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Abstract

Hybrid deep learning architectures have emerged as a powerful solution for addressing the complexity of
MRI-based brain tumor diagnosis, a domain characterized by heterogeneous tumor morphology, multimodal
imaging protocols, and the need for accurate, early detection. Traditional convolutional neural networks
(CNNs), although highly effective at learning spatial features, often struggle to capture long-range
dependencies, multi-sequence relationships, and contextual variations inherent in brain tumor MRI data. By
integrating complementary modules such as recurrent neural networks, transformers, generative adversarial
networks, and classical machine-learning classifiers, hybrid models leverage the strengths of each component
to enhance feature representation, robustness, and generalization across scanners and institutions. Advances
in multimodal MRI—including T1, T2, FLAIR, and contrast-enhanced sequences—further motivate hybrid
architectures by providing diverse inputs that benefit from sophisticated fusion strategies. Preprocessing
plpehnes mvolvmg skull stripping, normahzatlon and den01s1ng underpm the rehablhty of these systems

classification, and segmentation, particularly for complex tasks such as delineating glioma subregions or
distinguishing tumor grades. Benchmarking on datasets such as BraTS, TCGA, and REMBRANDT reveals
consistent performance gains for hybrid models, although issues of domain shift, annotation scarcity, and
limited cross-dataset validation remain significant barriers. Despite impressive accuracy metrics—including
enhanced Dice scores, Fl-scores, and reduced false positives—clinical integration is hindered by
computational cost, interpretability challenges, and regulatory constraints. Overall, hybrid deep learning
architectures represent a promising path toward more reliable and clinically useful MRI-based brain tumor
diagnosis, while highlighting the need for improved datasets, standardized evaluation protocols, and greater
emphasis on robustness and transparency.
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1. Introduction

Brain tumours continue to pose significant challenges in neurology and oncology, due to their diverse
histopathological types, variable growth patterns, and the critical importance of early detection. Magnetic
resonance imaging (MRI) has long been the primary imaging modality for diagnosing and monitoring brain
tumours, given its high soft-tissue contrast, ability to acquire multiple sequences and planes, and its non-
ionising nature. Yet, despite these advantages, interpretation of brain tumour MRIs remains labour-intensive
and subject to inter-observer variability. Advances in artificial intelligence (Al), especially deep learning (DL),
have begun to support radiologists by automating tasks such as tumour segmentation, classification and
grading, thereby promising more consistent and efficient workflows. For example, a recent review highlighted
how DL models are enabling automated tumour segmentation and even non-invasive prediction of molecular
biomarkers from MRI alone. (Dorfner et al., 2025)
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Nonetheless, the complexity of brain tumour MRI data—characterised by heterogeneous tumour morphology,
variable contrast across MRI protocols and multi-modality acquisition—means that single-network DL
models can struggle to capture all relevant spatial, contextual and modal features. To overcome these
limitations, emerging hybrid deep learning architectures—which combine different neural network types (e.g.,
convolutional neural networks, recurrent or transformer modules) or fuse deep learning with classical
machine-learning classifiers—have shown considerable promise. A systematic review of hybrid machine
learning and deep learning models demonstrated that combining CNNs with traditional classifiers improved
classification accuracy and reduced false positives compared to standalone networks.

2. Background on Brain Tumors and MRI Importance

Brain tumors represent a diverse group of intracranial neoplasms that vary widely in biological behavior,
aggressiveness, and prognosis, making accurate diagnosis essential for guiding treatment and improving
survival. As these tumors often infiltrate surrounding tissues or exhibit heterogeneous internal composition,
they can be difficult to assess through clinical symptoms or conventional diagnostic methods alone. Magnetic
Resonance Imaging (MRI) has therefore become the cornerstone of brain tumor evaluation because of its
superior soft-tissue contrast, non-ionizing acquisition process, and ability to visualize anatomical and
pathological changes with high precision. MRI provides detailed structural information, enabling clinicians
to identify key features such as tumor boundaries, peritumoral edema, necrosis, cystic components, and mass
effect. For example, a comprehensive review emphasizes that MRI remains the primary modality for
diagnosing and monitoring primary adult brain tumors owing to its unmatched imaging versatility. (Martucci
et al., 2023)

Beyond structural assessment, advanced MRI techniques—including diffusion-weighted imaging, perfusion
imaging, susceptibility mapping, and MR spectroscopy—provide valuable functional and metabolic insights
that help distinguish tumor types, assess tumor grade, and monitor post-treatment changes. These modalities
aid in differentiating true tumor progression from treatment-related effects such as pseudoprogression or
radiation necrosis, which can mimic tumor recurrence. However, interpretation of MRI remains challenging
due to heterogeneous imaging protocols, subtle lesion appearances, and the need for volumetric analysis
across multiple sequences. As a result, radiologists often face significant cognitive load and variability in
interpretation. A pictorial review highlights that while conventional MRI is powerful, its limitations in
distinguishing tumor from non-tumor pathology underscore the need for more advanced analytic approaches.
(Sawlani et al., 2020)

2.1. Motivation for AI and Hybrid Deep Learning Approaches

Although MRI provides extensive structural and functional information, the complexity of multi-sequence
brain tumor imaging poses significant challenges for manual interpretation and traditional computational
methods. Tumor heterogeneity, differences in MRI acquisition parameters, and the high dimensionality of 3D
volumetric data make it difficult for radiologists and classical machine-learning algorithms to consistently
extract meaningful patterns. These challenges have fueled the adoption of artificial intelligence (Al),
particularly deep learning (DL), which can automatically learn hierarchical feature representations from raw
imaging data. However, single-architecture DL models—such as conventional convolutional neural
networks—may still struggle to capture long-range dependencies, multimodal relationships, or subtle global
context within MRI volumes. To address these limitations, researchers have increasingly developed hybrid
deep learning models that combine complementary network types, merge DL with classical machine-learning
classifiers, or integrate multimodal MRI features into unified frameworks. Such hybrid architectures leverage
the strengths of each component, improving model robustness, enhancing feature expressiveness, and
enabling better generalization across institutions and MRI protocols. A recent systematic review found that
hybrid Al approaches significantly improve diagnostic accuracy, demonstrating their potential to outperform
traditional DL pipelines while offering more reliable performance in real-world clinical environments.
(Satushe et al., 2025)

3. Overview of MRI Modalities Used in Brain Tumor Diagnosis

Magnetic resonance imaging (MRI) plays a central role in brain tumour evaluation thanks to its ability to
provide high resolution structural images across multiple contrast sequences, thus enabling visualization of
tumour morphology, edema, necrosis and infiltration. Moreover, advanced functional and parametric MRI
techniques—including diffusion, perfusion and spectroscopy—offer insight into tumour -cellularity,
vascularity and metabolism, thereby enhancing diagnostic specificity and helping guide biopsy and treatment
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decisions (Sawlani et al., 2020). The adoption of multi-modal MRI protocols means clinicians and researchers
now routinely integrate several sequence types to capture complementary tumour characteristics and improve
the robustness of image-analysis pipelines (Zhang et al., 2021).

Despite these strengths, MRI interpretation for brain tumours remains demanding because of heterogeneous
tumour appearances, variable protocol parameters across centres, and the challenge of reliably isolating
infiltrative margins or differentiating tumour tissue from treatment-related changes. These factors underscore
the need to understand the key MRI modalities used in brain tumour diagnosis, their relative strengths and
limitations, and the added value of combining them into multi-modal workflows for enhanced diagnostic
accuracy and deep-learning model performance.

3.1. Common MRI Sequences: T1, T2, FLAIR, and Contrast-Enhanced
Here is an introduction and then the key sequences described point-wise:
In brain tumour imaging, four widely used MRI sequences are T1-weighted, T2-weighted, FLAIR (Fluid-
Attenuated Inversion Recovery) and contrast-enhanced T1 (often with gadolinium). These sequences each
provide distinct tissue contrast and together form the backbone of many neuro-oncology imaging protocols.

e T1-weighted (T1): Provides good anatomical detail and delineation of tissues; cerebrospinal fluid
(CSF) appears dark, white matter is relatively brighter, and many tumours are iso- or hypointense
compared to grey matter. (Martucci et al., 2023)

o T2-weighted (T2): Highlights fluid content and edema by showing CSF and other fluid as bright;
useful for visualising peritumoral edema and infiltrative zones which often appear hyperintense. (Stall
et al., 2010)

e FLAIR: Suppresses CSF signal to better visualise lesions adjacent to ventricles or cortex and
improves detection of tumour-associated edema or infiltration by reducing fluid background
brightness. (Stall et al., 2010)

e Contrast-Enhanced T1 (T1-CE): After administration of gadolinium-based contrast agent,
enhancing lesions (indicating breakdown of the blood-brain barrier or tumour neovascularity) appear
bright; critical for defining active tumour margins, ring enhancement, and for treatment monitoring.

4. Strengths and Limitations of MRI for Tumor Visualization

MRI offers several important advantages for brain tumour imaging. Among them: excellent soft-tissue
contrast enabling differentiation of tumour from normal brain structures; the ability to-acquire volumetric
1mages 1n multiple planes; non-1onising radiation making repeated scans safe; and the availability of multiple
sequences to assess different tissue properties. However, MRI also has limitations. One key limitation is that
conventional structural MRI sequences sometimes lack specificity — infiltrative tumour margins may appear
indistinct from surrounding edema or post-treatment changes, leading to challenges in accurate delineation.
Differences in MRI acquisition parameters, scanner hardware, and protocol heterogeneity across centres can
also reduce reproducibility of imaging biomarkers and hamper generalisation of analytic models. A review
noted that while MR is central in neuro-oncology, its ability to discriminate between tumour tissue and non-
tumour lesions remains limited without advanced sequences. (Sawlani et al., 2020)

4.1. Role of Multimodal MRI in Improving Diagnostic Accuracy

e Combining multiple MRI sequences (T1, T2, FLAIR, T1-CE) enables complementary contrast
information—structural detail from T1, fluid/edema from T2/FLAIR and neovascular enhancement
from T1-CE—thus improving tumour margin delineation and reducing mis-classification of
peritumoral tissue (Buchner et al., 2023).

e Integration of functional MRI sequences (such as perfusion or diffusion) with structural imaging
allows assessment of tumour micro-environment (e.g., high rtCBV or low ADC) which helps in grading
gliomas and distinguishing high-grade from low-grade lesions.

e Multimodal data fusion supports deep-learning models by providing diverse inputs that improve
feature learning and generalisation, especially in heterogeneous datasets collected from different
scanners or patient populations (Zhang et 1., 2021).

e Multi-sequence MRI enables better monitoring of treatment response or recurrence, as changes in
enhancement pattern (T1-CE) combined with evolving edema or diffusion changes (T2/FLAIR, DWI)
provide richer biological context than single-modality imaging (Sawlani et al., 2020).
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e Use of multimodal MRI protocols standardises imaging across centres and supports benchmarking
and segmentation tasks (for example via the BRATS dataset), promoting reproducibility and
comparability of research and clinical results (Buchner et al., 2023).

4.2. Deep Learning in Medical Imaging: A Background

Deep learning (DL) has rapidly transformed the field of medical imaging by enabling automated feature
extraction and high-performance image analysis tasks that were previously extremely labour-intensive.
Traditional medical-image analysis often relied on handcrafted features (shape, texture, intensity) followed
by classifiers such as support vector machines or random forests; however these approaches struggled with
the complex, high-dimensional nature of modalities such as MRI, CT, and PET. Deep neural networks, by
contrast, learn hierarchical representations directly from raw image data, significantly improving performance
in tasks like segmentation, detection and classification of pathology, including in neuroimaging. For example,
one broad survey reported that for radiological imaging, deep learning models achieved notably better
diagnostic accuracy compared with classical methods. (Aggarwal et al., 2021)

Nevertheless, DL in medical imaging also brings new challenges—such as the need for large labelled datasets,
domain shift across scanners and protocols, interpretability, and robustness to real-world clinical variability.
A comprehensive review highlighted that while DL algorithms have achieved impressive success, they must
be carefully adapted to the imaging domain given issues like small sample sizes, volumetric data, and multi-
modal inputs in neuroimaging. (Zhou et al., 2021) These observations underscore the importance of
understanding both the promise and the limitations of DL, especially when applied to complex tasks such as
brain tumour diagnosis from MRI.

5. Conventional Machine Learning vs. Deep Learning

In conventional machine-learning (ML) workflows for medical imaging, analysts first design features
manually—such as region of interest (ROI) shape descriptors, histogram and texture features—and then feed
these into classifiers like SVMs, logistic regression or decision trees. These pipelines depend heavily on
domain expertise for feature engineering and often struggle to scale or generalize when faced with
heterogeneous imaging data or novel tumour presentations. By contrast, deep learning eliminates (or greatly
reduces) the need for manual feature engineering: convolutional layers automatically learn relevant spatial
filters, and deeper layers extract progressively more abstract semantic features from the image data.

Another distinction is how the models handle data volume and complexity. Deep learning models excel when
Targe SeTS ol anmotated IMages exisT and When Variabiity 1S igh—because They cam Iearn TTom cXampies
rather than relying on pre-defined feature sets. For brain tumour MRI analysis, DL approaches have shown
markedly improved accuracy over traditional ML methods, particularly when large multi-modal datasets are
available. However, deep learning is also more computationally intensive, requires more data, and may be
more prone to overfitting or domain-shift issues compared with simpler ML models. Overall, while both ML
and DL have roles in medical imaging, the evolution toward deep learning marks a significant shift in
capability and practice.

5.1. Key DL Architectures: CNNs, RNNs, GANs, Transformers
Convolutional Neural Networks (CNNs): Designed specifically to process grid-like data (images), CNNs
apply convolution and pooling operations to learn spatial hierarchies of features, making them especially
effective for segmentation and classification tasks in medical imaging. (Zhang et al., 2023)
Recurrent Neural Networks (RNNs): Primarily used for sequential or time-series data, RNNs (and their gated
variants such as LSTM/GRU) can model inter-slice dependencies in volumetric MRI or temporal changes in
longitudinal imaging studies.
Generative Adversarial Networks (GANs): Comprise a generator and discriminator network that compete,
and are used in medical imaging to synthesise realistic annotated images for augmentation, or to perform
modality translation (e.g., generating contrast-enhanced images from non-contrast MRI).
Transformers / Vision Transformers (ViTs): Based on self-attention mechanisms, transformer architectures
capture global dependencies and long-range context in images; when adapted to medical imaging, they can
improve performance especially when combined with CNN backbones to handle both local and global
features. (Huang et al., 2022)

6. Hybrid Deep Learning Architectures: Concepts and Taxonomy
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Hybrid deep learning architectures combine two or more different modelling techniques or network types to
leverage their complementary strengths, address shortcomings of single-architecture systems, and enhance
overall performance in complex tasks such as MRI-based brain tumour diagnosis. In essence, these hybrid
systems aim to merge spatial feature extraction, temporal or contextual modelling, modality-fusion or
ensemble strategies into a unified pipeline. The rationale is that while conventional single-type deep networks
(e.g., CNNs) excel at capturing local spatial features, they may struggle with long-range dependencies,
temporal relationships, or multi-modal integration; hybrid designs mitigate this by embedding additional
network modules (e.g., RNNs, transformers), combining deep-learned features with classical machine-
learning classifiers, or utilising generative models for augmentation or translation. In medical image analysis,
hybrid architectures have shown enhanced robustness, better generalisation across centres, and improved
performance on heterogeneous datasets. For instance, reviews of DL in medical imaging highlight that hybrid
approaches—such as combining CNNs with RNNs or transformers—are increasingly used to handle
volumetric data, multi-slice dependencies and multi-sequence MRI inputs. (Li et al., 2023) Moreover, studies
of hybrid vision transformer models report that integrating convolutional and attention-based modules yields
superior segmentation or classification outcomes compared to standalone architectures. (Pu et al., 2024) As
the MRI-based brain tumour diagnosis task demands integration of multi-modal inputs, contextual/temporal
information and high spatial resolution, hybrid deep learning systems provide a compelling framework. A
clear taxonomy helps us categorise such systems, understand their design trade-offs and assess their suitability
for different tasks (detection, classification, segmentation) in neuro-oncological imaging.

6.1. Types of Hybrid Systems (CNN-RNN, CNN-GAN, CNN-Transformer, Ensembles)

Hybrid deep learning systems in the brain tumour MRI domain can be broadly grouped into the following
categories:

e CNN-RNN hybrids: In this configuration, a convolutional neural network (CNN) serves as the
feature extractor from MRI slices or volumes, capturing spatial patterns, while a recurrent neural
network (RNN) (e.g., LSTM or GRU) models sequential or inter-slice dependencies or longitudinal
temporal changes. For example, in a longitudinal study of tumour growth, the CNN extracts features
from each time-point scan while the RNN integrates temporal progression, providing improved
grading or progression prediction compared with a CNN alone. The sequential modelling of RNN
augments spatial extraction of the CNN and helps capture dependencies across slices or time-points.

e CNN-GAN hybrids: A generative adversarial network (GAN) is typically used to augment the
fraining data (especially when annotated tumour MRI scans are scarce) or to perform domain
adaptation (e.g., synthesising contrast-enhanced images from non-contrast MRI). The CNN then
performs classification or segmentation on the augmented data, benefiting from improved robustness
and variety of input. This hybrid approach addresses data scarcity and enhances generalisation of
downstream CNN tasks.

e CNN-Transformer hybrids: Here, the CNN backbone extracts local spatial features from MRI and
one or more transformer modules apply self-attention to model global context, long-range
dependencies or multi-slice correlation across volumes. For instance, a hybrid architecture might use
CNN layers to build feature maps per slice and then a transformer encoder to capture inter-slice
relationships or integrate multi-modal channels. Recent studies show that CNN-Transformer hybrids
outperform pure CNN or pure transformer models in segmentation and classification of medical
images. (Pu et al., 2024)

e Ensemble hybrids / Feature-fusion systems: In ensemble hybrids, multiple networks—possibly of
different architectures—are trained separately (for example, a CNN, a CNN-RNN, and a CNN-
Transformer) and their outputs are combined by weighted voting or meta-classifier. Alternatively,
feature fusion approaches extract features from several networks or modalities (e.g., CNN features +
radiomic features + handcrafted features) and fuse them before classification. These hybrids aim to
improve robustness and mitigate weaknesses of any single model. The choice among these hybrid
paradigms depends on task complexity (detection vs segmentation), dataset size, modality
heterogeneity, computational resources and the requirement for interpretability or generalisation.

7. MRI Preprocessing and Feature Engineering Techniques

Effective MRI-based analysis for brain tumours requires rigorous preprocessing and feature engineering to
ensure that downstream deep learning models receive clean, consistent, and meaningful input. Preprocessing
plays a critical role in reducing scanner- and protocol-induced variability, removing irrelevant tissue or
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artefacts, and aligning the data across subjects and modalities. Without these steps, models may learn spurious
features, suffer from reduced generalisability, or perform poorly when confronted with data from different
centres. Once preprocessing is complete, feature engineering comes into play: this includes augmentation,
synthetic generation of images to bolster training sets, and fusion or reduction of features (hand-crafted or
learnt) to improve model efficiency and performance. A recent review of MRI brain imaging highlighted that
preprocessing (including registration, skull extraction, intensity normalisation and resizing) plus feature
engineering (e.g., radiomic feature extraction and selection) are widely used but also noted considerable
variability in pipelines across studies. (Ottoni et al., 2025)

In the context of hybrid deep learning architectures, feature engineering gains additional importance: hybrid
models often combine deep-learned representations with classical features, or require multi-modal fusion of
data (e.g., T1, T2, FLAIR) before triggering the hybrid network pipeline. As such, preprocessing must not
only standardise the data but facilitate multisequence registration, modality alignment, and feature fusion in
a way that downstream models can meaningfully exploit complementary information. Moreover, since hybrid
architectures may include generative modules (e.g., GANs) or attention-based modules (e.g., transformers),
the quality of preprocessing (skull-stripping, denoising, normalisation) directly impacts the reliability of those
more advanced components. For example, one study evaluating tumour segmentation found that the benefit
of preprocessing steps such as skull stripping or intensity normalisation was surprisingly limited in some
contexts, emphasising that preprocessing should be carefully designed rather than applied as a one-size-fits-
all step. (Kondrateva et al., 2024)

7.1. Preprocessing Methods: Skull Stripping, Normalization, Denoising

Preprocessing of MRI data for brain tumour analysis generally begins with skull stripping (brain extraction)
to remove non-brain tissues (e.g., skull, scalp, eyes, neck) from the volume, allowing the model to focus solely
on intracranial tissues and reducing irrelevant background noise. Skull stripping improves segmentation and
classification accuracy and reduces computational burden. Several algorithms exist (morphology-based,
thresholding, atlas-based, and deep-learning based) for this task. (Pei et al., 2022) After skull stripping,
intensity normalization is applied: this may include bias-field correction, histogram equalisation, z-score
normalisation, or min-max scaling, to account for scanner/protocol differences and ensure consistent intensity
distributions across the dataset. Normalisation is essential before combining data from different centres or
modalities. Denoising is another key step: MRI scans often contain noise (thermal, physiological, artefacts)
and inhomogeneity (due to magnetic field). Denoising algorithms (e.g., non-local means, anisotropic
better downstream feature extraction. Good preprocessing ensures that the subsequent feature engineering and
model training steps operate on stable and relevant data. (Kalavathi & Prasath, 2015)
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8. Hybrid Models for Brain Tumor Detection, Classification, and Segmentation

Hybrid deep learning models have emerged as a powerful approach for brain tumor detection because they
combine the spatial learning strengths of convolutional neural networks (CNNs) with additional modules that
capture temporal, contextual, or higher-level representations from MRI data. Tumor detection models must
not only identify abnormal regions but also differentiate them from normal anatomical variations or post-
treatment changes. Hybrid architectures often use CNNs for low-level spatial feature extraction and integrate
recurrent neural networks (RNNs) or transformers to model cross-slice dependencies in 3D MRI volumes.
This multi-component structure enhances the model’s ability to detect subtle lesions that may be missed by
single-architecture systems. The inclusion of generative adversarial networks (GANs) for synthetic MRI
generation is another common hybrid approach that addresses data scarcity by augmenting datasets with
realistic tumor-bearing images. For example, GAN-augmented CNN models have been shown to improve
tumor-presence classification performance, particularly when training data is limited or imbalanced.

For tumor classification, hybrid models integrate multiple architectures to better capture the heterogeneity of
tumor morphology, texture, and contrast patterns across MRI sequences. Classification tasks are complex
because tumors such as gliomas present with wide variability in location, intensity, and infiltration patterns.
Traditional CNN networks struggle with long-range dependencies and multimodal integration, but hybrid
systems mitigate this by combining CNN-extracted features with attention modules or classical machine-
learning classifiers to strengthen decision-making. Ensemble hybrids—where outputs from several deep
networks are combined through weighted averaging or a meta-learner—have demonstrated improved tumor
subtype and grade classification performance, especially on heterogeneous datasets. These models benefit
from fusing multi-sequence MRI inputs, such as T1-weighted, T2-weighted, FLAIR, and contrast-enhanced
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imaging. A recent review of hybrid and ensemble models in neuro-oncological imaging noted substantial
improvements in robustness, with classification accuracy surpassing that of individual networks alone. (Li et
al., 2023) Hybrid architectures that combine CNN feature extractors with SVM or random forest classifiers
also show strong performance, indicating that blending deep and classical methods can enhance
interpretability and generalization across imaging centers. (Ottoni et al., 2025)

8.1. Classification and Grading Using Combined Models

Brain tumor classification and grading benefit substantially from hybrid deep learning architectures because
these models integrate complementary feature-extraction and decision-making mechanisms to handle
variability in tumor appearance across MRI modalities. Grading tasks, such as distinguishing low-grade from
high-grade gliomas, require capturing fine-grained features related to tumor infiltration, necrosis, and contrast
enhancement — patterns that may not be fully captured by CNNs alone. Hybrid classification models typically
begin with deep CNNs or 3D CNNs to extract spatial and textural features from multi-sequence MRI inputs.
These features are then fused with attention mechanisms, RNN modules, transformers, or classical machine-
learning classifiers to enhance discriminative power. In particular, CNN—Transformer combinations have
demonstrated strong performance, as transformers capture long-range spatial dependencies and global
contextual cues that help distinguish between subtle grade differences. Ensemble-based hybrids further
improve classification reliability by aggregating outputs from diverse models to reduce overfitting and
variance. Classical ML components, such as SVMs or XGBoost classifiers, are often used at the final decision
stage to improve interpretability and generalization across different MRI scanners. Evidence from recent
research indicates that hybrid architectures consistently outperform single-architecture systems for glioma
grading tasks, demonstrating higher accuracy and better robustness to dataset heterogeneity. (Aamir et al.,
2025)

9. Datasets and Benchmarking Protocols for Hybrid DL Models
High-quality publicly-available MRI datasets play a foundational role in developing and benchmarking hybrid
deep-learning (DL) models for brain tumour diagnosis. These datasets provide both imaging and ground-truth
annotation (segmentation masks, tumour grades, sometimes genomics) and enable reproducible evaluation
across research groups. The widespread adoption of such datasets has helped standardise tasks like
segmentation, classification and detection of brain tumours using MRI. Nonetheless, benchmarking
protocols—such as how data is split into training/validation/test sets, how metrics are computed, and how
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architectures. A recent review observed that although many studies report high performance on internal splits
of standard datasets, fewer undertake rigorous cross-dataset evaluation or multi-centre validation, which limits
clinical translation. (Dorfner et al., 2025)

In the context of hybrid deep-learning models, proper benchmarking is even more critical: because such
architectures can combine network types, fuse multi-modal inputs or ensemble outputs, consistent evaluation
of their added value requires standardised protocol, transparent reporting of dataset splits, metrics and external
validity. Use of challenge datasets like BraTS (Brain Tumor Segmentation) helps in this regard, but many
studies still rely on private data or ad-hoc splits. To build confidence in hybrid models (e.g., CNN-
Transformer, CNN-GAN hybrids), it is essential to follow best practices in data splitting, reporting
performance on unseen centres, and assessing model robustness to domain shift.

9.1. Overview of Popular Datasets: BRATS, TCGA, REMBRANDT
Here is a summary of key public datasets widely used in MRI-based brain tumour research:

e BraTS (Brain Tumor Segmentation Challenge dataset): Initiated in 2012, BraTS provides multi-
institutional, multi-modal MRI volumes (T1, T1-CE, T2, FLAIR) of glioma patients with manual sub-
region labels (enhancing tumour, tumour core, oedema) and increasingly includes post-treatment and
non-glioma tumour cases. It has become a benchmark for segmentation and hybrid model evaluation.
(Menze et al., 2014)

e TCGA (The Cancer Genome Atlas) glioma collections: These datasets (e.g., TCGA-GBM, TCGA-
LGQG) link brain tumour MRIs with genomic and clinical data. They enable radiogenomic studies and
classification/grading tasks beyond segmentation, making them suitable for hybrid DL models that
fuse imaging with other modalities. (Mohsen et al., 2025)

e REMBRANDT (Repository for Molecular Brain Neoplasia Data): REMBRANDT includes MRI
scans, pathological and genomic data from glioma patients, and offers longitudinal clinical outcome
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information. It supports studies on tumour progression, survival prediction and hybrid modelling
combining imaging and non-imaging features. (Mohsen et al., 2025)

9.2. Data Splitting and Benchmarking Standards

Proper dataset splitting and benchmarking are vital for fair evaluation of hybrid DL models. Standard practice
includes dividing data into independent training, validation and test sets, with the test set held out during
model development. Cross-validation or k-fold approaches are often used for internal validation, but they
must avoid data leakage (e.g., same patient appearing in multiple splits). Furthermore, benchmarking
standards require consistent metric definitions (e.g., Dice coefficient for segmentation, accuracy/F1 for
classification), clearly reported hyper-parameters, and ideally external test sets from independent institutions.
Without these ‘gold-standard’ protocols, reported gains for hybrid models may simply reflect over-fit or
dataset-specific bias rather than real improvement. (Dorfner et al., 2025)

9.3. Cross-Dataset Evaluation and Generalization Issues

One of the primary challenges in MRI-based brain tumour modelling is generalisation across scanners,
protocols, institutions and patient populations. Hybrid DL models may perform well on the dataset they are
trained on but degrade on unseen data due to domain shift—differences in acquisition, resolution, contrast or
patient demographics. Studies have found that cross-dataset evaluation (i.e., training on one dataset and testing
on another) is much less common, yet essential to assess model robustness and translational readiness. For
example, one recent work used cross-dataset testing of brain tumour MRI classification and showed a
substantial drop in performance when models were applied to unseen data sources. (Tian et al., 2025) Hybrid
architectures need this type of evaluation more than ever because their increased complexity could exacerbate
overfitting or reliance on dataset-specific artefacts rather than generalisable features.

10. Performance Analysis of Hybrid Architectures Models
Evaluating hybrid deep learning architectures for MRI-based brain tumour tasks requires detailed analysis of
how they perform under realistic conditions, both in internal validations and external/generalization settings.
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classifiers—have shown markedly improved performance in many studies. For example, a systematic review
found that hybrid models demonstrated superior diagnostic power compared with single-method approaches,
showing higher resistance to false positives and class imbalance. Moreover, one recent study of MRI-based
brain tumour classification reported very high accuracy (e.g., ~99.77%) using a hybrid CNN + XGBoost
model with explainable AI components. These findings suggest that hybrid architectures can push
performance metrics to new levels.

However, high performance on internal datasets does not always translate into clinical readiness: issues such
as over-fitting, domain shift (scanner/protocol variability), unbalanced classes, and lack of interpretability
pose challenges. Although many studies report high accuracy or Dice scores, fewer present robustness testing,
external validation, or interpretability analyses. A review on DL and machine learning for brain tumour MRI
emphasised that performance evaluation must consider model robustness, reliability, interpretability, and
generalisation beyond the dataset on which it was trained. (Mohsen et al., 2025) Therefore, a comprehensive
performance analysis of hybrid models must include not only accuracy metrics but also comparisons to non-
hybrid baselines, evaluation of generalisation, and assessment of interpretability and reliability in clinical
workflows.

10.1. Evaluation Metrics: Accuracy, F1-Score, Dice, IoU Models
In classification tasks (e.g., tumour vs non-tumour, tumour subtype), common performance metrics include
accuracy, precision, recall, and the F1-score (the harmonic mean of precision and recall). These metrics are
intuitive and widely used when classes are balanced, but may mask poor performance in imbalanced scenarios
— hence the F1-score is especially relevant when false negatives carry high risk. For segmentation tasks (e.g.,
tumour region delineation), volumetric overlap metrics such as the Dice similarity coefficient (DSC) and
Intersection over Union (IoU) are standard. Dice measures overlap between predicted and ground-truth masks,
while IoU quantifies the ratio of intersection to union of the prediction and reference. For example, a review
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of DL models in brain tumour MRI summarised that Dice scores often serve as the key benchmark for
segmentation, while classification studies routinely report accuracy and Fl-score. (Mohsen et al., 2025)
Additionally, some studies report Hausdorff distance, volumetric similarity error, and sensitivity/specificity
to provide fuller performance context. Using a consistent set of metrics across studies allows meaningful
comparison of hybrid vs non-hybrid models, but such consistency is often lacking in the literature.

10.2. Comparative Analysis of Hybrid vs. Non-Hybrid Models

Several studies have directly compared hybrid deep-learning architectures with non-hybrid (single-network)
models and found meaningful performance gains for hybrids. For example, the systematic review reported
that combining CNNs with traditional ML classifiers or attention mechanisms tended to improve classification
accuracy and reduce false positive rates compared with standalone CNNs. These improvements can be
attributed to the complementary strengths of the hybrid components: the CNN captures spatial features, while
the additional component (e.g., RNN, transformer, classical classifier) handles global context,
temporal/sequential information or decision-level fusion. Nevertheless, some studies caution that the
performance gains may come with increased complexity, risk of over-fitting, and greater computational cost.
It is essential that hybrid models be benchmarked against strong baselines under the same data splits, and that
gains are statistically significant and clinically meaningful.

11. Challenges, Limitations, and Clinical Integration Barriers
Despite rapid progress in hybrid deep learning architectures for MRI-based brain tumour analysis, several
challenges hinder their adoption in real-world clinical workflows. Hybrid models often require large annotated
datasets, yet high-quality medical imaging labels remain scarce, making it difficult for these systems to
achieve consistent performance across institutions. Additionally, the heterogeneity of MRI acquisition
protocols leads to domain-shift issues that degrade model generalisation when applied to new scanners or
populations. Computational complexity presents another barrier, as hybrid models—especially those
combining CNNs with transformers or GANs—demand substantial GPU resources, limiting use in resource-
constrained settings. Clinical interpretability also remains limited; many hybrid architectures rely on opaque
intermediate representations that make it difficult for radiologists to trust automated recommendations.
NCEUIALOTY [1d1ICI1EC U (] S, CUIICTIIICI O CXPIldllldD Yy, ICProdau D y dlld dICLY CVdludllOl

further slow down deployment in hospitals. A recent review emphasised that despite promising accuracy, deep
learning systems in neuro-oncology face major translational barriers, particularly around data scarcity,
workflow integration, and the need for rigorous external validation. (Dorfner et al., 2025)

11.1. Data Scarcity, Imbalance, and Annotation Challenges

A core limitation in developing robust hybrid deep learning models is the scarcity of high-quality, expertly
annotated MRI datasets. Medical imaging data is often restricted due to privacy regulations, uneven data-
sharing practices and institutional silos, resulting in datasets that are insufficiently large for training hybrid
architectures with millions of parameters. Even widely used datasets like BraTS, while invaluable, remain
relatively small when compared to the scale required for training advanced transformer-based or GAN-based
hybrids. In addition, many MRI datasets lack uniform coverage of tumour types, grades or sequences,
resulting in modality-specific gaps. This imbalance causes hybrid models to overfit to majority classes or
sequences, performing poorly on rare tumours or underrepresented patterns. (Mohsen et al., 2025)
Annotation quality poses another major challenge: accurate tumour segmentation requires considerable time
and expertise from neuroradiologists, making manual labelling costly and often inconsistent across
institutions. Inter-observer variability further complicates the creation of reliable ground truth, particularly for
infiltrative tumour margins where experts may disagree. Hybrid models, which often rely on multi-stage or
multi-modal pipelines, are particularly sensitive to noisy labels because errors propagate through multiple
components. Researchers have attempted partial solutions—such as weak supervision, semi-supervised
learning, or crowdsourcing—but inconsistencies remain. Additionally, many hybrid models require voxel-
level labels for segmentation and region-level labels for classification, yet most clinical datasets only contain
diagnostic summaries rather than detailed annotations, limiting their utility for training. (Aamir et al., 2025)

11.2. Computational Complexity and Resource Requirements
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Hybrid deep learning architectures often combine multiple computationally intensive components—such as
CNN backbones, attention-based transformer modules, recurrent layers, or GAN sub-networks—resulting in
large memory footprints and long training times. This complexity poses a significant barrier to clinical
integration, especially for hospitals with limited computational infrastructure. Inference time can also be
problematic: high-resolution 3D MRI volumes require substantial processing, and hybrid models may
incorporate multiple passes, ensemble steps, or multi-modal fusion operations that increase latency. Such
constraints limit real-time or near-real-time clinical use, particularly in emergency or intraoperative settings
where rapid decision-support is critical. Moreover, resource-heavy training requirements impede
reproducibility, as many research groups cannot replicate published results without access to high-end GPU
clusters. A study evaluating advanced transformer-based architectures highlighted that hybrid systems offered
improved accuracy but substantially higher computational cost compared to CNN-only baselines, raising
concerns about scalability and deployment feasibility. (Pu et al., 2024)

11.3. Ethical, Legal, and Clinical Adoption Issues

Ethical and legal considerations pose significant obstacles to the clinical deployment of hybrid deep learning
models. Patient privacy is a major concern, as MRI datasets often contain identifiable information, and large-
scale data sharing is required to train generalisable models. Even anonymised data carries risks of re-
identification when combined with external datasets. Issues of algorithmic bias also arise: if training data is
skewed toward particular demographic groups or tumour types, hybrid architectures may perform poorly for
underrepresented populations, exacerbating healthcare disparities. Regulatory frameworks are still
developing, and hybrid systems—which involve complex chains of components—face additional scrutiny
regarding traceability, validation, and safety. In many jurisdictions, Al models must provide explainability,
yet hybrid architectures often rely on obscure intermediate representations, making regulatory compliance
challenging. (Dorfner et al., 2025)

Clinical adoption requires trust, transparency, and seamless integration into existing radiology workflows.
Even high-performing hybrid models may be rejected by clinicians if they provide unclear reasoning,
unpredictable behaviour, or poor compatibility with reporting systems. Moreover, medico-legal liability
remains unclear: if an Al-assisted diagnosis is incorrect, responsibility between radiologists, hospitals, and
software developers becomes difficult to assign. A recent review of Al in medical imaging highlighted that
reliable interpretability, continuous model monitoring, and well-designed human-Al collaboration strategies
are essential prerequisites for widespread use. (Aamir et al., 2025)

12. Conclusion

Hybrid deep learning architectures represent a decisive evolution in-MRI-based brain tumor diagnosis,
offering an integrated framework capable of addressing the intrinsic challenges posed by heterogeneous tumor
biology and multimodal imaging data. By blending the spatial representational power of CNNs with the
contextual modeling capacity of transformers and RNNs, and augmenting learning through GAN-based
synthesis or classical machine-learning classifiers, hybrid systems achieve higher diagnostic accuracy, more
reliable segmentation, and improved handling of multi-sequence MRI inputs. These gains are evident across
benchmark datasets such as BraTS and TCGA, where hybrid architectures consistently outperform single-
model baselines on metrics including Dice coefficient, accuracy, and F1-score. Furthermore, hybrid designs
inherently support multimodal fusion, enabling the integration of structural, functional, and advanced MRI
sequences to capture tumor-specific features such as infiltration patterns, edema spread, and contrast
enhancement. This multi-component learning process not only enhances performance but also allows greater
flexibility in addressing domain shift, variability in acquisition protocols, and the need for explainability
through interpretable components such as attention maps or classical classifier decision weights.
Consequently, hybrid architectures hold strong potential for real-world clinical deployment, provided that
reliability and interpretability continue to improve.

Despite these advancements, substantial challenges remain before hybrid models can be seamlessly integrated
into clinical neuro-oncology workflows. Data scarcity, annotation difficulty, and class imbalance continue to
limit the robustness and generalizability of complex hybrid systems, particularly in multi-institutional
environments. Computational demands further hinder scalability, as transformer- and GAN-enhanced
architectures require extensive resources that are often unavailable in routine clinical settings. Ethical and
regulatory issues—including patient privacy, algorithmic bias, and the need for transparency in diagnostic
decision-making—pose additional barriers to deployment. To unlock the full potential of hybrid deep learning
in brain tumor MRI, future research must prioritize large-scale, standardized, diverse datasets; cross-dataset
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validation protocols; efficient model designs; and interpretable hybrid pipelines aligned with clinical needs.
With these developments, hybrid architectures can serve as a cornerstone for trustworthy, accurate, and
actionable Al-driven neuroimaging tools.
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