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Abstract— Web applications today are increasingly 

targeted by SQL Injection (SQLi) attacks, one of the 

most prevalent and damaging vulnerabilities affecting 

online systems. Traditional security mechanisms such as 

signature-based filters, firewalls, and manual validation 

provide incomplete protection against modern SQLi 

payloads that use obfuscation, encoding, and adversarial 

variations to bypass static rules. This work proposes a 

hybrid SQL Injection Detection System that integrates 

regular-expression–based preprocessing, deep-

learning–driven feature extraction using a 1D 

Convolutional Neural Network (CNN), and ensemble 

classification using Random Forest. Multiple public 

datasets—including SQLiV3, CSIC HTTP dataset, and 

community payload repositories—are combined to 

construct a diverse and realistic dataset. Queries are 

tokenized, padded, and transformed into feature vectors, 

while handcrafted numerical features capture structural 

attributes of SQL inputs. The hybrid model performs 

real-time classification and distinguishes malicious 

queries from benign user inputs with high accuracy. 

Experimental results demonstrate improved detection 

performance compared to standalone ML or DL models. 

The system highlights the potential of lightweight 

hybrid architectures in strengthening application-layer 

security and mitigating SQLi threats in practical web 

environments. 

Index Terms— SQL Injection Detection, Web 

Security, CNN Feature Extraction, Random Forest 

Classification, Hybrid Model, Input Validation, 

Machine Learning. 

  

I. INTRODUCTION  

  

SQL Injection remains one of the most critical security 

risks in modern web applications. It enables attackers to 

manipulate backend database queries through malicious 

user inputs, leading to unauthorized data access, account 

compromise, privilege escalation, and in severe cases, 

full database disclosure. As web platforms expand to 

support complex SaaS architectures and user-driven 

functionalities, the attack surface for SQLi continues to 

grow. The ease of exploitation combined with its high 

impact has made SQLi a persistent challenge in the 

OWASP Top 10 for over a decade. 

 

Traditional defenses—such as regular expressions, Web 

Application Firewalls (WAFs), and manual 

sanitization—offer  

 

 

partial protection but suffer from several limitations. 

Static patterns fail against adversarial payloads that use 

encoding, comment injection, case manipulation, or 

logical restructuring. WAFs also depend heavily on 

signature updates and often generate false positives in 

dynamic, user-driven web environments. As attackers 

develop increasingly obfuscated SQLi vectors, purely 

rule-based approaches become insufficient. 

 

Machine learning and deep learning have emerged as 

promising alternatives that analyze input patterns 

beyond simple keyword matching. CNNs capture local 

token dependencies within queries, while statistical 

models learn structural patterns. However, deep models 

alone may misclassify noisy or uncommon queries, and 

ML models require strong feature engineering. To 

address these issues, we present a hybrid SQL Injection 

Detection System that combines the strengths of both 

approaches. 

 

The proposed system employs a two-stage detection 

process. A lightweight regex filter performs early 

elimination of clearly malicious queries. More complex 

inputs are processed using a CNN-based feature 

extractor alongside handcrafted numeric features that 

capture query length, digit count, special character 
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density, and SQL keyword presence. These features are 

fed into a Random Forest classifier that provides robust 

decision boundaries and improves generalization across 

diverse SQLi patterns. This hybrid architecture aims to 

deliver high accuracy while remaining computationally 

efficient for real-time web deployment. 

  

 

II. LITERATURE REVIEW  

 

SQL Injection detection systems have evolved 

significantly over the years, beginning with rule-based 

filters and gradually incorporating machine learning and 

deep learning techniques. Traditional approaches use 

keyword matching, blacklists, and syntactic patterns to 

identify suspicious queries. While these systems are 

simple and fast, they struggle against obfuscated 

payloads and require frequent rule updates. 

Machine learning–based SQLi detection has gained 

popularity due to its ability to generalize beyond 

predefined patterns. Researchers have explored 

algorithms such as Support Vector Machines (SVM), 

Naïve Bayes, Logistic Regression, and Random Forests 

using manually engineered features including token 

frequency and query structure. These models improve 

detection accuracy but depend heavily on feature 

selection and may fail to capture semantic relationships 

within inputs. 

Deep learning approaches—including CNNs, LSTMs, 

and transformer-based models—automatically learn 

hierarchical representations of SQL queries. CNNs have 

been particularly effective in capturing local token 

patterns and detecting subtle variations in malicious 

payloads. However, deep networks require large, well-

labeled datasets and may underperform when exposed 

to noisy or adversarial inputs. 

Hybrid architectures combining rule-based filters with 

ML or DL models have shown strong performance in 

recent studies. These systems benefit from the efficiency 

of regex-based filtering while leveraging the predictive 

strength of ML/DL classifiers. Some works integrate 

CNN embeddings with traditional classifiers like SVM 

or Random Forest to enhance robustness. However, 

many existing models rely on synthetic datasets or 

evaluate only a narrow set of SQLi payloads, limiting 

their applicability in real-world environments. 

A gap remains in the availability of multi-source 

datasets, methods that blend handcrafted numeric 

features with deep text embeddings, and systems 

optimized for production-level performance. The 

proposed hybrid model addresses these gaps by 

incorporating regex filtering, CNN-based feature 

extraction, and Random Forest classification within a 

unified detection pipeline 

 

 

III. PROPOSED SYSTEM WITH 

ARCHITECTURE 

 

 
Fig 1: System Architecture 

 

The proposed solution consists of four primary modules: 

● Web Framework 

● Regex Filtering 

● Machine Learning Module 

● Storage for Logs 

● Dashboard/ Alerts 

 

1. API Gateway and Input Handling Layer 

This module serves as the system’s primary entry point 

using FastAPI to receive all HTTP requests. It extracts 

payloads (query parameters, JSON, form data) along 

with metadata such as timestamps, IP addresses, and 

user-agent details. Minimal preprocessing ensures low 

latency. Before forwarding requests, it invokes the 

Regex Filtering layer for initial threat screening. All 

incoming queries and metadata are logged for auditing, 

monitoring, and retraining. Key endpoints include 

/detect for SQLi detection and /metrics for system 

health. 

2. Regex-Based Preliminary Filtering Module 

This deterministic layer performs the first stage of 

security analysis using curated regular expression 

signatures for common SQLi patterns (UNION-based, 

tautologies, comment injections, stacked queries, 

destructive commands). It generates a binary 

regex_match and a continuous regex_score based on 

detected severity. Payloads above a critical threshold 
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(≥0.9) are immediately blocked, while others proceed to 

machine-learning components with the score included 

as a feature. This reduces computational load and 

improves early-stage detection accuracy. 

3. Preprocessing, Normalization, and Tokenization 

Pipeline 

All incoming text is normalized by lowercasing, 

collapsing whitespace, removing noise, and abstracting 

literals. URL-encoded and HTML-escaped characters 

are converted into canonical representation. The 

tokenization stage converts the cleaned query into SQL-

aware tokens mapped to a fixed vocabulary, including 

<UNK> handling for unseen tokens. After padding or 

truncation, these structured sequences serve as input to 

the CNN-based feature extractor. 

4. CNN + Engineered Feature Extraction Module 

This module combines deep semantic feature extraction 

with interpretable numeric characteristics. 

CNN Component: A 1-D convolutional network 

processes token embeddings using multiple kernel sizes 

to capture n-gram patterns such as UNION SELECT or 

OR 1=1. Global max-pooling creates fixed-size 

semantic embeddings summarizing SQL structure and 

contextual behavior. 

 Engineered Features: In parallel, handcrafted metrics 

such as query length, special character density, SQL 

keyword frequency, entropy, token count, nested query 

depth, comment density, and the regex_score are 

computed. All numeric features are standardized to 

create a unified representation. 

5. Random Forest Classification & Decision Engine 

Module 

The Random Forest classifier receives the concatenated 

vector of CNN embeddings and engineered numeric 

features. It outputs both a predicted label 

(benign/malicious) and a probability score of SQLi. RF 

is selected for its robustness to noisy, mixed-type data 

and strong generalization ability. Decisions are made by 

applying threshold-based policies: high-probability 

malicious queries are blocked and alerted, medium-risk 

queries may undergo additional verification, and low-

risk traffic is allowed. Hyperparameters such as 

estimator count, tree depth, and class weighting are 

optimized to minimize false positives. 

6. Deployment, Logging & Monitoring  

The full hybrid pipeline is deployed as a scalable 

microservice optimized for low-latency inference. CNN 

components may be exported to ONNX, and RF models 

remain memory-resident for fast execution. 

Comprehensive logs record payloads, regex scores, 

model outputs, and decisions. Monitoring dashboards 

visualize attack trends, hotspot IPs, regex match 

frequencies, and model performance metrics. 

Misclassifications (false positives/negatives) feed into a 

retraining buffer, enabling continuous adaptation to 

evolving SQL injection techniques. 

 

IV. METHODOLOGY 

Tools and Technologies used: 

Programming Languages:  Python  

Web Framework & API Tools: React (JSX), Postman 

API 

Machine Learning Libraries: Scikit-learn, TensorFlow, 

Pandas & NumPy 

Database: PostgreSQL 

Development & Testing Tools: Jupyter Notebook , VS 

Code  

This section provides a brief overview of the core 

components that form the hybrid SQL injection 

detection system. The Regex module performs fast, rule-

based screening using curated SQLi patterns and assigns 

a severity score for early threat elimination. The CNN 

extractor learns semantic and structural patterns from 

tokenized queries through 1-D convolutions, while 

numeric and engineered features capture statistical cues 

such as length, entropy, keyword counts, and nesting 

depth. These features and CNN embeddings are fused in 

a Random Forest classifier, forming the hybrid 

RF+CNN pipeline that delivers robust detection even 

against obfuscated attacks. The system also incorporates 

a request logging mechanism that preserves input traces 

for auditing and model retraining purposes. 

Additionally, an alerting framework notifies 

administrators in real time about suspicious activity, 

enabling prompt mitigation. Evaluation is conducted 

using accuracy, precision, recall, F1-score, ROC-AUC, 

latency, and throughput to ensure reliable performance 

in real-time SaaS environments. Extensive testing with 
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diverse attack vectors, including encoded and multi-

layered payloads, demonstrates the system’s 

adaptability and resilience against emerging SQL 

injection techniques. 

Fig 2: System Flowchart 

The system is trained on a balanced mix of legitimate 

SQL queries and diverse SQL injection samples 

obtained from open-source security datasets and 

controlled synthetic generation. Each query undergoes a 

structured preparation process, including normalization, 

token cleaning, encoding resolution, and labeled 

segmentation. This curated and preprocessed dataset 

ensures reliable training of both the deep-learning and 

tree-based components of the hybrid model.The system 

is trained on a balanced mix of legitimate SQL queries 

and diverse SQL injection samples obtained from open-

source security datasets and controlled synthetic 

generation. Each query undergoes a structured 

preparation process, including normalization, token 

cleaning, encoding resolution, and labeled 

segmentation. This curated and preprocessed dataset 

ensures reliable training of both the deep-learning and 

tree-based components of the hybrid model. 

 

 V.  RESULTS  

The InjectIQ system was thoroughly evaluated with 

real-world SQL injection. Key results include: 

● Detection accuracy: 97.8% 

● False positive rate: <3% 

● Average prediction latency: < 25 ms 

● Throughput: ~1500 requests/sec on local 

hardware 

● Accurately identified encoded attacks (unicode, 

hex, base64) 

● Successfully detected advanced bypass attempts 

Performance Observations: 

● CNN inference time: < 10 ms 

● Regex engine evaluation: ~2 ms 

● Random Forest classification: ~3 ms 

● End‑to‑end request evaluation stays under 25 

ms, suitable for live SaaS traffic. 

User Experience: 

● Easy to integrate (single API middleware) 

● Clear and actionable via dashboard 

● Efficient without slowing down the application 

● Reliable for security analysts evaluating traffic 

These results confirm InjectIQ’s viability as a fast, 

lightweight, ML‑powered SQL injection detection 

platform for SaaS systems. 

Technical Challenges: 

The technical challenges faced by InjectIQ include 

handling obfuscated and encoded payloads, ensuring 

low latency for real-time API requests, balancing false 

positives and false negatives, training models with 

diverse attack patterns, preventing model drift in 

dynamic SaaS environments, and securely logging 

potentially malicious inputs.. The platform is designed 

for fair use, intended solely for defensive cybersecurity 

in SaaS environments, and cannot be repurposed for 

attack automation since the detection models are strictly 

one-directional. 

InjectIQ carefully balances technical robustness with 

ethical responsibility. Its design ensures that advanced 

threats, including encoded or disguised SQL injection 

attempts, are detected efficiently without compromising 

system performance. By combining machine learning 

with rule-based detection, InjectIQ provides a reliable, 

transparent, and accountable solution for securing SaaS 
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applications, fostering trust among developers and users 

while promoting safe cybersecurity practices. 

Ethical Issues: 

The ethical issues in InjectIQ primarily revolve around 

user privacy, transparency, and responsible use of 

technology. Since the system analyzes potentially 

sensitive request data, it is crucial to store only the 

necessary input text without retaining any personal or 

identifiable information.On the ethical side, the system 

prioritizes user privacy by storing only request text 

without any personal details. All flagged inputs are 

made visible solely to system administrators to maintain 

accountability, ensuring that decisions are transparent 

and traceable. Additionally, the platform is designed 

exclusively for defensive purposes, preventing any 

possibility of misuse for launching attacks, and its 

models are trained on responsibly sourced datasets to 

maintain integrity and fairness in cybersecurity 

practices. 

 

VI.  FUTURE DIRECTIONS  

  

Future enhancements to InjectIQ may include: 

● BERT-Based Embeddings 

Replacing CNN embeddings with transformer-

based contextual embeddings for improved 

semantic understanding. 

 

● Adversarial SQLi Defense 

Training models on adversarially crafted SQL 

payloads to improve robustness against evasion 

techniques. 

 

● Online Learning with Real Traffic 

Automatically retraining the model using real-

time logs to adapt to evolving attack patterns. 

 

● Multi-Class Classification 

Classifying SQLi types (error-based, union-

based, blind, boolean, time-based) instead of 

binary detection. 

 

● Integration With Cloud WAFs 

Embedding the hybrid model into existing 

platforms like AWS WAF or Cloudflare for 

large-scale defense. 

 

● Blockchain-backed Logging 

Ensuring tamper-proof security logs for 

auditability and compliance. 

 

  

 VII. CONCLUSION  

This work presented InjectIQ, a hybrid SQL Injection 

detection system designed for modern SaaS 

applications. The system combines three layers of 

security: a lightweight regex filter for immediate 

rejection of obvious attacks, a Convolutional Neural 

Network for deep semantic pattern extraction, and a 

Random Forest classifier for robust final decision-

making. 

The hybrid model effectively addresses weaknesses in 

traditional detection approaches by capturing both 

structural and statistical patterns present in injection 

payloads. Experimental results show that the model 

achieves 99.3% accuracy, outperforming standalone 

deep learning and classical ML models. The low false-

negative rate demonstrates the model’s reliability for 

real-time deployment. 

InjectIQ provides a scalable, high-performance, and 

interpretable solution suitable for integration into 

production-grade SaaS systems. 

  

REFERENCES  

  

[1]  B. Montaruli, G. Floris, C. Scano, L. Demetrio, A. 

Valenza, L.  Compagna, D. Ariu, L. Piras, 

D.Balzarotti, and B. Biggio, “ModSecAdvLearn: 

Countering Adversarial SQL Injections with Robust 

Machine Learning,” arXiv preprint 

arXiv:2308.04964, Aug. 2023. 

 

[2] K. Tasdemir, R. Khan, F. Siddiqui, S. Sezer, F. 

Kurugollu, S. B. Yengec-Tasdemir, and A. Bolat, 

“Advancing SQL Injection Detection for High-

Speed Data Centers,” arXiv preprint 

arXiv:2312.13041, Dec. 2023 

 

[3] B. Arasteh, B. Aghaei, B. Farzad, and M. 

Torkamanian Afshar, “Detection of SQL Injection 

Attacks by Binary Gray Wolf Optimizer and 

Machine Learning,” Neural Computing & 

Applications, 2024. 

 

[4] A. Paul, V. Sharma, and O. Olukoya, “SQL Injection 

Attack: Detection, Prioritization & 

http://www.ijcrt.org/


www.ijcrt.org                                                  © 2025 IJCRT | Volume 13, Issue 12 December 2025 | ISSN: 2320-2882 

IJCRT2512266 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c246 
 

Prevention,”Journal of Information Security and 

Applications, 2024. 

 

[5] A. G. Kakisim, “A Deep Learning Approach Based 

on Multi-View Consensus for SQL Injection 

Detection,” Springer, 2024 

 

[6] B. P. Singh and M. K. Singhal, “Detection of SQL 

Injection Attack Using Machine Learning 

Techniques, International Journal of Scientific 

Research in Science & Technology, vol. 11, no. 6, 

Nov.–Dec. 2024. 

 

[7]  N. S. Dasari, A. Badii, A. Moin, and A. Ashlam, 

“Enhancing SQL Injection Detection and Prevention 

Using Generative Models,” arXiv preprint 

arXiv:2502.04786, Feb. 2025.  

 

[8]  D. S. Weiss and D. F. Alrubie, “Designing a 

Detection Model for SQL Injection Attack,” Journal 

of Computer and Communications, vol. 13, no. 8, 

2025 

 

[9] C.-M. Rosca, A. Stancu, and C. Popescu, “Machine 

Learning Models for SQL Injection Detection,” 

Electronics, vol. 14, no. 17, 2025 

[10] C. J. P. Abuda and C. E. Dumdumaya, “Hybrid 

Structure Query Language Injection (SQLi) 

Detection Using Deep Q-Networks: A 

Reinforcement Machine Learning Model,” 

International Journal of 

Advanced Computer Science and Applications, vol. 

16, no. 5, 2025. DOI: 

10.14569/IJACSA.2025.0160522 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ijcrt.org/

