

Pharmacological Management Of COVID-19: Current Evidence And Future Perspectives

(Saurav Vijay Nerpagar, Rahul Dattu Wagh)

Guide by - vaishnavi khandare

Abstract

Pharmacological management of COVID-19 has rapidly evolved since the onset of the pandemic, with numerous agents and approaches evaluated for efficacy and safety. Current evidence supports remdesivir and certain monoclonal antibodies, such as sotrovimab and combinations like bamlanivimab plus etesevimab, for the treatment of COVID-19, especially among hospitalized patients and those at risk of severe disease. Recent clinical trials have demonstrated that remdesivir shortens time to recovery and may reduce progression to severe respiratory illness, while monoclonal antibodies help lower rates of hospitalization and mortality. Other agents, including antivirals such as favipiravir, immunomodulators, and repurposed drugs, have shown mixed or limited effectiveness according to available data. The failure of older therapeutics like hydroxychloroquine and lopinavir/ritonavir to reduce mortality highlights the importance of robust clinical evaluation. Looking forward, innovative drug development is focused on orally-administered panvirus cocktails, novel antiviral compounds, and proactive strategies leveraging emerging viral resistance data. Further research into antisense oligonucleotides, improved delivery methods (e.g., inhalational routes), and the integration of pharmacologic interventions with public health measures will enhance future preparedness and response to new viral variants. Ongoing evaluation and adaptation of therapeutic strategies are essential as new evidence emerges and the virological landscape evolves.

Introduction

Pharmacological management of COVID-19 has rapidly evolved since the onset of the pandemic, driven by intensive research into drug efficacy, safety, and emerging viral variants. Current evidence supports the use of antiviral agents such as remdesivir and nirmatrelvir/ritonavir for reducing mortality and hospitalization rates, alongside immunomodulators like tocilizumab and newer agents including baricitinib. Monoclonal antibodies, though effective in early stages, face reduced efficacy against recent variants, leading to ongoing shifts in treatment recommendations.

Landscape of COVID-19 Pharmacotherapy

Therapeutic strategies are tailored to disease stage, with antivirals working best in the early viral replication phase and immunomodulators targeting later, inflammation-driven severity. Recent updates highlight guideline-driven integration of agents like abatacept, infliximab, and pemivibart for immune dysregulation in moderate and severe cases.

Current Evidence and Drug Classes

Systematic reviews and clinical guidelines consistently prioritize remdesivir and tocilizumab for their proven mortality benefits. Nirmatrelvir/ritonavir and molnupiravir are recommended for outpatient management during early infection, while select monoclonal antibodies remain in use pending variant susceptibility. The effectiveness of older agents (hydroxychloroquine, lopinavir/ritonavir) has been refuted by large-scale studies.

Future Perspectives

Ongoing clinical trials aim to address gaps in viral resistance, drug delivery, and long-term safety. The future of COVID-19 management will likely feature pan-virus drug cocktails, novel antivirals, and adaptive repurposing of immunomodulators, guided by real-world data and variant surveillance.

In summary, the pharmacological management of COVID-19 is evidence-based, dynamic, and future-oriented, integrating the latest therapeutic advances to optimize patient outcomes in a rapidly changing landscape.

Remdesivir- The Drug

Remdesivir is a broad-spectrum antiviral that remains a core treatment for COVID-19 in hospitalized adults, especially those not requiring invasive mechanical ventilation. Multiple meta-analyses from 2025 confirm a significant survival benefit across all disease severity levels, showing reduced odds of death (OR 0.69, 95% CI 0.55–0.86, $p=0.001$) and a lower risk of rehospitalization (OR 0.72, 95% CI 0.64–0.81). The benefit is seen across patients needing no supplemental oxygen, low-flow oxygen, high-flow oxygen, and even invasive ventilation.

Remdesivir also shortens hospital stays and time to clinical improvement in most studies. It is generally well-tolerated, but guidelines stress the importance of monitoring for cardiac, kidney, and liver side effects. While remdesivir shows clear efficacy for time to recovery, some guidelines (such as IDSA) note it may not yield a significant mortality improvement in all subgroups. International treatment recommendations continue to support remdesivir for hospitalized patients, prioritizing evidence from both controlled trials and real-world studies.

In summary, remdesivir demonstrates consistent effectiveness in improving clinical outcomes and survival for hospitalized COVID-19 patients, with safety monitored by evaluating organ function and avoiding harmful drug interactions.

Adaptive COVID-19 treatment trial

The Adaptive COVID-19 Treatment Trial (ACTT) is a randomized, double-blind, placebo-controlled, adaptive clinical trial evaluating the safety and efficacy of novel therapeutic agents in hospitalized adults with COVID-19. The study is conducted globally across multiple sites and uses an adaptive design allowing introduction of new treatment arms or early stopping for efficacy, futility, or safety as data emerge. The primary outcome is time to recovery by day 29, with a key secondary outcome being improvement on an ordinal scale at day 15.

Initial results from ACTT demonstrated that remdesivir significantly reduced time to recovery in hospitalized patients with COVID-19 and evidence of lower respiratory tract infection, compared to placebo. The trial design enables continual optimization by comparing emerging therapies against the current standard of care, which may become the control arm as efficacy is established. Subsequent

iterations, such as ACTT-2, evaluate combination regimens, for example remdesivir plus the anti-inflammatory baricitinib, targeting different aspects of disease.

Overall, ACTT illustrates how adaptive platform trials can efficiently generate robust evidence to improve COVID-19 treatment, adjusting to new insights and evolving therapeutic landscapes.

Drug dosing

The pharmacological management of COVID-19 involves several drugs with specific dosing regimens based on current evidence:

- Remdesivir: Administered intravenously with a loading dose of 200 mg on day 1, followed by 100 mg daily for 4 to 9 days. It has been shown to shorten recovery time and reduce progression to severe disease in hospitalized patients with COVID-19 pneumonia. Combination with baricitinib may improve outcomes in severe cases. Co-administration with chloroquine or hydroxychloroquine is not recommended due to antagonistic effects.
- Hydroxychloroquine: Dosing commonly involves a loading dose of 400 mg twice daily for 1 day, followed by 200 mg twice daily. However, its efficacy and safety remain under study, and it is generally not recommended for COVID-19 outside clinical trials.
- Lopinavir/ritonavir: Typically dosed at 400 mg/100 mg twice daily for up to 14 days. Use requires caution due to drug interactions and potential adverse effects.
- Favipiravir: Suggested dosing includes a loading dose of 2400 to 3000 mg every 12 hours for 2 doses, followed by maintenance doses of 1200 to 1800 mg every 12 hours. Evidence is limited and more studies are needed.
- Corticosteroids (e.g., dexamethasone): Systemic corticosteroids are recommended for critically ill COVID-19 patients, with dexamethasone 6 mg/day preferred and doses up to 20 mg/day used when indicated.

These dosing regimens are based on clinical trial data, pharmacokinetic modeling, and emerging treatment guidelines. Drug safety, potential adverse effects, and contraindications should be carefully monitored during treatment. This summary reflects current evidence and may evolve with ongoing research.

Recommendations

Remdesivir is recommended primarily for hospitalized patients with COVID-19 who do not require invasive mechanical ventilation. It is approved for adults and pediatric patients weighing at least 3.5 kg and is most effective if administered as soon as possible after diagnosis, ideally within 7 days of symptom onset. The usual dosing for adults is a 200 mg intravenous loading dose on day 1, followed by 100 mg IV daily for 4 to 9 days, depending on clinical response. For non-hospitalized patients at high risk of progressing to severe disease, a 3-day course may be considered.

Remdesivir has shown benefits in reducing mortality, time to clinical recovery, and rehospitalization risk across all severities of COVID-19 in hospitalized patients. It is generally well-tolerated, but liver function and renal function should be monitored. There are no dosage adjustments necessary in renal impairment, including patients on dialysis. Remdesivir is typically considered second-line after Paxlovid and sotrovimab in outpatient settings and is used alongside corticosteroids and immunomodulators like baricitinib or tocilizumab in hospitalized patients with severe disease when indicated.

Treatment should be avoided in patients with significant liver enzyme elevations or hypersensitivity to remdesivir. The choice of remdesivir within treatment protocols depends on patient eligibility criteria, availability, and contraindications to other antivirals. Specialist consultation is recommended for immunocompromised patients or those outside standard eligibility criteria. These recommendations align with international guidelines including NICE, IDSA, and CDC updates as of 2025.

Remdesivir is a RNA dependent RNA polymerase

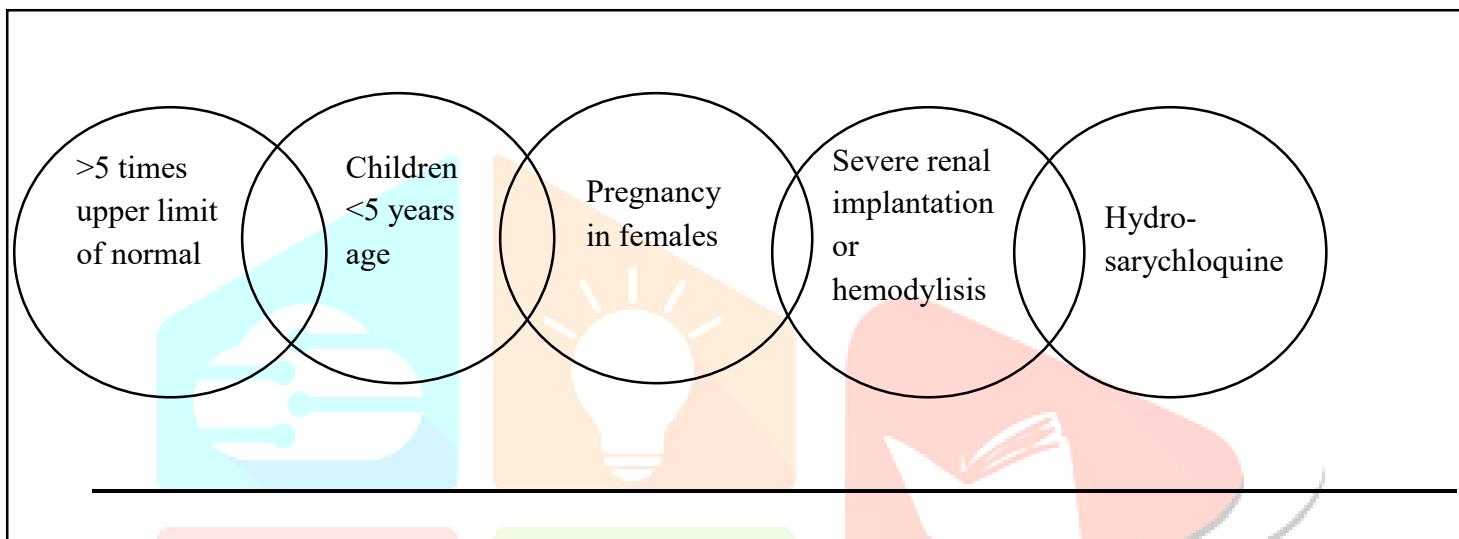
Half life of 20 hours and once daily IV administrations

Indicated for severe covid 19 infection

Administrations as 200mg done on day 1 followed by 100 mg daily for 4 days

Patient who do not respond to 5 day regimen, on invasive ventilation and on ECMO therapy- 10 day regimen is advocated

Co-administration with HCQS is not indicated


Future directions

Future directions for the pharmacological management of COVID-19 focus on enhancing therapeutic effectiveness, addressing emerging viral variants, and expanding treatment options tailored to different patient populations. Current evidence highlights that remdesivir and tocilizumab remain central treatments with demonstrated mortality reduction benefits. Key developments include:

1. Development and authorization of new immunomodulators like vilobelimab, which is recommended in clinical trials for critically ill patients on mechanical ventilation or ECMO, reflecting a push toward targeted immune therapies for severe COVID-19 cases.
2. Continued evaluation and integration of novel antivirals, including broad-spectrum oral agents such as nirmatrelvir/ritonavir, with emphasis on combination therapies that may improve efficacy and mitigate resistance development.
3. Advances in adaptive clinical trials (e.g., the Adaptive COVID-19 Treatment Trial) demonstrate the importance of flexible trial designs that allow rapid assessment and adjustment of treatment protocols in response to evolving clinical data and variants.

- Efforts to optimize drug repurposing and novel molecule discovery are ongoing, with a focus on both viral targets and host immune modulation to improve outcomes and address long-COVID complications.
- Guidelines emphasize personalized, evidence-based use of existing drugs like remdesivir, baricitinib, and tocilizumab, alongside investigational agents such as abatacept and infliximab, to manage immune dysregulation in hospitalized patients.
- Future strategies include respiratory drug delivery optimization, improved molecular patient testing for therapy selection, and development of pan-coronavirus antivirals to preempt future pandemics.

In conclusion, the future of COVID-19 pharmacological management lies in adaptive, multi-targeted approaches combining antivirals, immunomodulators, and supportive care, guided by ongoing clinical evidence and variant surveillance to improve patient outcomes and pandemic preparedness.

Highlights

- Current evidence supports the use of antiviral agents such as remdesivir, nirmatrelvir/ritonavir, and monoclonal antibodies to reduce mortality, hospitalization, and speed recovery in COVID-19 patients, especially those hospitalized or at high risk of severe disease. Immunomodulators like corticosteroids (dexamethasone), IL-6 inhibitors (tocilizumab), and Janus kinase inhibitors (baricitinib) show mortality benefits in severe to critical cases.
- Drug repurposing and new antiviral development remain key future directions to combat current and emergent coronavirus variants. There is emphasis on creating broad-spectrum antivirals and optimizing combination therapies that target different stages of viral replication and immune dysregulation.
- Updated clinical guidelines recommend tailoring treatment by disease severity, with antivirals prioritized early in infection and immunomodulators reserved for inflammatory stages. New agents like vilobelimab are promising but advised only within clinical trials due to limited evidence and safety considerations.
- Continued evaluation through adaptive platform trials, such as the Adaptive COVID-19 Treatment Trial (ACTT), is critical for rapidly identifying effective treatments and informing evolving clinical practice.
- The importance of monitoring and managing side effects—especially organ function when using remdesivir or immunomodulators—is emphasized to ensure patient safety.

- Standard of care includes supportive therapies like oxygen and anticoagulation alongside pharmacological agents, highlighting a comprehensive approach to management.

Overall, the pharmacological management of COVID-19 is evolving with advancing evidence, prioritizing early antiviral intervention and judicious use of immunomodulation, while addressing challenges posed by viral variants and patient heterogeneity in future research.

Conclusions

The conclusions for "Pharmacological Management of COVID-19: Current Evidence and Future Perspectives" highlight that effective COVID-19 treatment requires an adaptive, evidence-based approach integrating antivirals, immunomodulators, and supportive care. Strong evidence supports antiviral agents like remdesivir, nirmatrelvir/ritonavir, and monoclonal antibodies for early intervention to reduce disease progression and hospitalization. Immunomodulatory drugs such as corticosteroids, tocilizumab, and baricitinib have proven mortality benefits in severe and critically ill patients by modulating the immune response and inflammation.

Future perspectives emphasize the urgency of developing broad-spectrum antivirals to address emerging variants and pan-coronavirus threats. Adaptive platform trials, such as the ACTT series, continue to accelerate therapeutic advancements. Personalized treatment guided by patient risk factors, disease severity, and immune status is crucial. Ongoing research is needed to optimize drug combinations, dosing, and timing, particularly for special populations like immunocompromised patients. Unproven or ineffective therapies (e.g., hydroxychloroquine, ivermectin) are no longer recommended.

In conclusion, sustained investment in pharmacological research, vigilant surveillance of viral resistance, and guideline updates based on high-quality evidence remain essential for robust management of COVID-19, aiming to improve clinical outcomes and prepare for future pandemics.

References

1. Corona virus update (Live) Worldometer. Ind February 2011, [Last accessed on 2021 Feb 192].
2. Sanders JM. Monogue ML, Jadlowski 12, Cutrall J. Pharmatologic treatments for coronavirus disease 2019 (COVID-19) A review. JAMA. 2020;323:1824-36. doi:10.1001/jama.2020.2019 .
3. Brown AL. Won IJ. Graham L. Dinnon KH, 3rd. Sima AC, Feng JY, et al. Brood spectrum antiviral emdesivir inhibits human endemic and zourotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Res. 2019;16:104541 doi: 10.1016/j.antivul 2019.104541.
4. Thou 2 Yang XL, Wang XG, Hu B, Zhang 1, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;579:2703. doi: 10.141586-020-2012-7.
5. WHO tractor-General's opening remarks at the media bristing an COVID-19- WFHD Newsletter April 20:20. Last accessed un 2020 Apr 131.
6. Mulangu & Dodd LE, Davey L. Jr. Dhiani Mbaya O. Proschan M. Mukadi D, et ol A randomized, controlled trial of Ebola virus disease therapeutics. New Eingi | Med. 2019;381:2291-303, doi: 10.1056/NEJMoa1910993.

7. Sheban TP, Sims AC, Lein SR, Schäler A, Won, limwn Al, et al. Comparative therapeutic efficacy of rendesiviz and nambina of lepinavir, ritonavir and interferon hera against MERS-CoV. *Nat Commun.* 2020/11:222. doi: 10.1038/s41467-019-13940-60.
8. Wang M. Cao K. Zhang L, Yang X, Lini), Xu M, et al. kemdesivir and chloroquine effectively inhibit the recently emerged nave coronavirus (2019 Co) in vitros. *Cell Res.* 2020,10 269-71 dat 10.1038641422-020-4282.
9. B. Grein J. Uhmagari N. Shin 11, maz 6, Asperges E. Carfagna A, et al. Companionate use of remdenvir for patients with severn Covid-19. *N Engl J Med.* 2020:382-2377-36.
10. Wang Y. Zhang D. Du G. Du R, Zhao 1, fiu Y, et al. Remadesivir in adults with severe COVID-19. A tandemined double blind placebo-controlled, multicentre trial. *Lancet* 2020:395:1569-76 doi: 10.101650140-6736(20)31022-9.
11. Goldman ID. Lye DCB. Hui Di. Marks KM. Bruno R. Martejano R. et al. Hemdesivir for 5 or 10 days in patients with severe Covil 19. *N Engl J Med* 2020:383:1827-37.
12. 12. Beigel JIH. Tumashek KM, Dodd LE, Mehta AK, Zingman , Kalil AC, et al. ACTT-1 Study Group Members. Beradesivir for the treatment of Covid-15-preliminary report. *N Engl | Med.* 2020 doc 10.1056/NEJMc2022236.
13. . Beigel H. Tomashek KM, Dodd LE, Mehta AK, Zingman 85, Kall AC, et al. ACTT-1 Study Group Members. Ramdasivir for the Treatment of Cavid-19-Final Hepart. *N Engl J Med.* 20203831813-26.
14. Kalil AC, Patterson TF, Mehta AK, Tamashuk KM, Wolfe CR, Ghazaryan V. at al ACTT-2 Study Group Members. Haricitinib plus rumdessvir for besperalized adults with Covid-197 *N Engl J Med.* 2021;384:795-807.
15. WHO Nohdarity Trial Convaartium. Pun L. Peto R. Hemae-Restrepe AM, Prozami MP, Sathiyamoorthy V. Ahtool Karim Q. et al. Kepurposed antiviral drugs for Covid-19-Interim W3H0 solidarity trial results. *N Engl J Med.* 2023,384:497-511.
16. Sun D. Nemdesivic for Treatment of COVID-19. Combination of Pulmorury and IV Administration May Offer Additional Benedit AAPS 2020,22:77. doi: 10.120822248-020-00459-60 (PMC free artical (PubMed) Goore Schular.
17. Whittington, MD, Campbell D. Alternative Pricing Models for Remdesicir and Other Potential Treatments for COVID-19: Institute of clinical and economic review (ICER) [Last acomsed on 2020 Jun 301.
18. Boodware DR, Pullen MF, Bangdiwala AS, Raitick RA, Lofgren 5M. Okafor EC, et al. A randomized trial of hydroxychloroquine as ролихронте prophylaxis for Covid 19. *N Engl J Med.* 2020:383 517-25.

19. Rosenberg FS, Defert EM, Udo T, Wilherschied LA, Kumar Teseuriero 1, et al. Aumciation of treatment with hydroxychleesupaine ne azithromycin with in hospital mortality in patients with COVID-15 in New York State.

20. WHO discentiam hydroxychloroquine and lopinavir/ritonavir treatment arms for COVID-19: World Health Organization 4th July 2020. Last accessed on 2020 Jul 05).

21. Updates of COVIS-19 in Japan: Ministry of Health, Labour and Welfare, Tokyo, Japan. 18th May, 2030. Lant accessed on 2030 Jun.

22. Coronavirus (COWTD-153 17pdate: FDA James Emergency Use Authorization for Potential COVID-15 Treatment. 1st May 2020 Last acomed m 2020 Jun 251

23. Porecha M. COVID-19 treatment DCGI approves Berndesivir far restricted emergency use The Hindu: Business line, New Delhi 2nd Jome 2020. Last accessed on 2020 Jan 251.

24. Clinical management protocol: COVID 19-Govermanent of India. Ministry of Health and Fumily Welfare, Directorate General Health Services (EMR Divisions. Version 4, 27th June 2020. (Last accessed on 2020 Jun 301.

25. Clinical Management of COVID 19 interim guidance. World Health Organisation 'th May 2020. ILast accessed on 2020 Jun.

26. COVID 19 Treatment Guidelines Panel. Coronavirus Dis 2019 (COVITI 19) Treatment Guidelines. 29th June 2020. Nationa Institute of Health. [Last accessed on 2020 Jun 291.

27. Alhazzant W. Meller MH. Arabi YM, Loch M, Gong MN, Fan E, et al surviving Sepsis Campaign: Guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19) Intensive Care Med. 2020;46:834-87.