www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT.ORG ISSN : 2320-2882

é% INTERNATIONAL JOURNAL OF CREATIVE
p‘ RESEARCH THOUGHTS (IJCRT)
@a% An International Open Access, Peer-reviewed, Refereed Journal

The Workflow Of Nanite Real-Time Rendering
Optimization And Lumen Technology In Unreal
Engine 5

Almurat Amangeldy
Vistula University of Finance and Business, Warsaw, Poland

Abstract

The ongoing evolution of real-time rendering solutions has raised the bar on realism, interactivity, and
scalability in modern digital applications such as gaming, architectural rendering, and virtual production.
Classic rendering solutions are very reliant on hand-authored levels-of-detail and lightmaps, requiring a
considerable amount of time and making real-time adaptation and changes unfeasible. Unreal Engine 5 (UE5)
in April 52022 released two new technologies - Nanite virtualized geometry and Lumen global illumination,
that target the above challenges with fully automated and GPU-enabled solutions and real-time calculation.
In this work, a technical exploration of the two solutions is presented, examining their architecture, mechanics,
and integration into modern rendering solutions. Nanite dynamically manages geometric detail by means of
hierarchical clustering, culling on the GPU, and surface caching, eliminating the authoring needs of traditional
levels-of-detail processes. Lumen enables real-time global illumination by a hybrid tracing method including
screen-space approaches, distance-field propagation, and surface caching either with hardware or much
cheaper solution, software ray tracing support. A comparison with more traditional solutions reveals
improvements regarding production efficiency, iteration time, and image quality, besides dependencies on
hardware and workflow limitations.

Keywords: Nanite, Lumen, Real-Time Rendering, Virtualized Geometry, Global Illumination, Unreal Engine
5.

1. Introduction

Real-time rendering is an important part of current interactive applications such as video games, architectural
visualizations, virtual production, and simulation-based training systems. During the past twenty years, there
has been continued technological support in terms of graphics and rendering technology developments that
lead to highly realistic virtual environments, thus raising consumer expectations of photo-realistic and
interactive rendering. A high resolution for textures and geometry, physically based materials, and realistic
lighting are increasingly viewed as a fundamental requirement of current applications rather than optional
supplements.

Despite advancements in technology, real-time rendering still has limitations in terms of performance. There
have always been challenges in rendering engines to strike the right balance between realism and the need to

IJCRT2512681 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | gl108

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

ensure that the frame rates remain stable on any hardware configuration. These challenges were addressed in
the past through optimization and various compromises. These included various methods like level of details
(LOD), mesh simplification, occlusion culling, and lighting.

Although highly successful, these traditional methods present various challenges to production. The
development and variety of multiple variants of LOD contribute to the increased cost of asset development
and authors' storage space needs. Such baked lighting methodologies offer low flexibility to analysis and
simulation development workflows since implementing any change to geometry, materials, and illumination
through baking and reauthoring takes a relatively long time for large-scale projects along with complex virtual
environments like open-world environments.

In 2022, Epic Games launched the Unreal Engine 5 (UE5), which overcomes these challenges by including
Nanite virtualized geometry and global illumination through the ,,Lumen”.

Nanite helps completely remove the necessity for the manual creation of LOD pipelines by virtualizing
geometry and automatically choosing the right level of detail based on that geometry during runtime. This
helps artists insert highly detailed content like photogrammetry scans directly into scenes without the need for
level-of-detail creation. Meanwhile, the Lumen takes the traditional static baking-based global illumination
solution and completely replaces it with a dynamic global illumination system that reacts, in real-time, to
changes in the lighting or geometry present in a scene.

In the following sections, a closer look will be taken at these technologies, from a historical context in
geometry management and global illumination, through an examination of the workflows and comparison for
Nanite and Lumen.

1.1 Background and Related Work

Real-time rendering has experienced a revolution in the past decades due to growing interest in very detailed,
interactive virtual environments. Some of the key challenges for work in this area include the control of
geometric complexity, global illumination calculations, and performance/visual detail trade-offs. This section
gives an insight into some of the previous works conducted based on geometry management and global
illuminations, showing how things have led up to the development of the Unreal Engine 5’s Nanite and Lumen
technology.

1.1.1 Evolution of Geometry Management in Real-Time Rendering

The effective management of geometric complexity has been a Iong-standihg issue within real-time graphics
since the birth of interactive three-dimensional systems. The initial research contribution made by Clark in
1976 gave a boost to hierarchical geometric models and signaled a new direction in reducing computational
requirements with a proposal for the division of geometric objects into a hierarchical structure that could be
loaded with varying levels of detail based on their importance on the screen.

The classic way to create levels-of-detail (LOD) in a video game is to have multiple hard-coded versions of
an object, displaying it with increasing polygon counts. The engine will then select the appropriate view or
rendering of the asset according to the distance between the object and the camera or screen coverage.

LODO LOD1 LOD2 LOD3 LOD4
16,128 Tris 3,968 Tris 960 Tris 224 Tris 48 Tris

Figure 1. Static mesh LOD illustration
IJCRT2512681 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | gl109

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

LOD1 0-15m
LOD 2 15—-40m
LOD 3 40m +

Table 1. LOD Distance of Triggering

Although efficient in lightening the workload on the computer, this method presents several drawbacks. The
process of creating multiple versions requires the artwork team to create the asset manually. Moreover,
transitions between the asset versions create popping.

In addition to these, various methods like normal mapping, texture baking, etc. were also being used for
improved efficiency. In these processes, normal mapping helps in embedding high-frequency geometric
information into textures to reproduce the desired result of more detailed geometric representation using
simpler meshes. Even though such processes often result in lack of detailing, especially around cracks or
structural geometry.

Figure 2. Normal Mapping visualized

The rise of high-resolution asset creation techniques such as photogrammetry and procedural modeling has
also put a lot of strain on the traditional method of working with LODs. Handling dense meshes is difficult
and computationally expensive. They also require a lot of optimizations if a certain frame rate needs to be
maintained. This highlights the importance of more automated and GPU-based solutions related to geometry
management, which UE5's Nanite virtualized geometry addresses directly.

1.1.2 Global Hlumination Techniques

Global illumination (GI) refers to the simulation of several indirect illumination phenomena: Diffuse
interreflection, Color bleeding, Soft shadows, and Caustics. Computing GI correctly is computationally
expensive and even more so in dynamic environments, which change their illumination and geometry in real
time. As such, the precomputing of illumination—such as lightmaps—is a common method used by traditional
game engines to simulate GI in a computationally efficient manner.

Baked lighting computes light interactions with precomputed geometry and stores the results in textures which
are then evaluated during lighting calculation. This technique delivers very efficient runtime lighting but
restricts the customization of lighting in the scene. For dynamic objects, lighting can only be implemented
using approximate solutions such as light probes and ambient light components in the material equation, which
cannot reproduce the complex interactions between light and objects.

Nevertheless, in order to overcome some drawbacks of completely baked lighting, there have been efforts on
screen-space techniques. Screen-Space Ambient Occlusion (SSAO) and Screen-Space Reflections (SSR) are
IJCRT2512681 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | gl10

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

some of these techniques. These methods simulate the indirect effect using information contained in a render
result of a frame. Although they can update dynamically, they lack information contained in a visible region
of a rendering result, which may cause, for example, lack of reflection in particular regions, or incorrect
ambient occlusion.

Ray tracing enables the rendering engine to calculate the lighting paths directly by sending multiple rays form
camera to world. Ray tracing supports the rendering of complex lighting scenes like reflections, refractions,
and shadowing. However, ray tracing across an entire scene is a resource-intensive and expensive process,
beyond the capabilities of mid-range GPUs in complex scenarious. As such, ray tracing hybrids have emerged
that enable rasterization for determining primary visibility and then using ray tracing for illumination paths.
The Lumen solution in Unreal Engine 5 is one such solution that supports screen-space tracing and distance-
field sampling alongside optional hardware ray tracing.

1.2 Integration of Geometry and Lighting Management

One of the biggest issues in contemporary rendering pipelines is the integration of management of geometry
and dynamic lighting. Dense meshes require sophisticated culling and level-of-detail selection techniques to
prevent overwhelming the GPU, and global illumination algorithms demand correct spatial and material
information to simulate the correct illumination propagation. All these issues had been addressed separately
in the past; the optimization of the geometry was handled by the LOD, and the illumination was addressed
through the use of lightmaps and illumination probes. However, in both cases, there are inefficiencies due to
the recalculations and the high-density mesh.

Nanite and Lumen solve this issue of integration by utilizing workflows that are GPU-enabled and adaptable
during execution. Nanite virtualizes geometry so that it becomes possible for the engine to execute operations
based solely on visible triangles. Lumen uses a surface cache system that relies on hybrid tracing to execute
light computation for indirect illumination in real time without using light maps. Both of these tools facilitate
detailed visualization of light effects in large environments while adding little manual effort.

1.3 Research Goals

For addressing these research objectives, the following research questions can be identified:

In what ways does the Nanite virtualized geometry advance classic geometry processing, as applied in real-
time engines, into this domain?

Architectural approaches and computational methods that facilitate the efficient calculation of real-time global
illumination in the Lumen technique.

On the basis of scalability, production efficiency, and performance, what is the difference in rendering
pipelines between Nanite and the regular pipelines?

What are the limitations and constraints on the deployment of Nanite and Lumen in large-scale projects?
These questions are intended to give a framework to discuss the rendering innovations in UE5 and place them
into context with the state of real-time research into computer graphics.

1.4 Paper Structure

The overall objective of this research work is to undertake a technical analysis of the Unreal Engine 5 Nanite
and Lumen technologies, with a focus on their implementation within modern real-time rendering engines.
Unlike previous research works, which have tended to focus on the performance or demo aspect of the
technology, this will examine the underlying technology and implementation of this technology, as well as
what it means in terms of production scalability and resources.

Study the Virtualized Geometry process

This study is intended to examine the means by which the Nanite reworks the conventional geometry
processing pipelines through the virtualization of high-density meshes into hierarchical clusters based on the

[JCRT2512681 \ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org] gl11

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

detail levels chosen at runtime and the application of rasterization through the GPU acceleration capabilities
for enhanced rendering performance.

Study the Real-Time Global lHlumination Techniques

This goal concerns comprehension related to how Lumen completes fully dynamic global illumination. Topics
to be explored include techniques involving the use of surface caches, a combination technique involving
screen-space data and distance fields and optional hardware ray tracing, and techniques related to handling
indirect lighting for complex and large-scale scenes.

UES5 Workflows vs. Classic Rendering Pipelines

One of the main objectives is determining how the Nanite and Lumen combination affects the efficiency of
production, iteration rate, and scalability over traditional approaches involving LOD and baked lighting. The
experiment examines the efficacy of such solutions at lowering manual optimization costs and optimizing
image quality.

Identify Technical Limitations and Practical Constraints

This objective aims at identifying possible hindrances to the widespread use of the Nanite and Lumen features.
Issues like hardware requirements, performance considerations, compensation of transparent assets in
dynamic environments, as well as the effect of error approximation on quality are thoroughly studied.

2. Methodology

This particular research uses a qualitative technical research methodology in order to assess and analyze
Unreal Engine 5’s features: Nanite and Lumen. Due to its nature and high degree of fluctuation when it comes
to performance, a qualitative method for this research is appropriate as it enables an in-depth look at
architecture and functionality without needing performance metrics for comparison. The approach is designed
such that the research questions laid out in Section 3 are methodically explored, with a focus on workflow
analysis, decomposition, and comparisons made with conventional rendering pipelines:

2.1 Analysis

The analysis will use a multi-step approach:

Architect: Every system (Nanite and Lumen) is broken down into its fundamental parts, including data
structures, processing, and GPU execution. This highlights how the systems deliver optimal performance and
minimize manual effort to achieve scalable graphical realism.

Workflow: The operational flows involving assets from import to render will help in determining how all the
systems will work well together in UES. This has been done by looking into things like how clusters are
managed in Nanite, as well as how surface caches and traces work in Lumen.

Comparative: Traditional pipelines that rely on discrete levels-of-detail and lighting are evaluated alongside
those based on UE5S's technology in order to draw a comparable analysis on their benefits and shortcomings
with respect to production overhead, iteration time, memory consumption, and support for scalability on
complex scenes.

2.2 Nanite Virtualized Geometry

Nanite is a revolutionary method for geometry processing in real-time rendering and completely changes the
paradigm of high-density mesh management and rendering in Unreal Engine 5. Nanite does not belong to the
classical category of LOD solutions, since it virtualizes geometry at a very detailed level and allows the engine
to render only those geometry pieces that actually effect the image. This chapter delivers a technical analysis
of Nanite functionality and constraints.

The disadvantage of using discrete LOD in computer-graphics work is handled by the Nanite engine with the
use of a hierarchical clustering system when handling geometry. The system breaks down each mesh in the

[JCRT2512681 \ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org] gl12

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

scene into a cluster of triangles. The process organizes the triangles in clusters in a manner that resembles a
tree structure. The choice of the clusters depends on the coverage on the screen.

Figure 3. Nanite polygon clusters visualized.

This allows for a hierarchical mode where the LOD selection becomes the responsibility of the engine and not
the creator of the assets. Artists can even take in models with very high-resolution levels that have billions of
triangles using photogrammetry scans without requiring any manual creation of Low Detail versions. The
relevant clusters for a frame will be decided solely by the Nanite.

One of the major innovations introduced by Nanite is its GPU-based rendering pipeline. This differs from the
traditional draw call methods handled by the CPU. In the traditional engine, the CPU handles the draw call
tasks regarding the mesh or level-of-detail. This causes a bottleneck when it comes to managing a large
number of assets. However, Nanite reduces the need for CPU interaction by doing cluster selection, culling,
and rendering on the GPU. ;

Triangle clusters are represented with efficient data structures that minimize memory bandW|dth By choosing
clusters that contribute to visible pixels and pruning clusters below the visibility threshold, Nanite enables
effective resource usage on the GPU. This technology enables real-time rendering of assets that have extreme
geometric detail. Such assets would otherwise be unrenderable on a large scale.

2.2.1 Culling Strategies and Surface Caching
Nanite integrates various fine culling shader solutions for better performance balance:

Removes instances that are

Frustum Cullin .
9 not in screen space

Unload objects that are too far

Distance Culling from camera

[JCRT2512681 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | gl13

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

Removes object that is too

Size-Based Culling small

Skips polygons that are facing

Back face Culling opposite face of camera

Unload objects that are

Occlusion Culling blocked by others

Skips meshes in acceleration
structure process that are too
far away and may not get hit
by rays

Replays High poly meshes
LOD Culling with simplified versions based
on distance

Ray Tracing Culling

Table 2. List of Culling Types.

Moreover, Nanite uses a surface caching system, which retains information of a geometric nature on a frame-
by-frame basis in order to prevent repeated calculations. In a static or semi-static environment, it is beneficial
since it reduces repeated re-evaluations of the cache, which is responsible for stable frame rates, even under
highly dense geometric environments. Such environments make use of hierarchical clustering, a GPU-enabled
selection process, in addition to a surface caching system.

2.2.2 Limitations
Although there are many benefits of using Nanite, not all assets can benefit from this feature:

The meshes that require
constant transformations, like
Deformable or Skeletal | skeletal meshes used in

Meshes: characters, do not support a
cluster-based system like
Nanite.

[JCRT2512681 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | gl14

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

Highly dynamic systems

Fluid Simulations and Particle | featuring large vertex
Systems: variance are not optimized for
using Nanite.
Currently, Nanite’s

architecture is optimized for
Alpha-Masked or Transparent | handling opaque geometry,
Geometry: and too much transparency
can be counterproductive
when processing clusters.

Some intricate designs could
Dense Foliage or Kit-bashed | lead to the generation of
Structures: clusters that are under
exploited.

Table 3. Nanite Limitations.

Figure 4. Overdraws area during Kit-bashing process.

2.2.3 Production and Performance Implications
The incorporation of Nanite changes the way in which productions are performed by minimizing the

requirements for the creation of manual LODs while providing the ability for fast iteration on detailed content.
This allows artists to concentrate on the creation of high detail geometry without being limited by the creation
process for an assortment of LODs.

In performance, Nanite offloads the computation from the CPU to the GPU, stressing the importance of
contemporary GPU architecture with strong parallel processing and memory bandwidth. Although such
technology provides unprecedented geometric detail, those developing for lesser systems need to manage
these limitations carefully, including the density of assets and configurations of hybrid rendering.

2.3 Lumen Global Illumination

Lumen is the Unreal Engine 5 answer to the problem of fully dynamic global Illumination and Reflections,
and it is tailored to replace the traditional lightmapping methods. Lumen differs from the normal lightmapping
process in the fact that the indirect lighting computation happens in real-time, allowing for dynamical scenes

[JCRT2512681 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | gl15

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

and light changes without the need to relight the entire scene. This chapter will dive into the technical
surrounding of Lumen.

2.3.1 Architecture
The architecture of Lumen is inherently developed with the aspect of balancing both fidelity and performance,

as well as runtime flexibility. At its essence, the process of building a surface cache with the definition of
geometries and materials, albedo, roughness, emissive properties, and normal data forms the foundation for
approximating light interactions.

This system uses a hybrid tracing approach that combines different techniques such as:

Screen Space Tracing: It is able to trace the reflections and the indirect lighting from the information contained
within the frame buffer.

Distance Field Tracing: Makes use of the concept of the signed distance field to approximate the way light
travels to regions not being viewed on the display

Hardware Ray Tracing: Offers high-accuracy light and reflection calculations when hardware-based GPU ray
tracing is available.

Through dynamic decision-making of appropriate methods according to the complexity of the scene and
performance requirement, Lumen strikes a good balance between speed and visual fidelity.

2.3.2 Surface Cache and Lighting Representation
The surface cache is a key component within Lumen to enable efficiency. The surface cache holds information

about each surface in a spatial format, usually implemented by ‘lighting cards.” The lighting cards encode
information about a surface from different viewpoints. The cards enable Lumen to approximate the indirect
lighting within a complex environment, eliminating ray tracing. The components of each card include:
Category: material properties, albedo, roughness, emissive

Geometric orientation and spatial extent

Visibility and occlusion information

The surface cache enables the re-use of lighting information between frames to avoid repeated computations,
thereby making the system run at a stable frame rate.

2.3.4 Limitations
Lumen allows a flexible and dynamic lighting model, offering a set of new performance requirements

compared to traditional lighting techniques. These issues are discussed below:

Insufficient card coverages
or data in the surface cache
could result in light leakage,
Approximation Errors a lack of indirect
illumination, or even
artifacts in more complex
scenes.

[JCRT2512681 \ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org] gl16

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

A sufficient amount of
memory bandwidth from
high-performance GPUs is
very necessary for
developing stable frame
rates, mainly in the process
of rendering large-scale
detailed scenes.

scenes with high-reflection
surfaces, many dynamic
objects, or volumetrics
might see compromised Gl
rendering or fallback to
hybrid approaches.

Table 4. Lumen Constraints.

Hardware Dependence

Complex Scene Limitations

They have to rely on careful decisions regarding where to draw the line between performance and look in
some cases, by combining the use of Lumen and pre-calculated lighting for static objects.

2.3.5 Practical Implications for Production
Lumen brings considerable improvements in iteration speed and creativity. Lighting, materials, and geometric

interactions are possible with direct artist input, making it less dependent on pre-computed light-maps. This
direct capability is especially useful where lighting is needed for scene modifications frequently, such as in
virtual production, architectural rendering, or massive open-world scenarios.

Nonetheless, it is more important that Lumen’s dynamic nature is centered around resource management on
GPUs. While it is possible that some final applications might target lower-end hardware, their respective
settings could demand restriction in model complexity, resolution, or turning off high-accuracy tracing options
if high levels of performance are required.

3. Analysis Unreal Engine Techniques and Traditional Rendering Pipelines

The combination of Nanite and Lumen in Unreal Engine 5 is a paradigm shift in real-time rendering. To
understand how significant a role Nanite and Lumen play, it is necessary to briefly discuss a traditional
workflow that instead focuses on discrete LOD geometry and lightmapping.

3.1 Geometry Management: Nanite vs. Traditional LOD

3.1.1 Traditional LOD Pipelines
In typical rendering engines, the geometric complexity is managed by LOD meshes authored manually.

Variations of a particular asset, depending on the polygon density, are created and retained. In runtime, a
particular LOD is chosen depending upon either the camera distances or the screen coverage values. Although
it decreases the rendering load, there are a number of disadvantages associated with this technique. One of
them is high production overhead. Artists have to create multiple copies of each asset. The more LODs, the
larger the storage capacity required. Which inevitably leads to sudden transitions in level of detail which cause
popping artifacts, which in turn need smoothening or dithering.

3.1.2 Nanite Virtualized Geometry
Nanite replaces this manual process for LOD with hierarchical clustering and selection processing by GPU.

Clusters of visible geometry only are considered to reduce graphics processing unit workload. Clustering
representations help to reduce bandwidth and vertex computation redundancies. Which leads to greatly
simplification of production and support high geometric fidelity at all scales. Artists can import extremely
high-resolution meshes without generating simplified variants.

Traditional approaches are predictable and hardware-agnostic but introduce heavy overhead and suffering
compromises regarding fidelity at larger scales.

[JCRT2512681 \ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org] gl17

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

3.2 Global Hlumination: Lumen vs. Baked

3.2.1 Baked Lighting
Traditional Gl is highly dependent on pre-computed lightmaps:

High Runtime Efficiency: The pre-lighted environments involve little computation during runtime.

Low Flexibility: It demands re-baking in case of any change in the geometry or lighting.

Static Scene Constraints: The dynamic objects are modeled by the use of light probes or ambient terms. These
do not capture the indirect illumination properly.

3.2.2 Lumen Real-Time Global lllumination
Lumen provides a completely dynamic solution:

Hybrid Tracing: This combines screen-space, distance-field, and hardware ray tracing solutions for real-time
indirect lighting.

Surface Cache Utilization: Allows for the reuse of light information, which provides improved runtime
efficiency with the ability to be more dynamic.

Responsive to Scene Changes: Facilitates interactive changes related to lights, materials, and geometry
without re-baking.

3.3 Scalability

The integration of Nanite and Lumen allows for large-scale, detailed environments with less manual
optimization:

Scene Complexity: Nanite provides effective support for dense meshes so that vast levels with billions of
triangles are possible.

Iteration Speed: Lumen provides the capacity to make runtime adjustments to lighting and materials, hence
lessening the need for offline baking workflows.

Hybrid Approaches: In both systems, dynamic or transparent assets involve traditional workflows, coupled
with Lumen and Nanite assets in static scenes requiring high levels of detail.

While more straightforward in principle, more traditional pipelined approaches require a large amount of
resource-intensive LOD generation and optimized lighting, especially when applied to open-world content.
Both Nanite and Lumen try to diminish manual labor and enhance realism, the computation is relied upon the
GPU. High-resolution clusters and dynamic Gl need contemporary GPUs with appropriate levels of parallel
processing and memory bandwidth. Light leaking, imprecise reflections, or artifacts might occur in real-time
Gl, especially within very dense or dynamic environments by Lumen.

4. Discussion

Analysis of the Nanite and Lumen features implemented in Unreal Engine 5 demonstrates the essential
paradigm shift taking place for real-time rendering technology. This final section of the paper integrates the
learnings taken from the previous sections.

4.1 Architectural

This is evident in the merging of Nanite and Lumen, where there is a move from manual and CPU-based
rendering techniques and workflows to GPU-based and data-driven rendering pipelines:

Nanite’s Hierarchy Cluster System: With the use of its geometry-expressed fine-grained cluster system,
Nanite facilitates the reduction of CPU usage in the selection process to enable the rendering of highly detailed
assets in real-time, thus breaking the need to handle the management of polygons in the hierarchy cluster
system through the management of the number of pixels to render.

Hybrid Global Illumination in Lumen: The Lumen system replaces the use of lightmaps with a dynamic Gl
solution involving multiple methods, namely the use of screen-space data and distance field tracing with an
option for hardware ray tracing.

Together, these systems represent a pipeline-level integration strategy, where geometry handling and lighting
computation are optimized within a comprehensive framework, rather than independently. This integrated

[JCRT2512681 \ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org] g118

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

strategy is more runtime-efficient and enables the developer to address artistic considerations with less
attention to underlying techno-functional limitations.

4.2 Benefits

In terms of efficiency and creative iteration, Nanite and Lumen provide immense value:

Reduced Manual Optimization: Artists are not required or needed to create LODs or precompute lightmap
data, making it easier for them.

Rapid Iteration: Lumen provides a real-time functionality that makes it possible to change lighting conditions,
and designers can see immediate results.

Scalable Scene Management: Open-world scenarios with huge sizes could be populated with ultra-detailed
content without integrating significant CPU processing constrains, based on GPU-powered culling and surface
caching.

It increases the ease of prototyping, content updating, as well as realism in virtual world applications due to
its usefulness in supporting modern game development and production.

4.3 Technical Trade-Offs

In spite of the benefits, the implementing of Nanite and Lumen necessitates the consideration of technical
trade-offs. First of all, hardware dependence, the graphics processing parts are designed for high-end GPUs
with large memory bandwidth support in both options. Highly complex geometries or high-resolution lighting
can be less effective on low-end graphics processing hardware. Unfortunately, Nanite has several
compatibility issues. It is not compatible with deformable meshes, skeletal animations, or alpha-masked
geometry. Lumen can introduce errors of approximation, light bleeding, and lacking reflection accuracy in
crowded scenes. In addition to that, both technologies’ pipeline is complex. It may require certain level of the
developer skills to mix and matched hybrid workflows involving standard rendering, Nanite, and Lumen.
4.4 Industry Trends and Implications

Nanite and Lumen represent some wider trends in real-time graphics and interactive media:

. Automation and Intelligent Resource Management: GPU-enabled operations and intelligent runtime-level of
detail allow for reduced manual effort and smart allocation of resources with relevance to a scene.

Dynamic Realism: Realtime global illumination and geometry density enable dynamic lighting and materials,
adding to realism.

. Virtual Worlds at a Large Scale: The rendering of billions of triangles per frame at high speeds opens up vast
virtual worlds with simulation capabilities unhampered by optimization limitations.

Integration of Hybrid Techniques: The use of hybrid techniques for tracing, distance-field tracing, and
hardware or other methods for ray tracing emphasizes the need for a hybrid rendering architecture due to the
visual fidelity Vs Compute complexity trade-off.

5. Conclusion

In conclusion, this research work has offered a thorough technical dissection of the Nanite virtualized
geometry and Lumen global illumination features found in Unreal Engine 5, within the general framework of
real-time rendering. Through a technical analysis of their architecture, working process, and advantage over
conventional rendering pipelines, this research work has demonstrated how much the industry has been
revolutionized by such technologies.

Nanite:
Hierarchical Clustering and GPU-based rendering that dynamically deals with geometric details at a fine level
of granularity.
No need for writing LODs by hand, making high-quality asset integration possible without requiring much
production effort.
It uses various culling methods and surface caching to optimize performance, but it is not so effective when
it comes to deformable meshes, skeletal animations, or transparent surfaces.

[JCRT2512681 \ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org] g119

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

Lumen

Exemplifies a real-time GI approach using a hybrid Gl system where screen space techniques are applied in
conjunction with distance field tracing techniques.

Uses a surface cache and lighting cards to efficiently simulate the effect of indirect lighting.

Enables high creative freedom but adds GPU-computational complexity and potential approximation errors
when used in complex or highly reflective scenes.

Nanite and Lumen provide improved optimization and are able to handle large scenes.

Conventional pipelined architectures have been predictable and friendly to the CPU but have posed heavy
production overhead and rigidity to adaptation to the dynamic

The integration of these systems is indicative of a move to more automated and scalable graphics, thanks to
GPUs.

Although Nanite and Lumen offer a huge leap forward regarding the technology of real-time rendering, this
area keeps growing at an incredible pace. Future engine developments and hybrid rendering approaches may
also improve the effectiveness and usability of the above-mentioned rendering technologies. Yet the main
factor for realizing their potential and related best practices for the development of interactive media will
again evidently remain the need for further research.

The final conclusion is that Unreal Engine 5’s Nanite and Lumen technologies represent a complete paradigm
shift for real-time rendering by providing a range of unified, GPU-enabled solutions for geometry handling
and global illumination. While these tools may represent a slightly limited achievement, when placed within
the historical progression of real-time graphics, a new standard for highly capable, automated real-time
rendering engines is established.

References

1. Epic Games. (2022). Unreal Engine 5 is now available. Epic Games.
https://www.unrealengine.com/en-US/blog/unreal-engine-5-is-now-available

2. Epic Games. (2022). Nanite Virtualized Geometry. Epic Games.
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-

unreal-engine

3. Epic Games. (2022). Lumen Technical Details. Epic Games.
https://dev.epicgames.com/documentation/en-us/unreal-engine/lumen-technical-details-in-unreal -
engine

4. Disguise. What is UV mapping. Disguise. https://help.disqguise.one/workflows/3d-modelling/uv-
mapping/what-is-uv-mapping?utm medium=organic&utm source=yandexsmartcamera

5 Clay, S. (2021) UE4: Optimization & Performance | Pt2 — LODs. Art Station.
https://www.artstation.com/blogs/samslover/QwNE/ue4-optimization-performance-pt2-
lods?utm medium=organic&utm source=yandexsmartcamera

6. Epic Games. (2022). Lumen Performance Guide. Epic Games.
https://dev.epicgames.com/documentation/en-us/unreal-engine/lumen-performance-guide-for-unreal-
engine?application_version=5.6

[JCRT2512681 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | g120

http://www.ijcrt.org/
https://www.unrealengine.com/en-US/blog/unreal-engine-5-is-now-available
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/nanite-virtualized-geometry-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/lumen-technical-details-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/lumen-technical-details-in-unreal-engine
https://help.disguise.one/workflows/3d-modelling/uv-mapping/what-is-uv-mapping?utm_medium=organic&utm_source=yandexsmartcamera
https://help.disguise.one/workflows/3d-modelling/uv-mapping/what-is-uv-mapping?utm_medium=organic&utm_source=yandexsmartcamera
https://www.artstation.com/blogs/samslover/QwNE/ue4-optimization-performance-pt2-lods?utm_medium=organic&utm_source=yandexsmartcamera
https://www.artstation.com/blogs/samslover/QwNE/ue4-optimization-performance-pt2-lods?utm_medium=organic&utm_source=yandexsmartcamera
https://dev.epicgames.com/documentation/en-us/unreal-engine/lumen-performance-guide-for-unreal-engine?application_version=5.6
https://dev.epicgames.com/documentation/en-us/unreal-engine/lumen-performance-guide-for-unreal-engine?application_version=5.6

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

7. Maurya, N. (2022). Nanite: Epic’s Practical Implementation of Virtualized Geometry. Medium.
https://medium.com/@ GroundZer0O/nanite-epics-practical-implementation-of-virtualized-geometry-
£6a9281e7f52

[JCRT2512681 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | gl21

http://www.ijcrt.org/
https://medium.com/@GroundZer0/nanite-epics-practical-implementation-of-virtualized-geometry-e6a9281e7f52
https://medium.com/@GroundZer0/nanite-epics-practical-implementation-of-virtualized-geometry-e6a9281e7f52

