

Intelligent Vehicle Damage Assessment And Cost Estimator For Insurance.

1) P. H. More, 2) V.M.Mahamuni, 3) S.P.Botkar, 4) A.R.Najan,5) P.S.Surve

12345 Student

Department of Computer Science And Engineering,
Dr. Daulatrao Aher College Of Engineering, Karad, Satara, India

Abstract: The rising number of vehicles and road accidents has increased the demand for fast, accurate, and unbiased vehicle damage assessment in the insurance industry. Traditional manual inspection processes are time-consuming, subjective, and prone to human error. This project proposes an intelligent vehicle damage assessment and cost estimation system using deep learning and computer vision. The model analyzes uploaded vehicle images, detects damaged regions, classifies the type and severity of damage, and generates an estimated repair cost based on predefined pricing standards.

Keywords – Vehicle Damage Assessment, Deep Learning, Convolutional Neural Network (CNN), Cost Estimation, Image Processing, Computer Vision, Insurance Automation, Damage Detection, Machine Learning, Regression Model

I. INTRODUCTION :

The automotive insurance industry handles millions of vehicle damage claims every year, requiring accurate and timely inspection to determine repair costs. Traditionally, the assessment of vehicle damage is carried out manually by trained inspectors who visually analyze the vehicle, document the damaged parts, and estimate the cost of repairs. While this approach has been effective for decades, it suffers from several limitations including subjectivity, human bias, time consumption, and dependency on expert availability. With the increasing number of vehicles on the road and the rise in accidents, insurance companies face increasing pressure to process claims faster and more efficiently.

Advancements in artificial intelligence, computer vision, and deep learning have opened new possibilities for automating damage assessment. Intelligent image-based systems can analyze photographs of damaged vehicles, detect the extent of damage, and provide cost estimation with high accuracy and consistency. Such systems not only reduce the workload of human inspectors but also minimize errors and improve customer satisfaction through faster claim settlements.

II. LITERATURE SURVEY :

- 1) Intelligent Vehicle Damage Assessment and Cost Estimation System for Insurance Applications" Authors : Rajalakshmi Gurusamy, A.Latifa Banu Vehiclse have an impact on people's daily safety, and because there are so m different types and sizes of materials, it can be challenging to distinguish and detect conditions around the vehicle. In this project, we looked into the matter of car damage classification and detection, which insurance providers can utilize to quickly, automates the handling of vehicle insurance disputes.
- 2) Vehicle Damage Detection Using Artificial Intelligence. Authors: MD Jahid hasan,cong kha nguyen Automating vehicle damage detection is essential for automotive industry applications like insurance claims, online sales, and repair cost estimates, addressing the labor-intensive, time-consuming, and error-prone nature of current manual inspections. This systematic literature review explores the use of artificial intelligence (AI), particularly deep learning-based algorithms, to improve the accuracy and efficiency of damage detection under dynamic and challenging conditions specific to the requirements of our industry partners
- 3) Cost Estimation System for Enhancing the Processing of Car Insurance . Author : Ahmed shwaky Elbhrawy, Mohamed A.Belal, Mohamed sameh Hassanein Damage assessment is crucial in determining insurance reimbursements in the car insurance industry. However, manual inspection is time-consuming and financially costly. Artificial Intelligence (AI) offers a promising automatic damage assessment solution; we propose a Cost Estimation System (CES) for car damage volume level recognition and cost estimation
- 4) Intelligent Vehicle Damage Assessment and Cost Estimator for Insurance Companies. Author: M.S.Rakha ,M.srujana,M.sowsmys Nowadays, there are a lot of accidents. For example, if someone was in an accident and wants to file a claim with their car insurer, they would likely have to have someone look at the damage to their vehicle at home or at a repair shop, and then they would have to wait for an official estimate and approval before they could start the necessary repairs.
- 5) Automatic damaged vehicle estimator using enhanced deep learning algorithm Author: jihad qaddour, syeda ayesha siddiqa Claim leakage costs insurance companies millions of dollars each year because of the disparity between the cost spent by allowance businesses and the accurate quantity that must be reimbursed. As a result, processing claims for identifying and classifying automobile damage takes time and is costly for insurance providers. In this paper, we used an improved Mask R CNN method, which has a significant research benefit of object detection, to automatically detect, identify, and categorize car damage sites in traffic incidents.

III. PROBLEM STATEMENT :

The current vehicle damage assessment and insurance process is predominantly manual, relying on physical inspection by human surveyors. This traditional approach is time-consuming, leading to significant delays in claim settlement. The manual estimation of repair costs is often subjective, resulting in inconsistent evaluations between different assessors. Moreover, the process increases administrative workload and operational costs for insurance companies. Human involvement also raises the risk of errors and fraudulent claims. With the growing number of vehicles and accident cases, the inefficiency of this process becomes more apparent. There is a need for an intelligent, automated solution that can provide accurate, consistent, and faster damage assessment and cost estimation.

IV. PROPOSED SYSTEM :

Intelligent vehicle damage assessment and cost estimator for Insurance.:-The proposed system introduces an intelligent, automated solution for assessing vehicle damage and estimating repair costs using deep learning and computer vision. The system eliminates the need for manual inspection by insurance agents and offers a fast, accurate, and unbiased evaluation based on vehicle images uploaded by the user.

V. OBJECTIVES :

1) Automate Damage Assessment

To eliminate manual inspection by automatically analyzing vehicle damage from uploaded images using computer vision and deep learning.

2) Identify Damaged Areas Accurately

To detect and localize damaged parts of the vehicle such as bumpers, doors, headlights, fenders, etc., with high precision.

3) Classify Severity of Damage

To categorize the type and extent of damage (minor, moderate, or major) based on trained CNN classification models.

4) Estimate Repair Cost

To calculate the probable repair expenses using regression or rule-based cost estimation models based on the detected damage.

5) Reduce Human Bias and Error

To provide objective and consistent assessments without human errors, subjective judgment, or delayed evaluations.

6) Provide Fast and Efficient Claim Processing

To speed up insurance claim settlements by enabling immediate, automated analysis rather than waiting for manual inspections.

7) Enhance User and Insurance Company Experience

To improve transparency, customer satisfaction, and workflow efficiency in the insurance claim process.

VI. METHODOLOGY :

1. Data Collection

A dataset of damaged vehicle images is collected from real accident records, online datasets, and manually captured samples. The dataset includes different types of damage such as dents, scratches, cracks, and broken parts to train the system for real-world cases.

2. Data Preprocessing

All collected images are preprocessed to ensure consistency and improve model performance. Images are resized, normalized, and enhanced for clarity. Data augmentation is also performed to increase variation in training samples and prevent overfitting.

3. Damage Detection Using CNN

A Convolutional Neural Network model is trained to analyze vehicle images and automatically detect visible damage. The system identifies the damaged region and classifies the severity based on learned visual patterns, improving accuracy and eliminating manual inspection requirements.

4. Feature Extraction

Once damage is detected, meaningful features such as edges, surface texture, color variation, and damaged area size are extracted. These features help in understanding the type of damage and serve as input for further cost calculation.

5. Severity Assessment

The system analyzes extracted features to determine how serious the damage is. Based on the extent of the damaged area and visible deformation, the damage is categorized into levels such as minor, moderate, or major.

DISCUSSION :

The development of an intelligent vehicle damage assessment and cost estimation system represents a significant shift in how insurance claim processing is traditionally carried out. Manual inspection methods are slow, subjective, and dependent on the experience of individual assessors, which can lead to inconsistencies in claim evaluations. The proposed system addresses these issues by using deep learning techniques to analyze vehicle images and automatically identify damaged areas. By employing CNN-based models, the system is capable of learning complex visual patterns, enabling it to detect subtle and severe damages with high accuracy.

VII. CONCLUSION :

The proposed Intelligent Vehicle Damage Assessment and Cost Estimation system demonstrates the potential of deep learning and computer vision to automate the insurance claim evaluation process. By analyzing vehicle images, the system accurately detects damaged regions, classifies the severity of damage, and estimates repair costs without requiring manual inspection. This approach significantly reduces processing time, minimizes human error, and provides consistent and objective assessments. The integration of CNN models and machine learning-based cost prediction ensures better transparency and efficiency compared to traditional inspection methods.

VIII. REFERENCES :

- [1] "Cost Estimation System for Enhancing the Processing of Car Insurance "dec 6,2023
- [2]." Vehicle Damage Detection Using Artificial Intelligence."september2024
- [3]. N. Dheeb, H. Ghazali, H. Besbes, and Y. Massoud," A Very Deep Transfer Learning Model for Vehicle Damage Detection and Localization, "in IEEE International Conference on Vehicular Electronics and Safety (ICVES'19), Cairo, Egypt, Sept. 2019.
- [4] K. Patil, M. Kulkarni, A. Sri Raman and S. Karanda," Deep Learning Based Car Damage Classification," in IEEE Int. Conf. Machine Learning App. (ICMLA'17), Cancun, Mexico, Dec. 2017
- [5]. j. d. Dijan," Automatic Car Damage Recognition using Convolutional Neural Networks," March 2018
- [6]."Intelligent Vehicle Damage Assessment and Cost Estimation System for Insurance Applications "April 3,2023
- [7]. "Automatic damaged vehicle estimator using enhanced deep learning algorithm"dec 2019
- [8]Singh, A., Gupta, R., & Jain, S. (2020). *Automated Vehicle Damage Detection and Cost Estimation using Deep Learning*. International Journal of Computer Applications.
- [9].Li, J., Chen, H., & Wang, Z. (2019). *Automated Car Damage Assessment Using Convolutional Neural Networks*. IEEE Transactions on Intelligent Transportation Systems.
- [10]. Goodfellow, I., Bengio, Y., & Courville, A. (2016). *Deep Learning*. MIT Press.
- [11].S. Russel & P. Norvig. (2010). *Artificial Intelligence: A Modern Approach*. Prentice Hall.
- [12].Sharma, P., & Singh, M. (2021). *Machine Learning Based Insurance Claim Automation*. International Journal of Advanced Research in Engineering and Technology.
- [13].Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). *ImageNet Classification with Deep Convolutional Neural Networks*. Advances in Neural Information Processing Systems (NIPS).

[14].He, K., Zhang, X., Ren, S., & Sun, J. (2016). *Deep Residual Learning for Image Recognition*. IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15].Redmon, J., & Farhadi, A. (2018). *YOLOv3: An Incremental Improvement*. arXiv preprint.

