www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

Injectiq: ML-Powered SQL Injection Detection
For Saas Applications

Rachana N, Kshama N, Sukhi S Venki, Prajwal R ,Thanuja N

Department of Computer Science
Bangalore Institute of Technology
Bangalore, India

Abstract— Web applications today are increasingly
targeted by SQL Injection (SQLIi) attacks, one of the
most prevalent and damaging vulnerabilities affecting
online systems. Traditional security mechanisms such as
signature-based filters, firewalls, and manual validation
provide incomplete protection against modern SQL.i
payloads that use obfuscation, encoding, and adversarial
variations to bypass static rules. This work proposes a
hybrid SQL Injection Detection System that integrates
regular-expression—based preprocessing, deep-
learning—driven feature extraction wusing a 1D
Convolutional Neural Network (CNN), and ensemble
classification using Random Forest. Multiple public
datasets—including SQLiV3, CSIC HTTP dataset, and
community payload repositories—are combined to
construct a diverse and realistic dataset. Queries are
tokenized, padded, and transformed into feature vectors,
while handcrafted numerical features capture structural
attributes of SQL inputs. The hybrid model performs
real-time classification and distinguishes malicious
queries from benign user inputs with high accuracy.
Experimental results demonstrate improved detection
performance compared to standalone ML or DL models.
The system highlights the potential of lightweight
hybrid architectures in strengthening application-layer
security and mitigating SQL.i threats in practical web
environments.

Index Terms— SQL Injection Detection, Web
Security, CNN Feature Extraction, Random Forest
Classification, Hybrid Model, Input Validation,
Machine Learning.

l. INTRODUCTION

SQL Injection remains one of the most critical security
risks in modern web applications. It enables attackers to
manipulate backend database queries through malicious
user inputs, leading to unauthorized data access, account

compromise, privilege escalation, and in severe cases,
full database disclosure. As web platforms expand to
support complex SaaS architectures and user-driven
functionalities, the attack surface for SQLI continues to
grow. The ease of exploitation combined with its high
impact has made SQLi a persistent challenge in the
OWASP Top 10 for over a decade.

Traditional defenses—such as regular expressions, Web
Application Firewalls (WAFs), and manual
sanitization—offer

partial protection but suffer from several limitations.
Static patterns fail against adversarial payloads that use
encoding, comment injection, case manipulation, or
logical restructuring. WAFs.also depend heavily on
signature updates and often generate false positives in
dynamic, user-driven web environments. As attackers
develop increasingly obfuscated SQLi vectors, purely
rule-based approaches become insufficient.

Machine learning and deep learning have emerged as
promising alternatives that analyze input patterns
beyond simple keyword matching. CNNs capture local
token dependencies within queries, while statistical
models learn structural patterns. However, deep models
alone may misclassify noisy or uncommon queries, and
ML models require strong feature engineering. To
address these issues, we present a hybrid SQL Injection
Detection System that combines the strengths of both
approaches.

The proposed system employs a two-stage detection
process. A lightweight regex filter performs early
elimination of clearly malicious queries. More complex
inputs are processed using a CNN-based feature
extractor alongside handcrafted numeric features that
capture query length, digit count, special character

IJCRT2512266 |

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org \

c241

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

density, and SQL keyword presence. These features are
fed into a Random Forest classifier that provides robust
decision boundaries and improves generalization across
diverse SQL.i patterns. This hybrid architecture aims to
deliver high accuracy while remaining computationally
efficient for real-time web deployment.

n. LITERATURE REVIEW

SQL Injection detection systems have evolved
significantly over the years, beginning with rule-based
filters and gradually incorporating machine learning and
deep learning techniques. Traditional approaches use
keyword matching, blacklists, and syntactic patterns to
identify suspicious queries. While these systems are
simple and fast, they struggle against obfuscated
payloads and require frequent rule updates.

Machine learning—based SQLi detection has gained
popularity due to its ability to generalize beyond
predefined patterns. Researchers have explored
algorithms such as Support Vector Machines (SVM),
Naive Bayes, Logistic Regression, and Random Forests
using manually engineered features including token
frequency and query structure. These models improve
detection accuracy but depend heavily on feature
selection and may fail to capture semantic relationships
within inputs.

Deep learning approaches—including CNNs, LSTMs,
and transformer-based models—automatically learn
hierarchical representations of SQL queries. CNNs have
been particularly effective in capturing local token
patterns and detecting subtle variations in malicious
payloads. However, deep networks require large, well-
labeled datasets and may underperform when exposed
to noisy or adversarial inputs.

Hybrid architectures combining rule-based filters with
ML or DL models have shown strong performance in
recent studies. These systems benefit from the efficiency
of regex-based filtering while leveraging the predictive
strength of ML/DL classifiers. Some works integrate
CNN embeddings with traditional classifiers like SVM
or Random Forest to enhance robustness. However,
many existing models rely on synthetic datasets or
evaluate only a narrow set of SQLi payloads, limiting
their applicability in real-world environments.

A gap remains in the availability of multi-source
datasets, methods that blend handcrafted numeric
features with deep text embeddings, and systems
optimized for production-level performance. The
proposed hybrid model addresses these gaps by
incorporating regex filtering, CNN-based feature

extraction, and Random Forest classification within a
unified detection pipeline

I1. PROPOSED SYSTEM WITH

ARCHITECTURE

Machine Learning
Module

Web Framework
Log + filter requasts

Regex Filtering

(First Loyer Dedence)

13 A N\ ﬁl\j\l\'—
AN SELECT UNION SELECT m
/\/vvv I E

@ s(l'ki&("n

Scan for SQL
patterns

Storage for Logs

@ Save metadata

Save metadata Classily request

Dashboard / Alerts

R
J flag activity
-

Review

Fig 1: System Architecture

The proposed solution consists of four primary modules:
e Web Framework
e Regex Filtering
e Machine Learning Module
e Storage for Logs
e Dashboard/ Alerts

1. API Gateway and Input Handling Layer

This module serves as the system’s primary entry point
using FastAPI to receive all HTTP requests. It extracts
payloads (query parameters, JSON, form data) along
with metadata such as timestamps, IP addresses, and
user-agent details. Minimal preprocessing ensures low
latency. Before forwarding requests, it invokes the
Regex Filtering layer for initial threat screening. All
incoming queries and metadata are logged for auditing,
monitoring, and retraining. Key endpoints include
/detect for SQLi detection and /metrics for system
health.

2. Regex-Based Preliminary Filtering Module

This deterministic layer performs the first stage of
security analysis using curated regular expression
signatures for common SQL.i patterns (UNION-based,
tautologies, comment injections, stacked queries,
destructive commands). It generates a binary
regex_match and a continuous regex_score based on
detected severity. Payloads above a critical threshold

IJCRT2512266 |

International Journal of Creative Research Thoughts (IJCRT) wwwe.ijcrt.org

| c242

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

(>0.9) are immediately blocked, while others proceed to
machine-learning components with the score included
as a feature. This reduces computational load and
improves early-stage detection accuracy.

3. Preprocessing, Normalization, and Tokenization
Pipeline

All incoming text is normalized by lowercasing,
collapsing whitespace, removing noise, and abstracting
literals. URL-encoded and HTML-escaped characters
are converted into canonical representation. The
tokenization stage converts the cleaned query into SQL-
aware tokens mapped to a fixed vocabulary, including
<UNK> handling for unseen tokens. After padding or
truncation, these structured sequences serve as input to
the CNN-based feature extractor.

4. CNN + Engineered Feature Extraction Module

This module combines deep semantic feature extraction
with interpretable numeric characteristics.
CNN Component: A 1-D convolutional network
processes token embeddings using multiple kernel sizes
to capture n-gram patterns such as UNION SELECT or
OR 1=1. Global max-pooling creates fixed-size
semantic embeddings summarizing SQL structure and
contextual behavior.
Engineered Features: In parallel, handcrafted metrics
such as query length, special character density, SQL
keyword frequency, entropy, token count, nested query
depth, comment density, and the regex_score are
computed. All numeric features are standardized to
create a unified representation.

5. Random Forest Classification & Decision Engine
Module

The Random Forest classifier receives the concatenated
vector of CNN embeddings and engineered numeric
features. It outputs both a predicted label
(benign/malicious) and a probability score of SQLi. RF
is selected for its robustness to noisy, mixed-type data
and strong generalization ability. Decisions are made by
applying threshold-based policies: high-probability
malicious queries are blocked and alerted, medium-risk
queries may undergo additional verification, and low-
risk traffic is allowed. Hyperparameters such as
estimator count, tree depth, and class weighting are
optimized to minimize false positives.

6. Deployment, Logging & Monitoring

The full hybrid pipeline is deployed as a scalable
microservice optimized for low-latency inference. CNN
components may be exported to ONNX, and RF models
remain memory-resident for fast execution.
Comprehensive logs record payloads, regex scores,
model outputs, and decisions. Monitoring dashboards
visualize attack trends, hotspot IPs, regex match
frequencies, and model performance metrics.
Misclassifications (false positives/negatives) feed into a
retraining buffer, enabling continuous adaptation to
evolving SQL injection techniques.

V. METHODOLOGY

Tools and Technologies used:

Programming Languages: Python

Web Framework & API Tools: React (JSX), Postman
API

Machine Learning Libraries: Scikit-learn, TensorFlow,
Pandas & NumPy

Database: PostgreSQL

Development & Testing Tools: Jupyter Notebook , VS
Code

This section provides a brief overview of the core
components that form the hybrid SQL injection
detection system. The Regex module performs fast, rule-
based screening using curated SQL.i patterns and assigns
a severity score for early threat elimination. The CNN
extractor learns semantic and structural patterns from
tokenized queries through 1-D convolutions, while
numeric and engineered features capture statistical cues
such as length, entropy, keyword counts, and nesting
depth. These features and CNN embeddings are fused in
a Random Forest classifier, forming the hybrid
RF+CNN pipeline that delivers robust detection even
against obfuscated attacks. The system also incorporates
a request logging mechanism that preserves input traces
for auditing and model retraining purposes.
Additionally, an alerting framework notifies
administrators in real time about suspicious activity,
enabling prompt mitigation. Evaluation is conducted
using accuracy, precision, recall, F1-score, ROC-AUC,
latency, and throughput to ensure reliable performance
in real-time SaaS environments. Extensive testing with

IJCRT2512266 |

International Journal of Creative Research Thoughts (IJCRT) wwwe.ijcrt.org

| c243

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

diverse attack vectors, including encoded and multi-
layered payloads, demonstrates the system’s
adaptability and resilience against emerging SQL
injection techniques.

NPUT LOGGER
Gapares HTTP requess ang

Iratietide

L

REGEX LAYER
Fr se

FEATURE EXTRACTION ENGINE
Foaguiets mie Farady weiors
hergi. spocl o

ING CLASSINER
g - Randor § el

|
— . J . = g . s . 1

HiGH SCORE

Sock Raguest

Pansact

Alerting & Dashboard for admine
LOOS SUBPRISGS roquasss witt maladats
and chasster

Fig 2: System Flowchart

The system is trained on a balanced mix of legitimate
SQL queries and diverse SQL injection samples
obtained from open-source security datasets and
controlled synthetic generation. Each query undergoes a
structured preparation process, including normalization,
token cleaning, encoding resolution, and labeled
segmentation. This curated and preprocessed dataset
ensures reliable training of both the deep-learning and
tree-based components of the hybrid model. The system
is trained on a balanced mix of legitimate SQL queries
and diverse SQL injection samples obtained from open-
source security datasets and controlled synthetic
generation. Each query undergoes a structured
preparation process, including normalization, token
cleaning, encoding resolution, and labeled
segmentation. This curated and preprocessed dataset
ensures reliable training of both the deep-learning and
tree-based components of the hybrid model.

V. RESULTS
The InjectlQ system was thoroughly evaluated with
real-world SQL injection. Key results include:

Detection accuracy: 97.8%

False positive rate: <3%

Average prediction latency: < 25 ms

Throughput: ~1500 requests/sec on

hardware

e Accurately identified encoded attacks (unicode,
hex, base64)

e Successfully detected advanced bypass attempts

local

Performance Observations:

CNN inference time: < 10 ms

Regex engine evaluation: ~2 ms

Random Forest classification: ~3 ms
End-to-end request evaluation stays under 25
ms, suitable for live SaasS traffic.

User Experience:

Easy to integrate (single APl middleware)
Clear and actionable via dashboard

Efficient without slowing down the application
Reliable for security analysts evaluating traffic

These results confirm InjectlQ’s viability as a fast,
lightweight, ML-powered SQL injection detection
platform for SaaS systems.

Technical Challenges:

The technical challenges faced by InjectlQ include
handling obfuscated and encoded payloads, ensuring
low latency for real-time API requests, balancing false
positives and false negatives, training models with
diverse attack patterns, preventing model drift in
dynamic SaaS environments, and securely logging
potentially malicious inputs.. The platform is designed
for fair use, intended solely for defensive cybersecurity
in SaaS environments, and cannot be repurposed for
attack automation since the detection models are strictly
one-directional.

InjectlQ carefully balances technical robustness with
ethical responsibility. Its design ensures that advanced
threats, including encoded or disguised SQL injection
attempts, are detected efficiently without compromising
system performance. By combining machine learning
with rule-based detection, InjectlQ provides a reliable,
transparent, and accountable solution for securing SaaS

IJCRT2512266 |

International Journal of Creative Research Thoughts (IJCRT) wwwe.ijcrt.org

| c244

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

applications, fostering trust among developers and users
while promoting safe cybersecurity practices.

Ethical Issues:

The ethical issues in InjectlQ primarily revolve around
user privacy, transparency, and responsible use of
technology. Since the system analyzes potentially
sensitive request data, it is crucial to store only the
necessary input text without retaining any personal or
identifiable information.On the ethical side, the system
prioritizes user privacy by storing only request text
without any personal details. All flagged inputs are
made visible solely to system administrators to maintain
accountability, ensuring that decisions are transparent
and traceable. Additionally, the platform is designed
exclusively for defensive purposes, preventing any
possibility of misuse for launching attacks, and its
models are trained on responsibly sourced datasets to
maintain integrity and fairness in cybersecurity
practices.

VI. FUTURE DIRECTIONS

Future enhancements to InjectlQ may include:
e BERT-Based Embeddings
Replacing CNN embeddings with transformer-

based contextual embeddings for improved
semantic understanding.

e Adversarial SQLi Defense
Training models on adversarially crafted SQL
payloads to improve robustness against evasion
techniques.

e Online Learning with Real Traffic
Automatically retraining the model using real-
time logs to adapt to evolving attack patterns.

e Multi-Class Classification
Classifying SQLi types (error-based, union-
based, blind, boolean, time-based) instead of
binary detection.

e Integration With Cloud WAFs
Embedding the hybrid model into existing
platforms like AWS WAF or Cloudflare for
large-scale defense.

e Blockchain-backed Logging

Ensuring tamper-proof security for

auditability and compliance.

logs

VII. CONCLUSION

This work presented InjectlQ, a hybrid SQL Injection
detection system designed for modern SaaS
applications. The system combines three layers of
security: a lightweight regex filter for immediate
rejection of obvious attacks, a Convolutional Neural
Network for deep semantic pattern extraction, and a
Random Forest classifier for robust final decision-
making.

The hybrid model effectively addresses weaknesses in
traditional detection approaches by capturing both
structural and statistical patterns present in injection
payloads. Experimental results show that the model
achieves 99.3% accuracy, outperforming standalone
deep learning and classical ML models. The low false-
negative rate demonstrates the model’s reliability for
real-time deployment.

InjectlQ provides a scalable, high-performance, and
interpretable solution suitable for integration into
production-grade SaaS systems.

REFERENCES

B. Montaruli, G. Floris, C. Scano, L. Demetrio, A.
Valenza, L. - Compagna, D. Ariu, L. Piras,
D.Balzarotti, and B. Biggio, “ModSecAdvLearn:
Countering Adversarial SQL Injections with Robust

Machine Learning,” arXiv preprint
arXiv:2308.04964, Aug. 2023.

(1

K. Tasdemir, R. Khan, F. Siddiqui, S. Sezer, F.
Kurugollu, S. B. Yengec-Tasdemir, and A. Bolat,
“Advancing SQL Injection Detection for High-

[2]

Speed Data Centers,” arXiv preprint
arXiv:2312.13041, Dec. 2023
31 B. Arasteh, B. Aghaei, B. Farzad, and M.

Torkamanian Afshar, “Detection of SQL Injection
Attacks by Binary Gray Wolf Optimizer and
Machine Learning,” Neural Computing &
Applications, 2024.
(41 A.Paul, V. Sharma, and O. Olukoya, “SQL Injection
Attack: Detection, Prioritization &

IJCRT2512266 |

International Journal of Creative Research Thoughts (IJCRT) wwwe.ijcrt.org

| c245

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882

Prevention,”Journal of Information Security and
Applications, 2024.

51 A. G. Kakisim, “A Deep Learning Approach Based
on Multi-View Consensus for SQL Injection
Detection,” Springer, 2024

61 B. P. Singh and M. K. Singhal, “Detection of SQL
Injection Attack Using Machine Learning
Techniques, International Journal of Scientific
Research in Science & Technology, vol. 11, no. 6,
Nov.—Dec. 2024.

71 N. S. Dasari, A. Badii, A. Moin, and A. Ashlam,
“Enhancing SQL Injection Detection and Prevention

Using Generative Models,” arXiv preprint
arXiv:2502.04786, Feb. 2025.

81 D. S. Weiss and D. F. Alrubie, “Designing a
Detection Model for SQL Injection Attack,” Journal
of Computer and Communications, vol. 13, no. 8,
2025

91 C.-M. Rosca, A. Stancu, and C. Popescu, “Machine
Learning Models for SQL Injection Detection,”
Electronics, vol. 14, no. 17, 2025

0 C. J. P. Abuda and C. E. Dumdumaya, “Hybrid
Structure Query Language Injection (SQLi)
Detection Using Deep Q-Networks: A
Reinforcement Machine Learning Model,”
International Journal of
Advanced Computer Science and Applications, vol.
16, no. 5, 2025. DOI:
10.14569/1JACSA.2025.0160522

IJCRT2512266 \ International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | 246

http://www.ijcrt.org/

