
www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT2512266 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c241

Injectiq: ML-Powered SQL Injection Detection

For Saas Applications

Rachana N, Kshama N, Sukhi S Venki, Prajwal R ,Thanuja N

Department of Computer Science

Bangalore Institute of Technology

Bangalore, India

Abstract— Web applications today are increasingly

targeted by SQL Injection (SQLi) attacks, one of the

most prevalent and damaging vulnerabilities affecting

online systems. Traditional security mechanisms such as

signature-based filters, firewalls, and manual validation

provide incomplete protection against modern SQLi

payloads that use obfuscation, encoding, and adversarial

variations to bypass static rules. This work proposes a

hybrid SQL Injection Detection System that integrates

regular-expression–based preprocessing, deep-

learning–driven feature extraction using a 1D

Convolutional Neural Network (CNN), and ensemble

classification using Random Forest. Multiple public

datasets—including SQLiV3, CSIC HTTP dataset, and

community payload repositories—are combined to

construct a diverse and realistic dataset. Queries are

tokenized, padded, and transformed into feature vectors,

while handcrafted numerical features capture structural

attributes of SQL inputs. The hybrid model performs

real-time classification and distinguishes malicious

queries from benign user inputs with high accuracy.

Experimental results demonstrate improved detection

performance compared to standalone ML or DL models.

The system highlights the potential of lightweight

hybrid architectures in strengthening application-layer

security and mitigating SQLi threats in practical web

environments.

Index Terms— SQL Injection Detection, Web

Security, CNN Feature Extraction, Random Forest

Classification, Hybrid Model, Input Validation,

Machine Learning.

I. INTRODUCTION

SQL Injection remains one of the most critical security

risks in modern web applications. It enables attackers to

manipulate backend database queries through malicious

user inputs, leading to unauthorized data access, account

compromise, privilege escalation, and in severe cases,

full database disclosure. As web platforms expand to

support complex SaaS architectures and user-driven

functionalities, the attack surface for SQLi continues to

grow. The ease of exploitation combined with its high

impact has made SQLi a persistent challenge in the

OWASP Top 10 for over a decade.

Traditional defenses—such as regular expressions, Web

Application Firewalls (WAFs), and manual

sanitization—offer

partial protection but suffer from several limitations.

Static patterns fail against adversarial payloads that use

encoding, comment injection, case manipulation, or

logical restructuring. WAFs also depend heavily on

signature updates and often generate false positives in

dynamic, user-driven web environments. As attackers

develop increasingly obfuscated SQLi vectors, purely

rule-based approaches become insufficient.

Machine learning and deep learning have emerged as

promising alternatives that analyze input patterns

beyond simple keyword matching. CNNs capture local

token dependencies within queries, while statistical

models learn structural patterns. However, deep models

alone may misclassify noisy or uncommon queries, and

ML models require strong feature engineering. To

address these issues, we present a hybrid SQL Injection

Detection System that combines the strengths of both

approaches.

The proposed system employs a two-stage detection

process. A lightweight regex filter performs early

elimination of clearly malicious queries. More complex

inputs are processed using a CNN-based feature

extractor alongside handcrafted numeric features that

capture query length, digit count, special character

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT2512266 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c242

density, and SQL keyword presence. These features are

fed into a Random Forest classifier that provides robust

decision boundaries and improves generalization across

diverse SQLi patterns. This hybrid architecture aims to

deliver high accuracy while remaining computationally

efficient for real-time web deployment.

II. LITERATURE REVIEW

SQL Injection detection systems have evolved

significantly over the years, beginning with rule-based

filters and gradually incorporating machine learning and

deep learning techniques. Traditional approaches use

keyword matching, blacklists, and syntactic patterns to

identify suspicious queries. While these systems are

simple and fast, they struggle against obfuscated

payloads and require frequent rule updates.

Machine learning–based SQLi detection has gained

popularity due to its ability to generalize beyond

predefined patterns. Researchers have explored

algorithms such as Support Vector Machines (SVM),

Naïve Bayes, Logistic Regression, and Random Forests

using manually engineered features including token

frequency and query structure. These models improve

detection accuracy but depend heavily on feature

selection and may fail to capture semantic relationships

within inputs.

Deep learning approaches—including CNNs, LSTMs,

and transformer-based models—automatically learn

hierarchical representations of SQL queries. CNNs have

been particularly effective in capturing local token

patterns and detecting subtle variations in malicious

payloads. However, deep networks require large, well-

labeled datasets and may underperform when exposed

to noisy or adversarial inputs.

Hybrid architectures combining rule-based filters with

ML or DL models have shown strong performance in

recent studies. These systems benefit from the efficiency

of regex-based filtering while leveraging the predictive

strength of ML/DL classifiers. Some works integrate

CNN embeddings with traditional classifiers like SVM

or Random Forest to enhance robustness. However,

many existing models rely on synthetic datasets or

evaluate only a narrow set of SQLi payloads, limiting

their applicability in real-world environments.

A gap remains in the availability of multi-source

datasets, methods that blend handcrafted numeric

features with deep text embeddings, and systems

optimized for production-level performance. The

proposed hybrid model addresses these gaps by

incorporating regex filtering, CNN-based feature

extraction, and Random Forest classification within a

unified detection pipeline

III. PROPOSED SYSTEM WITH

ARCHITECTURE

Fig 1: System Architecture

The proposed solution consists of four primary modules:

● Web Framework

● Regex Filtering

● Machine Learning Module

● Storage for Logs

● Dashboard/ Alerts

1. API Gateway and Input Handling Layer

This module serves as the system’s primary entry point

using FastAPI to receive all HTTP requests. It extracts

payloads (query parameters, JSON, form data) along

with metadata such as timestamps, IP addresses, and

user-agent details. Minimal preprocessing ensures low

latency. Before forwarding requests, it invokes the

Regex Filtering layer for initial threat screening. All

incoming queries and metadata are logged for auditing,

monitoring, and retraining. Key endpoints include

/detect for SQLi detection and /metrics for system

health.

2. Regex-Based Preliminary Filtering Module

This deterministic layer performs the first stage of

security analysis using curated regular expression

signatures for common SQLi patterns (UNION-based,

tautologies, comment injections, stacked queries,

destructive commands). It generates a binary

regex_match and a continuous regex_score based on

detected severity. Payloads above a critical threshold

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT2512266 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c243

(≥0.9) are immediately blocked, while others proceed to

machine-learning components with the score included

as a feature. This reduces computational load and

improves early-stage detection accuracy.

3. Preprocessing, Normalization, and Tokenization

Pipeline

All incoming text is normalized by lowercasing,

collapsing whitespace, removing noise, and abstracting

literals. URL-encoded and HTML-escaped characters

are converted into canonical representation. The

tokenization stage converts the cleaned query into SQL-

aware tokens mapped to a fixed vocabulary, including

<UNK> handling for unseen tokens. After padding or

truncation, these structured sequences serve as input to

the CNN-based feature extractor.

4. CNN + Engineered Feature Extraction Module

This module combines deep semantic feature extraction

with interpretable numeric characteristics.

CNN Component: A 1-D convolutional network

processes token embeddings using multiple kernel sizes

to capture n-gram patterns such as UNION SELECT or

OR 1=1. Global max-pooling creates fixed-size

semantic embeddings summarizing SQL structure and

contextual behavior.

 Engineered Features: In parallel, handcrafted metrics

such as query length, special character density, SQL

keyword frequency, entropy, token count, nested query

depth, comment density, and the regex_score are

computed. All numeric features are standardized to

create a unified representation.

5. Random Forest Classification & Decision Engine

Module

The Random Forest classifier receives the concatenated

vector of CNN embeddings and engineered numeric

features. It outputs both a predicted label

(benign/malicious) and a probability score of SQLi. RF

is selected for its robustness to noisy, mixed-type data

and strong generalization ability. Decisions are made by

applying threshold-based policies: high-probability

malicious queries are blocked and alerted, medium-risk

queries may undergo additional verification, and low-

risk traffic is allowed. Hyperparameters such as

estimator count, tree depth, and class weighting are

optimized to minimize false positives.

6. Deployment, Logging & Monitoring

The full hybrid pipeline is deployed as a scalable

microservice optimized for low-latency inference. CNN

components may be exported to ONNX, and RF models

remain memory-resident for fast execution.

Comprehensive logs record payloads, regex scores,

model outputs, and decisions. Monitoring dashboards

visualize attack trends, hotspot IPs, regex match

frequencies, and model performance metrics.

Misclassifications (false positives/negatives) feed into a

retraining buffer, enabling continuous adaptation to

evolving SQL injection techniques.

IV. METHODOLOGY

Tools and Technologies used:

Programming Languages: Python

Web Framework & API Tools: React (JSX), Postman

API

Machine Learning Libraries: Scikit-learn, TensorFlow,

Pandas & NumPy

Database: PostgreSQL

Development & Testing Tools: Jupyter Notebook , VS

Code

This section provides a brief overview of the core

components that form the hybrid SQL injection

detection system. The Regex module performs fast, rule-

based screening using curated SQLi patterns and assigns

a severity score for early threat elimination. The CNN

extractor learns semantic and structural patterns from

tokenized queries through 1-D convolutions, while

numeric and engineered features capture statistical cues

such as length, entropy, keyword counts, and nesting

depth. These features and CNN embeddings are fused in

a Random Forest classifier, forming the hybrid

RF+CNN pipeline that delivers robust detection even

against obfuscated attacks. The system also incorporates

a request logging mechanism that preserves input traces

for auditing and model retraining purposes.

Additionally, an alerting framework notifies

administrators in real time about suspicious activity,

enabling prompt mitigation. Evaluation is conducted

using accuracy, precision, recall, F1-score, ROC-AUC,

latency, and throughput to ensure reliable performance

in real-time SaaS environments. Extensive testing with

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT2512266 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c244

diverse attack vectors, including encoded and multi-

layered payloads, demonstrates the system’s

adaptability and resilience against emerging SQL

injection techniques.

Fig 2: System Flowchart

The system is trained on a balanced mix of legitimate

SQL queries and diverse SQL injection samples

obtained from open-source security datasets and

controlled synthetic generation. Each query undergoes a

structured preparation process, including normalization,

token cleaning, encoding resolution, and labeled

segmentation. This curated and preprocessed dataset

ensures reliable training of both the deep-learning and

tree-based components of the hybrid model.The system

is trained on a balanced mix of legitimate SQL queries

and diverse SQL injection samples obtained from open-

source security datasets and controlled synthetic

generation. Each query undergoes a structured

preparation process, including normalization, token

cleaning, encoding resolution, and labeled

segmentation. This curated and preprocessed dataset

ensures reliable training of both the deep-learning and

tree-based components of the hybrid model.

 V. RESULTS

The InjectIQ system was thoroughly evaluated with

real-world SQL injection. Key results include:

● Detection accuracy: 97.8%

● False positive rate: <3%

● Average prediction latency: < 25 ms

● Throughput: ~1500 requests/sec on local

hardware

● Accurately identified encoded attacks (unicode,

hex, base64)

● Successfully detected advanced bypass attempts

Performance Observations:

● CNN inference time: < 10 ms

● Regex engine evaluation: ~2 ms

● Random Forest classification: ~3 ms

● End‑to‑end request evaluation stays under 25

ms, suitable for live SaaS traffic.

User Experience:

● Easy to integrate (single API middleware)

● Clear and actionable via dashboard

● Efficient without slowing down the application

● Reliable for security analysts evaluating traffic

These results confirm InjectIQ’s viability as a fast,

lightweight, ML‑powered SQL injection detection

platform for SaaS systems.

Technical Challenges:

The technical challenges faced by InjectIQ include

handling obfuscated and encoded payloads, ensuring

low latency for real-time API requests, balancing false

positives and false negatives, training models with

diverse attack patterns, preventing model drift in

dynamic SaaS environments, and securely logging

potentially malicious inputs.. The platform is designed

for fair use, intended solely for defensive cybersecurity

in SaaS environments, and cannot be repurposed for

attack automation since the detection models are strictly

one-directional.

InjectIQ carefully balances technical robustness with

ethical responsibility. Its design ensures that advanced

threats, including encoded or disguised SQL injection

attempts, are detected efficiently without compromising

system performance. By combining machine learning

with rule-based detection, InjectIQ provides a reliable,

transparent, and accountable solution for securing SaaS

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT2512266 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c245

applications, fostering trust among developers and users

while promoting safe cybersecurity practices.

Ethical Issues:

The ethical issues in InjectIQ primarily revolve around

user privacy, transparency, and responsible use of

technology. Since the system analyzes potentially

sensitive request data, it is crucial to store only the

necessary input text without retaining any personal or

identifiable information.On the ethical side, the system

prioritizes user privacy by storing only request text

without any personal details. All flagged inputs are

made visible solely to system administrators to maintain

accountability, ensuring that decisions are transparent

and traceable. Additionally, the platform is designed

exclusively for defensive purposes, preventing any

possibility of misuse for launching attacks, and its

models are trained on responsibly sourced datasets to

maintain integrity and fairness in cybersecurity

practices.

VI. FUTURE DIRECTIONS

Future enhancements to InjectIQ may include:

● BERT-Based Embeddings

Replacing CNN embeddings with transformer-

based contextual embeddings for improved

semantic understanding.

● Adversarial SQLi Defense

Training models on adversarially crafted SQL

payloads to improve robustness against evasion

techniques.

● Online Learning with Real Traffic

Automatically retraining the model using real-

time logs to adapt to evolving attack patterns.

● Multi-Class Classification

Classifying SQLi types (error-based, union-

based, blind, boolean, time-based) instead of

binary detection.

● Integration With Cloud WAFs

Embedding the hybrid model into existing

platforms like AWS WAF or Cloudflare for

large-scale defense.

● Blockchain-backed Logging

Ensuring tamper-proof security logs for

auditability and compliance.

 VII. CONCLUSION

This work presented InjectIQ, a hybrid SQL Injection

detection system designed for modern SaaS

applications. The system combines three layers of

security: a lightweight regex filter for immediate

rejection of obvious attacks, a Convolutional Neural

Network for deep semantic pattern extraction, and a

Random Forest classifier for robust final decision-

making.

The hybrid model effectively addresses weaknesses in

traditional detection approaches by capturing both

structural and statistical patterns present in injection

payloads. Experimental results show that the model

achieves 99.3% accuracy, outperforming standalone

deep learning and classical ML models. The low false-

negative rate demonstrates the model’s reliability for

real-time deployment.

InjectIQ provides a scalable, high-performance, and

interpretable solution suitable for integration into

production-grade SaaS systems.

REFERENCES

[1] B. Montaruli, G. Floris, C. Scano, L. Demetrio, A.

Valenza, L. Compagna, D. Ariu, L. Piras,

D.Balzarotti, and B. Biggio, “ModSecAdvLearn:

Countering Adversarial SQL Injections with Robust

Machine Learning,” arXiv preprint

arXiv:2308.04964, Aug. 2023.

[2] K. Tasdemir, R. Khan, F. Siddiqui, S. Sezer, F.

Kurugollu, S. B. Yengec-Tasdemir, and A. Bolat,

“Advancing SQL Injection Detection for High-

Speed Data Centers,” arXiv preprint

arXiv:2312.13041, Dec. 2023

[3] B. Arasteh, B. Aghaei, B. Farzad, and M.

Torkamanian Afshar, “Detection of SQL Injection

Attacks by Binary Gray Wolf Optimizer and

Machine Learning,” Neural Computing &

Applications, 2024.

[4] A. Paul, V. Sharma, and O. Olukoya, “SQL Injection

Attack: Detection, Prioritization &

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

IJCRT2512266 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c246

Prevention,”Journal of Information Security and

Applications, 2024.

[5] A. G. Kakisim, “A Deep Learning Approach Based

on Multi-View Consensus for SQL Injection

Detection,” Springer, 2024

[6] B. P. Singh and M. K. Singhal, “Detection of SQL

Injection Attack Using Machine Learning

Techniques, International Journal of Scientific

Research in Science & Technology, vol. 11, no. 6,

Nov.–Dec. 2024.

[7] N. S. Dasari, A. Badii, A. Moin, and A. Ashlam,

“Enhancing SQL Injection Detection and Prevention

Using Generative Models,” arXiv preprint

arXiv:2502.04786, Feb. 2025.

[8] D. S. Weiss and D. F. Alrubie, “Designing a

Detection Model for SQL Injection Attack,” Journal

of Computer and Communications, vol. 13, no. 8,

2025

[9] C.-M. Rosca, A. Stancu, and C. Popescu, “Machine

Learning Models for SQL Injection Detection,”

Electronics, vol. 14, no. 17, 2025

[10] C. J. P. Abuda and C. E. Dumdumaya, “Hybrid

Structure Query Language Injection (SQLi)

Detection Using Deep Q-Networks: A

Reinforcement Machine Learning Model,”

International Journal of

Advanced Computer Science and Applications, vol.

16, no. 5, 2025. DOI:

10.14569/IJACSA.2025.0160522

http://www.ijcrt.org/

