



## **Role Of Mobile Health Applications In Addiction Prevention: A Narrative Review**

Dr.Narayanasamy K<sup>1\*</sup>, Abinaya <sup>1</sup>, Dr. S Kalpana<sup>2</sup>,Dr .K Narayanasamy<sup>3</sup> ,Dr.Jasmine S Sunder<sup>2</sup>,Dr.S Valarmathi<sup>2</sup>,Dr.G Srinivas<sup>2</sup>

<sup>1</sup>Public Health PG Research Scholar, Department of Epidemiology, The Tamilnadu Dr.M.G.R Medical University, Guindy, Chennai, Tamilnadu, India 600032

<sup>2</sup>Department of Epidemiology, The Tamilnadu Dr.M.G.R Medical University, Guindy, Chennai, Tamilnadu, India 600032

<sup>3</sup>Vice Chancellor, The Tamilnadu Dr.M.G.R Medical University, Guindy, Chennai, Tamilnadu, India 600032

### **Abstract**

**Background:** Addiction remains one of the most pressing global public health challenges, encompassing both substance and behavioural dependencies. The emergence of mobile health (mHealth) applications offers innovative opportunities for prevention, early intervention, and recovery support.

**Objective:** This narrative review explores the role, effectiveness, and challenges of mobile health applications in addiction prevention, with emphasis on global and Indian perspectives.

**Methods:** A comprehensive search was performed across PubMed, Scopus, Google Scholar, and WHO databases from 2013–2024. Studies focusing on prevention and early intervention through mobile apps targeting substance or behavioural addiction were included.

**Results:** mHealth apps integrate behavioural theories, cognitive-behavioural strategies, gamification, and self-monitoring tools to reduce addictive behaviours. Evidence indicates promising outcomes in smoking cessation, alcohol control, and digital addiction management. However, issues like data privacy, digital literacy, and limited long-term evaluation persist.

**Conclusion:** Mobile applications have emerged as scalable, cost-effective adjuncts to traditional addiction prevention strategies. Integrating them into public health frameworks, especially in low- and middle-income countries, could enhance accessibility and community-level prevention efforts.

**Keywords:** Addiction prevention, mobile health, mHealth, digital health, substance abuse, behavioural addiction.

## I. INTRODUCTION

Addiction, a chronic relapsing disorder characterised by compulsive engagement in rewarding stimuli despite adverse consequences, remains a major contributor to global morbidity and mortality(1). Addiction, according to the World Health Organization, is a chronic brain illness characterized by compulsive substance use or behavior without considering the negative consequences. It disrupts brain function, resulting in a loss of control and neglect of responsibilities. In ICD-11, WHO defines addiction as a clinically relevant condition that covers both substance and behavioral addictions, such as gaming disorder(2).

According to the World Health Organization (WHO), over 35 million people suffer from drug-use disorders, while alcohol abuse contributes to more than three million deaths annually (3). Behavioural addictions such as internet and gaming dependence are increasingly recognised as emerging public health threats (4).

### Global Prevalence of Addiction / Substance Use Related Behaviors

Digital addiction (including smartphone, internet, gaming) is a growing concern: a meta-analysis across 64 countries (2,123,762 individuals) reported global pooled prevalence of 26.99% for smartphone addiction, 14.22% for Internet addiction, 8.23% for cybersex addiction, and 6.04% for game addiction(5). Among university students globally, a meta-analysis found a pooled prevalence of 41.84% for Internet addiction (95% CI: 35.89–48.02%)(6)

### India Prevalence of Substance Use Disorders

According to the National Mental Health Survey (NMHS) (2015–16), the weighted prevalence of any substance use disorder (SUD) in Indian adults (18+) was 22.4%, with tobacco use disorder at 20.9% and other substance use disorders (excluding tobacco) at 0.6%(7)

A report by the National Academy of Medical Sciences (India) noted that alcohol use disorder prevalence is around 4.7%, and other SUDs are around 0.6% in India(8)

Among tribal populations in India, substance use is even higher: the NAMS Task Force report indicates over 50% of tribal men (15–54 years) consume alcohol, and pooled prevalence of alcohol use disorder among tribes is ~40% (37–44%), with opium use at ~7.8%(9)

### Tamil Nadu

In a study of the tribal (Jawadhi Hills) population of Tamil Nadu, 38% of men reported alcohol use in any form(10)Tobacco use and dependency is also high among tribal communities: in a tribal group study, tobacco use prevalence was substantial, reflecting the cultural integration of use (11)Another tribal/tribal-related study reported that among tribes, smoking prevalence was ~25%, betel quid chewing ~36%, and alcohol use ~26%, highlighting a very high burden of substance use in tribal populations (12)

Traditional prevention models rely heavily on face-to-face counselling, awareness campaigns, and institutional rehabilitation. However, limited accessibility, social stigma, and cost barriers restrict their effectiveness in many communities, especially in resource-limited settings (13). The rapid proliferation of smartphones and internet connectivity has transformed healthcare delivery, giving rise to mobile health (mHealth) — the use of mobile devices to support medical and public health practices (14).

mHealth has demonstrated success in managing chronic diseases such as diabetes, hypertension, and depression (15). Its potential for addiction prevention lies in providing continuous engagement, personalised feedback, and privacy-protected support systems accessible 24/7. This review explores the current evidence base, design approaches, behavioural theories, challenges, and future implications of mobile health applications in addiction prevention.

## 2. Methodology

### 2.1 Study Design

This paper adopts a narrative review design to synthesise existing literature on mobile health applications for addiction prevention. Unlike systematic reviews, narrative reviews provide a broad, integrative understanding of concepts, innovations, and gaps within the field (16).

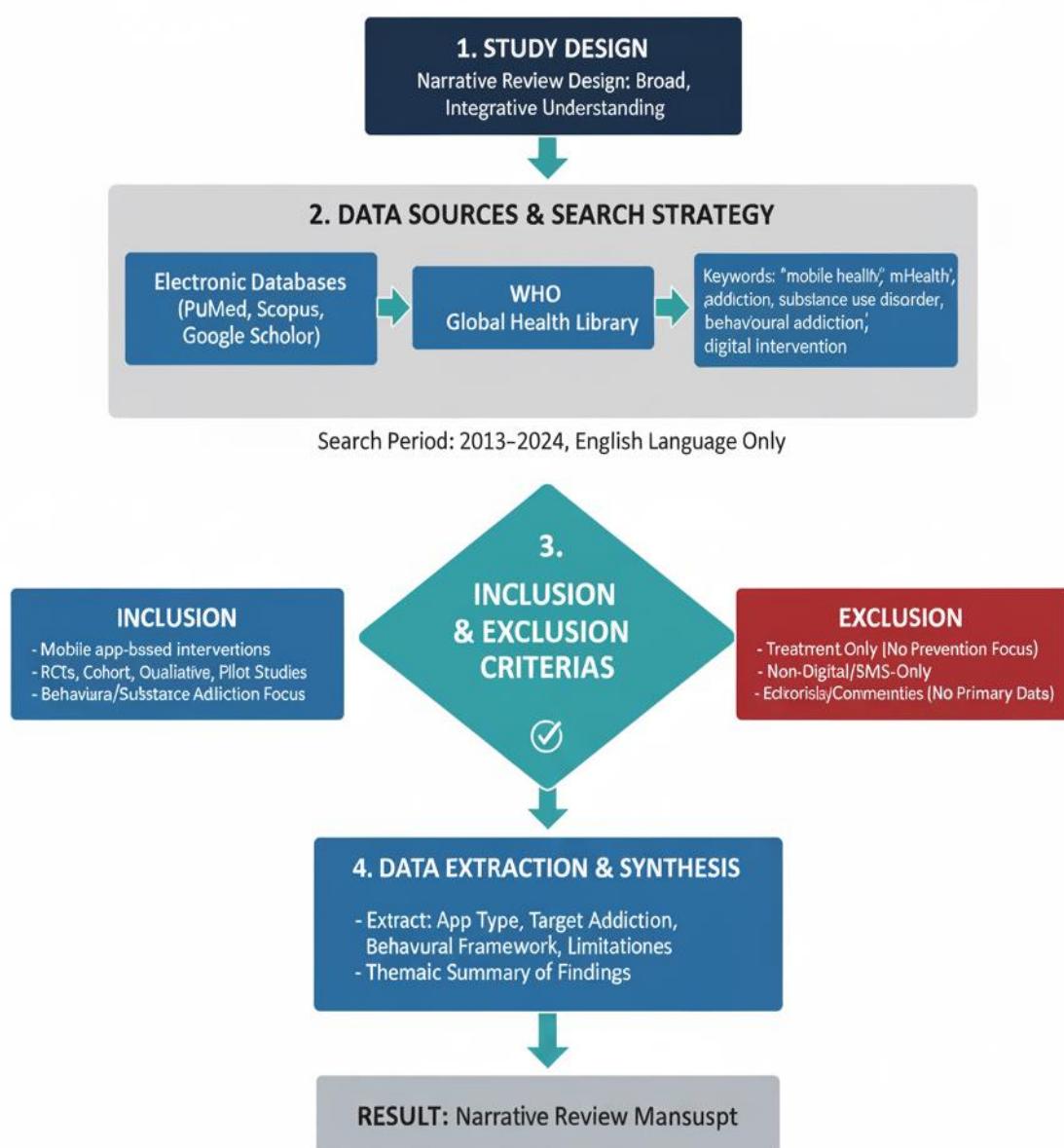
### 2.2 Data Sources and Search Strategy

Electronic databases including PubMed, Scopus, Google Scholar, and WHO Global Health Library were searched using keywords: “mobile health”, “mHealth”, “addiction prevention”, “substance use disorder”, “behavioural addiction”, and “digital intervention”.

The search was limited to English-language studies published between 2013 and 2024.

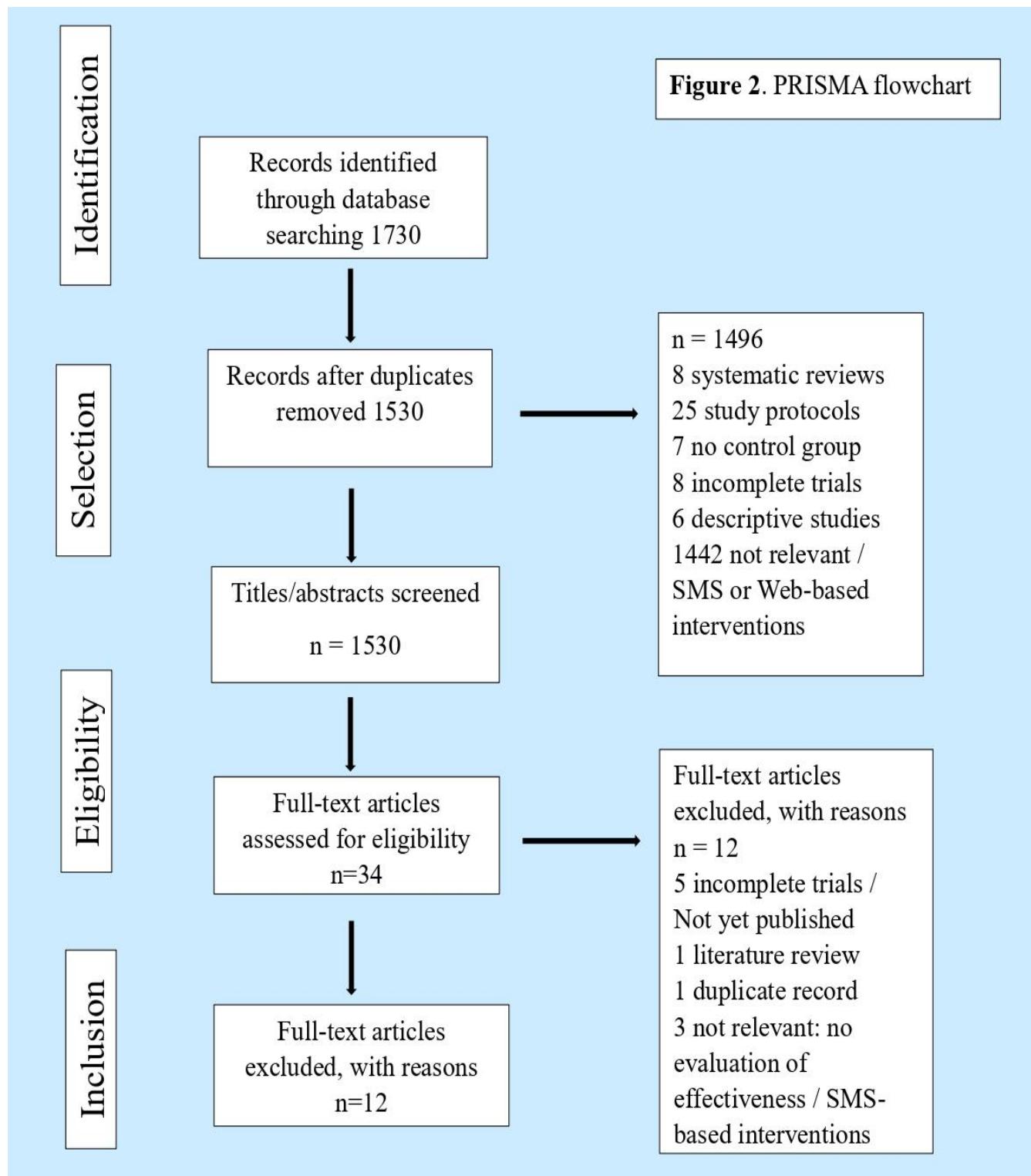
### 2.3 Inclusion and Exclusion Criteria

#### Inclusion:


- Studies assessing mobile app-based interventions for addiction prevention or early intervention.
- Randomised controlled trials (RCTs), cohort studies, qualitative evaluations, and pilot studies.
- Articles focusing on behavioural or substance-related addiction (alcohol, tobacco, drugs, gaming, or internet use).

#### Exclusion:

- Studies solely addressing treatment without preventive focus.
- Non-digital or SMS-only interventions.
- Editorials and commentaries without primary data.


Figure 1.Methodology

## METHODOLOGY FLOWCHART: Narrative Review on Mobile Health Apps for Addiction Prevention



## 2.4 Data Extraction and Synthesis

Data were extracted under key domains — app type, target addiction, behavioural framework, effectiveness, and limitations. The findings were summarised thematically.



**Figure 2. Role of Mobile Applications in Addiction Prevention**

### 3. Global Burden of Addiction

Addictive disorders contribute significantly to the Global Burden of Disease (GBD), leading to increased healthcare costs, productivity loss, and social harm (17). According to UNODC (2023), approximately 296 million people used drugs globally in 2021, with a steady rise in opioid and stimulant use (18). Alcohol remains a major risk factor for non-communicable diseases (NCDs) and injuries, while tobacco use continues to cause over 8 million deaths annually (19).

Behavioural addictions — particularly internet, gaming, and social media overuse — have risen with digitalisation, affecting nearly 6–10% of youth worldwide (20). In India, the National Mental Health Survey (2016) reported lifetime substance-use prevalence of 22.4%, with alcohol being the most common (21).

### 4. Evolution of Mobile Health and Digital Interventions

The World Health Organization (WHO) defines mHealth as “medical and public health practice supported by mobile devices such as phones, patient monitoring devices, and other wireless tools” (22). The evolution of mHealth in addiction prevention began with text messaging interventions for smoking cessation and evolved into smartphone applications incorporating multimedia content, reminders, and real-time analytics (23).

Globally, platforms like SmokeFree, QuitGuide, and DrinkLess have demonstrated efficacy in reducing risk behaviours (24). The COVID-19 pandemic further accelerated the adoption of mHealth, highlighting its role in mental health promotion and remote counselling (25).

In India, initiatives such as the Nasha Mukt Bharat Abhiyaan (2020) have started to incorporate mobile-based education and referral tools, reflecting growing policy alignment with digital health frameworks (26).

### 5. Types and Functions of Mobile Apps for Addiction Prevention

mHealth applications for addiction prevention can be classified based on their **core functionality**:

1. **Educational apps:** Provide awareness, self-assessment tools, and psychoeducation modules (e.g., WHO's BeHe@lthy).
2. **Monitoring apps:** Enable tracking of substance use or cravings through self-reporting and AI-driven analytics.
3. **Behavioural therapy apps:** Deliver cognitive behavioural therapy (CBT)-based interventions (e.g., reSET for SUD).
4. **Motivational apps:** Use gamification, challenges, and positive reinforcement.
5. **Supportive apps:** Facilitate peer networks and virtual counselling (e.g., 12-Steps Companion).

Such apps often use **push notifications**, **progress dashboards**, and **relapse prediction algorithms**, fostering continuous engagement and accountability (27).

## 6. Behavioural Theories Behind mHealth Interventions

Effective digital addiction prevention tools are rooted in behavioural and psychological theories:

- **Health Belief Model (HBM):** Encourages risk perception and perceived benefits of behaviour change (28).
- **Transtheoretical Model (Stages of Change):** Tailors interventions to readiness levels (29).
- **Social Cognitive Theory:** Utilises observational learning and self-efficacy reinforcement.
- **Cognitive Behavioural Theory (CBT):** Addresses maladaptive thought patterns and coping strategies.

Incorporating these models into app design enhances retention and behavioural outcomes (30).

## 7. Evidence from Global Studies

### 7.1 Smoking Cessation

The SmokeFree app demonstrated a 21% quit rate at six months among users compared to 12% in control groups (31). A meta-analysis by Zhao et al. (2022) found that mHealth interventions significantly improved short-term abstinence ( $RR = 1.67$ , 95% CI: 1.28–2.19) (32).

### 7.2 Alcohol and Drug Use

Apps such as DrinkLess and Sober Grid showed moderate reductions in weekly alcohol consumption and enhanced peer support (33).

In a U.S. RCT, mobile CBT for substance use reduced relapse rates by 27% (34).

### 7.3 Behavioural Addictions

Digital interventions for internet and gaming addiction, such as MindCotine and Headspace, improved mindfulness and impulse control among adolescents (35).

## 8. Indian Context and Emerging Innovations

India has witnessed a rapid rise in smartphone penetration (over 750 million users) offering vast potential for mHealth expansion (36). Indigenous applications such as QuitSure, Wellness Coach, and QuitPannuga are integrating culturally adapted content, regional languages, and AI-based relapse prevention modules.

However, most Indian apps lack rigorous scientific validation. Only a few have undergone controlled evaluation, highlighting the need for evidence-based digital tools tailored to diverse literacy levels and socio-cultural backgrounds (37).

## 9. Challenges and Limitations

- Data privacy and confidentiality:** Sensitive user data must comply with HIPAA and Indian Digital Personal Data Protection Act (7).
- Digital literacy barriers:** Rural and low-income populations may have limited smartphone or internet access.
- Lack of clinical validation:** Few apps have peer-reviewed evidence demonstrating long-term efficacy.
- User retention:** Sustaining engagement beyond initial installation is challenging.
- Ethical concerns:** Algorithmic bias, misinformation, and commercial exploitation of health data need oversight.

## 10. Future Implications and Recommendations

- Integration with public health systems:** Incorporate mHealth apps into **National Mental Health Programme (NMHP)** and **Nasha Mukt Bharat Abhiyaan** frameworks.
- Standardisation and certification:** Develop government-approved evaluation protocols for app efficacy and safety.
- AI-driven personalisation:** Use predictive analytics to identify relapse triggers and tailor interventions.
- Capacity building:** Train healthcare providers in digital counselling and app-based health education.
- Community-based participatory design:** Engage end-users during development to ensure cultural relevance and acceptability.

## 11. Discussion

mHealth interventions align with global shifts toward digital transformation in healthcare. Their unique ability to deliver low-cost, scalable, and stigma-free support makes them especially suitable for preventive addiction care. Evidence from multiple countries confirms improvements in awareness, behaviour change, and relapse reduction when mobile apps complement traditional approaches.

Yet, disparities persist in access, digital competence, and sustained usage. Long-term evaluation and hybrid models integrating both online and in-person counselling may yield better outcomes. In the Indian scenario, where addiction intersects with poverty, unemployment, and social stigma, digital tools can play a pivotal role in extending early intervention to underserved populations.

## 12. Conclusion

Mobile health (mHealth) applications are becoming an important and effective tool for preventing and managing addiction problems such as alcohol, tobacco, drug use, and digital addiction. These apps help people by giving health education, daily reminders, self-assessment tools, and counselling support through their mobile phones.

Globally, studies have shown that using mobile apps can help reduce substance use and improve motivation to quit. In India, a few pilot studies like the Quest App and AMBIT Trial in Goa showed good results — many users reported better awareness, reduced drinking, and improved mental well-being after using mobile interventions.

In Tamil Nadu, digital awareness programmes under Nasha Mukt Bharat Abhiyaan and National Digital Health Mission (NDHM) have started promoting the use of health apps among youth and rural communities. These initiatives show that mobile technology can reach even remote or tribal areas, such as Jawadhu Hills, where access to mental health and addiction services is limited.

Overall, mobile health applications are low-cost, user-friendly, and easily scalable tools that can support addiction prevention and promote healthy habits. However, success depends on user motivation, digital literacy, and continuous follow-up by healthcare workers. With proper training, data privacy measures, and integration into public health programmes, mHealth can play a vital role in reducing addiction and improving community health outcomes in India.

## References

1. Volkow ND, Koob GF, McLellan AT. Neurobiologic Advances from the Brain Disease Model of Addiction. *N Engl J Med.* 2016 Jan 28;374(4):363–71.
2. Addictive behaviour [Internet]. [cited 2025 Nov 12]. Available from: <https://www.who.int/health-topics/addictive-behaviour>
3. Global status report on alcohol and health and treatment of substance use disorders [Internet]. [cited 2025 Nov 12]. Available from: <https://www.who.int/publications/i/item/9789240096745>
4. Kuss DJ, Griffiths MD, Karila L, Billieux J. Internet addiction: a systematic review of epidemiological research for the last decade. *Curr Pharm Des.* 2014;20(25):4026–52.
5. Meng SQ, Cheng JL, Li YY, Yang XQ, Zheng JW, Chang XW, et al. Global prevalence of digital addiction in general population: A systematic review and meta-analysis. *Clin Psychol Rev.* 2022 Mar;92:102128.
6. Liu X, Gui Z, Chen ZM, Feng Y, Wu XD, Su Z, et al. Global prevalence of internet addiction among university students: a systematic review and meta-analysis. *Curr Opin Psychiatry.* 2025 May 1;38(3):182–99.
7. 248045.pdf [Internet]. [cited 2025 Nov 17]. Available from: <https://egazette.gov.in/WriteReadData/2023/248045.pdf>
8. NAMS task force report on Alcohol, substance use disorders, and behavioral addictions in India. *Ann Natl Acad Med Sci India.* 2024 Mar 30;60(1):88–100.
9. Google Docs [Internet]. [cited 2025 Nov 17]. Role of Mobile Health Applications in Addiction Prevention: A Narrative Review. Available from: [https://docs.google.com/document/u/1/d/1lOWcHEJdh-ReIGCTRchXjesoZI5dGCVqmLsDW\\_J0Fo8/edit?tab=t.0&usp=embed\\_facebook](https://docs.google.com/document/u/1/d/1lOWcHEJdh-ReIGCTRchXjesoZI5dGCVqmLsDW_J0Fo8/edit?tab=t.0&usp=embed_facebook)
- 10.(PDF) Hazardous use of alcohol among men in the tribal population of Jawadhi Hills, Tamil Nadu: Nature, prevalence, and risk factors. ResearchGate [Internet]. 2025 Aug 6 [cited 2025 Nov 17]; Available from:

[https://www.researchgate.net/publication/348797975\\_Hazardous\\_use\\_of\\_alcohol\\_among\\_men\\_in\\_the\\_tribal\\_population\\_of\\_Jawadhi\\_Hills\\_Tamil\\_Nadu\\_Nature\\_prevalence\\_and\\_risk\\_factors](https://www.researchgate.net/publication/348797975_Hazardous_use_of_alcohol_among_men_in_the_tribal_population_of_Jawadhi_Hills_Tamil_Nadu_Nature_prevalence_and_risk_factors)

11. Chellappa LR, L L, Indiran MA, Rathinavelu P kumar. Prevalence and dependency of tobacco use among tribal gypsies in Thoothukudi district - A cross sectional study. *J Fam Med Prim Care*. 2021 Feb;10(2):738.

12. Full article: Smoking, betel quid chewing, and alcohol use among an indigenous primitive Tribal group in the Kerala State of India: Secondary analysis of a Tribal household survey [Internet]. [cited 2025 Nov 17]. Available from: [https://www.tandfonline.com/doi/full/10.1080/15332640.2023.2185721?utm\\_source=chatgpt.com](https://www.tandfonline.com/doi/full/10.1080/15332640.2023.2185721?utm_source=chatgpt.com)

13. ResearchGate [Internet]. 2025 [cited 2025 Nov 12]. (PDF) National Mental Health Survey of India, 2015-16 Prevalence, Pattern and Outcomes. Available from: [https://www.researchgate.net/publication/325128785\\_National\\_Mental\\_Health\\_Survey\\_of\\_India\\_2015-16\\_Prevalence\\_Pattern\\_and\\_Outcomes](https://www.researchgate.net/publication/325128785_National_Mental_Health_Survey_of_India_2015-16_Prevalence_Pattern_and_Outcomes)

14. Free C, Phillips G, Watson L, Galli L, Felix L, Edwards P, et al. The effectiveness of mobile-health technologies to improve health care service delivery processes: a systematic review and meta-analysis. *PLoS Med*. 2013;10(1):e1001363.

15. JMIR mHealth and uHealth - The Impact of mHealth Interventions: Systematic Review of Systematic Reviews [Internet]. [cited 2025 Nov 12]. Available from: <https://mhealth.jmir.org/2018/1/e23/>

16. Green BN, Johnson CD, Adams A. Writing narrative literature reviews for peer-reviewed journals: secrets of the trade. *J Chiropr Med*. 2006;5(3):101–17.

17. Global Burden of Disease (GBD) [Internet]. [cited 2025 Nov 12]. Available from: <https://www.healthdata.org/research-analysis/gbd>

18. World Drug Report 2023 [Internet]. [cited 2025 Nov 12]. Available from: <https://www.unodc.org/unodc/en/data-and-analysis/world-drug-report-2023.html>

19. WHO global report on trends in prevalence of tobacco smoking 2000-2025 - Second edition [Internet]. [cited 2025 Nov 12]. Available from: <https://www.who.int/publications/i/item/9789241514170>

20. Zheng MR, Wu XD, Chen P, Si TL, Rao SY, Zhu HY, et al. Prevalence of internet addiction among Chinese adolescents: A comprehensive meta-analysis of 164 epidemiological studies. *Asian J Psychiatry*. 2025 May;107:104458.

21. Murthy P, Manjunatha N, Subodh BN, Chand PK, Benegal V. Substance use and addiction research in India. *Indian J Psychiatry*. 2010 Jan;52(Suppl 1):S189-199.

22. mHealth: New horizons for health through mobile technologie | WHO | Regional Office for Africa [Internet]. 2025 [cited 2025 Nov 12]. Available from: <https://www.afro.who.int/publications/mhealth-new-horizons-health-through-mobile-technologie>

23. Whittaker R, McRobbie H, Bullen C, Rodgers A, Gu Y, Dobson R. Mobile phone text messaging and app-based interventions for smoking cessation. *Cochrane Database Syst Rev*. 2019 Oct 22;10:CD006611.

24. Perski O, Crane D, Beard E, Brown J. Does the addition of a supportive chatbot promote user engagement with a smoking cessation app? An experimental study. *Digit Health*. 2019;5:2055207619880676.

25. Torous J, Bucci S, Bell IH, Kessing LV, Faurholt-Jepsen M, Whelan P, et al. The growing field of digital psychiatry: current evidence and the future of apps, social media, chatbots, and virtual reality. *World Psychiatry Off J World Psychiatr Assoc WPA*. 2021 Oct;20(3):318–35.

26.Home | Department of Social Justice and Empowerment - Government of India [Internet]. [cited 2025 Nov 12]. Available from: <https://socialjustice.gov.in/>

27.Kazemi DM, Li S, Levine MJ, Auten B, Granson M. Systematic Review of Smartphone Apps as a mHealth Intervention to Address Substance Abuse in Adolescents and Adults. *J Addict Nurs.* 2021 Sept 1;32(3):180–7.

28.Rosenstock IM. The Health Belief Model and Preventive Health Behavior. *Health Educ Monogr.* 1974 Dec 1;2(4):354–86.

29.Prochaska JO, DiClemente CC. Stages and processes of self-change of smoking: toward an integrative model of change. *J Consult Clin Psychol.* 1983 June;51(3):390–5.

30.Bandura A. Social cognitive theory: an agentic perspective. *Annu Rev Psychol.* 2001;52:1–26.

31.Bricker JB, Mull KE, Kientz JA, Vilardaga R, Mercer LD, Akioka KJ, et al. Randomized, controlled pilot trial of a smartphone app for smoking cessation using acceptance and commitment therapy. *Drug Alcohol Depend.* 2014 Oct 1;143:87–94.

32.Journal of Medical Internet Research - Can Mobile Phone Apps Influence People's Health Behavior Change? An Evidence Review [Internet]. [cited 2025 Nov 17]. Available from: <https://www.jmir.org/2016/11/e287>

33.Crane D, Garnett C, Brown J, West R, Michie S. Behavior change techniques in popular alcohol reduction apps: content analysis. *J Med Internet Res.* 2015 May 14;17(5):e118.

34.Gustafson DH, McTavish FM, Chih MY, Atwood AK, Johnson RA, Boyle MG, et al. A smartphone application to support recovery from alcoholism: a randomized clinical trial. *JAMA Psychiatry.* 2014 May;71(5):566–72.

35.Li W, O'Brien JE, Snyder SM, Howard MO. Characteristics of internet addiction/pathological internet use in U.S. university students: a qualitative-method investigation. *PLoS One.* 2015;10(2):e0117372.

36.Telcom Subscriptions Reports | Telecom Regulatory Authority of India | Government of India [Internet]. [cited 2025 Nov 17]. Available from: <https://trai.gov.in/release-publication/reports/telecom-subscriptions-reports>

37.Bassi A, John O, Praveen D, Maulik PK, Panda R, Jha V. Current Status and Future Directions of mHealth Interventions for Health System Strengthening in India: Systematic Review. *JMIR MHealth UHealth.* 2018 Oct 26;6(10):e11440.