modern
power grids, posing severe risks to both grid stability and national security. These incidents often exploit
vulnerabilities in the complex and interconnected components of smart grids, including Industrial Control
Systems (ICS), Supervisory Control and Data Acquisition (SCADA) systems, and Internet of Things (1oT)
devices. Notable incidents, such as the 2015 Ukraine Power Grid cyber-attack, the Mirai botnet attack on
0T devices in 2016, and the 2020 Solar Winds supply chain attack, illustrate a shift towards more
sophisticated and targeted assaults. These attacks disrupt operations, cause power outages, and potentially
compromise sensitive data. Responses have evolved by incorporating advanced intrusion detection
systems, machine-learning-based anomaly detection, and more stringent regulatory measures to enhance
the resilience of smart grids against such threats. The timeline of Smart Grid Cyber security incidents along
with the mapping of significant events and attacks over the years are mentioned in Table 2. The content of

the table discusses cyber-attack sophistication and evolved responses for the smart grid.

Table 2. Time line of smart grid cyber security incidents

Year | Incident Details Impact Response Paper
2015 | Ukraine Attackers remotely Service Heightened focus On|  Cherepanov et. al,
Power Grid | Accessed and disabled | Disruption for | securing control Industroyer: Biggest
Cyber attack|substations in Ukraine, | 225,000 people. Systems and Threat to Industrial
causing Wide spread Advanced intrusion | Control Systems Since
power outages. detection. Stuxnet. Retrieved From
ESET Research.
2016 |Mirai Botnet| Mirai botnet Linked to| Large-scale | Adoption of stricter | Dragos ,Inc., Ukraine
Attack Disruptions in Smart service loT security Cyber-attacks: ICS
grids, Highlighting 10T | Interruptions Protocols and Cyber Kill Chain
vulnerabilities. and data Enhanced Analysis. Retrieved
breaches. monitoring. From Dragos.
2017 | Industroyer | Industroyer malware | Severe service Introduction of Cherepanov et.al,
Malware Targeted industrial outages and Advanced threat Industroyer: Biggest
Control systems, potential detection Techniques| Threat to Industrial
Causing severe Damage to using ML. Control Systems Since
outages. infrastructure. Stuxnet. Retrieved From
ESET Research.
2018 | Attack on A cyber attack Concerns About| Use of Al-driven | U.S. Cyber security &
U.S. Power | Targeted an U.S. data Integrity | Anomaly detection | Infrastructure Security
Utility utility, resulting and To monitor grid Agency (CISA).
In data breaches | Confidentiality. activity. Colonial Pipeline
But no outages. Ransomware Attack
Report.
Retrieved from CISA.
2019 North NERC issued a Cyber Increased Strengthened North American Electric
American security advisory, Awareness of regulatory Reliability Corporation
Electric | Warning against state- critical Compliance and | (NERC). Cyber security
Reliability | sponsored Cyber- infrastructure updated Advisory for Critical
Corporation attacks. vulnerabilities. Frame works. Infrastructure. Retrieved
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(NERC) from NERC.
Alert
2020 |Solar Winds| Solar Winds Software Global Focused on supply Solar Winds. Solar
Supply attack implications | Chainsecurity and | Winds Supply Chain
Chain Affected utilities, on grid Integrated ML Attack Report
Attack Exposing grid data. management | Models for real-time | Retrieved from Solar
software monitoring. Winds.
security.
2021 | Colonial |Ransomware Attack on Service Strengthened U.S. Cyber security &
Pipeline | The Colonial Pipeline | Disruption and | Response plans and | Infrastructure Security
Ransomware| highlighted the risks to| Panic buying [Use of predictive ML Agency (CISA).
Attack interconnected grid Of fuel. models for Colonial Pipeline
systems. Ransomware Ransomware Attack
patterns. Report
Retrieved from CISA.
2023 | Emerging |Minor attacks Targeted|  No major Increasing reliance Mohamed M et.al,
loT-based loT- outages but data, On Al and ML-  |Emerging applications of
Attacks Based devices, breaches and Based tools for loT and cyber security
exploiting Slowdowns. Attack prediction for electrical power
Vulnerabilities In edge And neutralization. systems
components.

4. PROPOSED SOLUTION IN SMART GRID COMMUNICATION ARCHETECTURE
Compatibility and interoperability challenges remain a significant concern in the smart grid environment

owing to the diversity of devices and communication protocols. Smart grid networks consist of many
components, ranging from basic low-power sensors to sophisticated high-performance processors. This
heterogeneity makes seamless integration difficult and often leads to security vulnerabilities during the data
aggregation processes, as highlighted in the IBM model [9]. For example, when different protocols interact,
incompatibilities can create blind spots in the network, thereby exposing critical data to cyber threats.

To address these issues, this paper proposes a shift towards a unified, IPv6- based communication
system. IPv6, when deployed over low-power wireless personal area networks (6LoWPAN)[25-26], offers
the advantage of unique addressability and direct Internet connectivity for all smart grid components. This
approach simplifies the communication architecture by eliminating the need for multilayer data
aggregation, thereby reducing security risks and improving the overall system efficiency. Instead of relying
on intermediary aggregation points, data can be transmitted directly to the application layer using standard
IP-based protocols over Wi-Fi or 4G networks, as illustrated in the enhanced version of the smart grid
architecture diagram. This solution leverages the vastly expanded address space of IPv6—capable of
supporting 27128 unique addresses—compared to the 4 billion addresses available under IPv4 (2732). This
capacity is critical for scaling 10T deployments within smart grids, ensuring that each device, from edge
sensors to control systems, can be uniquely identified and managed securely.

The proposed model represents a Smart Electric Grid system that connects various devices and platforms
through a cloud-based architecture using the World Wide Web (WWW), as shown in Figure 5. It integrates
in-home devices, smart meters, substation/grid devices, and distributed energy resources with different
layers of software and system management to enable efficient control and real-time data analysis. The key
components of the proposed architecture are as follows:
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1. Device Layer: This layer comprises different types of devices connected to the smart grid.
» In-home Devices (IPO, IP1, 1P2): Smart appliances, home automation systems, and energy

management devices are some examples. These devices monitor and control electricity
consumption at the consumer level.

» Smart Meter (IP3): It acts as the central gateway between in-home devices and the rest of the
grid. Measures electricity usage, supports two-way communication, and manages demand-
response operations.

» Substation and Grid Devices (IP4 and IP5): This includes intelligent sensors, voltage regulators,
and automated switches located at substations or distribution lines. It facilitates grid reliability,
real-time monitoring, and automated fault detection.

» Mobile Devices (IP6, IP7): This comprises mobile control systems and field devices used by
operators for remote management and data collection.

> Distributed Resources (IPn): Distributed Energy Resources (DERS), such as solar panels, wind
turbines, and battery storage units. It contributes to power generation, energy storage, and grid
stabilization.

2. System Integration Platforms: The integration layer manages the interoperability and coordination
between the different components of the smart grid.

» Computer Infrastructure: Represents the hardware and network infrastructure that supports data
storage, processing, and secure communication.

» System Management: Software and control systems that handle grid operations, load balancing,
resource optimization, and fault management.

» Application & Data Integration: Middleware platform that aggregates data from various devices,
standardizes formats, and enables seamless integration across multiple layers.

3. Software Layers: This segment deals with the interface and analytical tools for decision-making
and user interactions:

> Presentation Layer: User interfaces, graphical dashboards, and visualization tools for
stakeholders to monitor the grid performance and health status.

» Apps and Analytics Layer: This layer comprises applications and analytical tools for data-driven
decision-making. This also supports functions such as predictive maintenance, demand
forecasting, and optimization of energy resources.

4. Connectivity Via The World Wide Web (Www)
> All the components were interconnected through the World Wide Web, highlighting a cloud-based

architecture.
» This connectivity enables real-time data exchange, remote monitoring, and control across the grid
using secure Internet protocols.
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Figure 5. Proposed smart grid model
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The proposed model integrates distributed devices, advanced system management platforms, and
software layersto achieve a flexible, scalable, and intelligent electric grid system. Through thisarchitecture,
real-time monitoring, efficient resource management, and proactive maintenance are achieved, enhancing
the overall grid stability and reliability.

5. CONCLUSION

The rapid evolution of smart grids has introduced unprecedented opportunities and significant
cybersecurity challenges. As smart grid systems incorporate more interconnected devices, including
sensors, smart meters, and loT components, the attack surface expands, rendering traditional security
measures insufficient. This review examines various machine learning models and approaches that have
been employed to address these challenges, focusing on enhancing the detection and mitigation of cyber
threats. The analysis highlights that while machine learning and artificial intelligence are promising tools
for developing robust security frameworks, there are still critical gaps in compatibility, data aggregation
security, and protocol standardization.

To overcome these challenges, this paper proposes transitioning to a unified IPv6-based communication
layer, which simplifies data exchange, reduces security risks, and allows for the direct connectivity of all
devices. This approach, along with the integration of advanced security protocols such as IP sec, can
enhance the real-time detection and response capabilities of smart grid systems, making them more resilient
to cyber-attacks. Future research should focus on refining these models to address merging threats, ensuring
scalability, and creating comprehensive solutions that account for both edge device security and system-
wide protection. By aligning research efforts with these goals, it is possible to build a more secure and
reliable smart grid infrastructure capable of withstanding sophisticated cyber threats.
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