

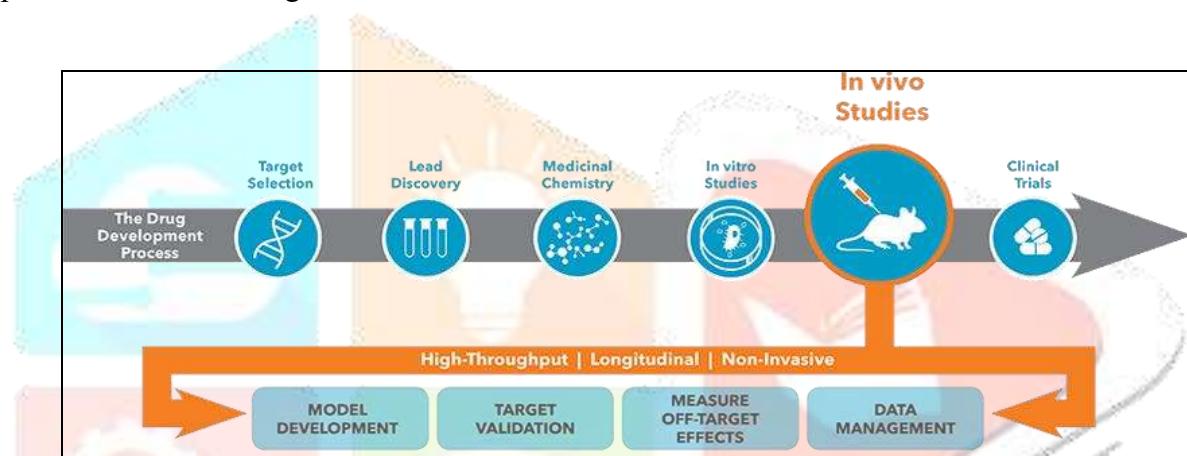
Emerging Trends And Obstacles In Drug Discovery And Development

¹Samruddhi K. Ganvir, ²Mr. Gajanan M. Jawalkar, ³Ms. Dnyanesha N. Somnathe, ⁴Ms. Vaishnavi R. Ambulkar, ⁵Dr. Harigopal S. Sawarkar

¹Student, ^{2,3,4}Assistant Professor, ⁵Principal

Dr. Rajendra Gode College of Pharmacy, Amravati, India-444602

Abstract: Drug discovery and development is a complicated, slow, and expensive process. It goes through several steps, from identifying targets to clinical evaluation. This review summarizes each step and outlines major challenges. These include high attrition rates, long timelines, and regulatory obstacles. It also highlights new strategies like artificial intelligence, nanotechnology, and personalized medicine that can improve efficiency and success in modern drug development.


Keywords: Drug discovery, drug development, clinical trials, challenges, artificial intelligence, nanotechnology, personalized medicine

Introduction

Drug development is a complex process that involves identifying a chemical compound that can be therapeutically utilized to treat and manage a specific health condition. Researchers typically discover new medications through fresh insights into a disease process, allowing them to develop a drug that alleviates or reverses the symptoms of the illness. The drug development process consists of several stages, including the identification of drug candidates, their synthesis, characterization, screening, and evaluation of their therapeutic effectiveness. Once clinical trials yield favorable results, a molecule will begin the drug development pathway. Due to the substantial costs associated with clinical trials and research and development (R&D), drug discovery and development is an expensive endeavor. On average, it takes about 12 to 15 years to develop a single new drug molecule before it can be made available to treat patients [1]. The research and development costs for each successful medication are estimated to be between \$900 million and \$2 billion on average. This figure accounts for the expense of numerous failures. Ultimately, only one of the 5,000 to 10,000 compounds that undergo the research and development process receives approval. While these numbers may seem staggering, a basic understanding of the research and development process can illuminate why so many compounds fail and why it requires extensive time and effort to bring a single medication to market. Success demands robust resources, including the most talented scientific and logical minds, sophisticated laboratories and equipment, and efficient project management. Additionally, it relies on perseverance and a stroke of good luck. In the end, medication discovery offers hope, faith, and comfort to billions of people suffering from various ailments [2].

The phases involved in drug discovery and development encompass:

- Identification of the target
- Validation of the target
- Identification of lead compounds
- Optimization of leads
- Characterization of the product
- Formulation and development
- Research in preclinical phases
- Submission of Investigational New Drug
- Trials in clinical phases
- Application for New Drug

Fig 1: Drug Development and Discovery Phases

Step 1: Target Identification and Validation:

Drug development begins with identifying biological targets involved in disease progression. The target must be safe, effective, and relevant to patient needs. Validation involves confirming the target's role through preclinical and literature data, disease models, and competitor analysis.

Step 2: Hit Identification and Validation:

Hits are compounds that interact with the target, identified through virtual or high-throughput screening. These hits are then validated to confirm desired biological activity.

Step 3: Hit-to-Lead:

This stage refines multiple hit series to create more selective and potent leads. Working on diverse hit groups helps reduce the risk of failure.

Step 4: Lead Optimization:

Leads are optimized to improve potency, selectivity, and safety while minimizing toxicity. Structural modifications enhance pharmacokinetic and pharmacodynamic properties. High-throughput DMPK screening, mass spectrometry, MALDI imaging, and NMR fragment-based screening support this process, leading to the selection of a preclinical candidate [3,4].

Product Characterization

When a new pharmacological molecule shows potential therapeutic effects, its size, shape, strength, weaknesses, applications, toxicity, and biological activity are all assessed. Initial stages of pharmacological research are valuable for explaining how the compound works.

Reformulation and Development

The physicochemical properties of active pharmaceutical ingredients (APIs) are outlined during the medication formulation phase to create a dosage form that is stable, bioavailable, and suitable for a specific mode of administration.

In preformulation studies, the following criteria are evaluated:

- The ability of the pharmaceutical ingredient (API) to dissolve in various solvents and media
- The dissolution of the API
- Stability assessments under various conditions
- The capabilities and services of formulation
- The development of new chemical entities (NCE) through formulation

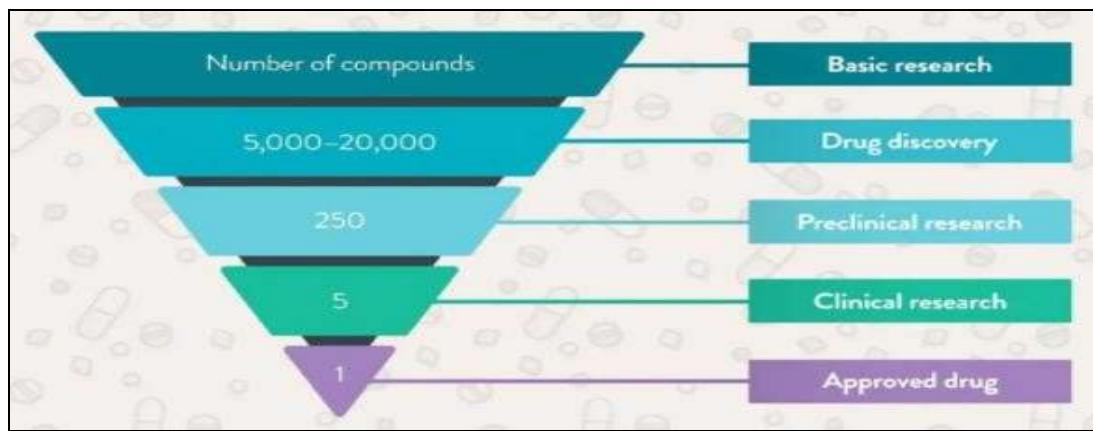
Optimizing existing formulations, creating new ones for improved distribution of current dosage forms, and designing processes for particular dosage forms

Formulations for controlled and sustained release; self-emulsifying and colloidal drug delivery systems; as well as submicron and nano emulsions [5].

Preclinical Testing

Preclinical research evaluates a drug's safety and efficacy in animal models before human testing and requires approval from regulatory authorities to ensure ethical and safe practices. According to ICH guidelines, preclinical studies involve pharmacology and toxicology. Pharmacology focuses on pharmacokinetics and pharmacodynamics studying absorption, distribution, metabolism, and excretion to determine safety, efficacy, and half-life. Toxicology examines unwanted effects using *in vitro* and *in vivo* models. *In vitro* tests assess cellular responses, while *in vivo* studies evaluate overall pharmacological and toxicological effects in suitable animal species, providing essential data for clinical trials [6].

The Investigational New Drug Process (IND)


Drug developers must submit an Investigational New Drug application to the FDA prior to starting clinical research. The IND application must contain the following information:

- preclinical and toxicity study data
- drug manufacturing details
- clinical research protocols for the studies to be conducted
- any prior clinical research data
- details about the developer or investigator [7].

Clinical Research: Preclinical research addresses fundamental concerns regarding a medicine's safety, but it cannot replace investigations into how the drug will affect the human body.

The term "clinical research" describes investigations or tests conducted on human subjects. Taking into account their goals at every stage of clinical research, the developers will start the clinical study design process.

Prior to the start of clinical research, they must complete the Investigational New Drug Process (IND), as seen in Fig. 2.

Fig 2: The Attrition of Compounds as They Move Through the Drug Development

It has concluded with 3 phases:

Phase 1 (First in Humans):

Trial Design:

Patients: 20–100 healthy volunteers at a single center with no benefit to them.

Study durations range from days to weeks or months.

Open-label study (no placebo or comparator), uncontrolled, with single or repeated doses.

Purpose: Conduct ADME and PK/PD experiments.

Pharmacological effect:

Assess tolerance, side effects, and toxicity at various levels.

Early signs of effectiveness.

- Evaluates safety by identifying potential toxicity and dose range.

- 70% of drugs go to the next phase.

Phase 2 (Therapeutic Exploratory):

Trial design:

Patient population: 100-300 patients with targeted ailment.

Study duration: Several months to 2 years

Purpose: To assess efficacy and side effects

Study type: randomized, placebo or active control, parallel double-blind, single or multiple doses, multicenter.

- Purpose: Determine minimum and maximum effective doses.

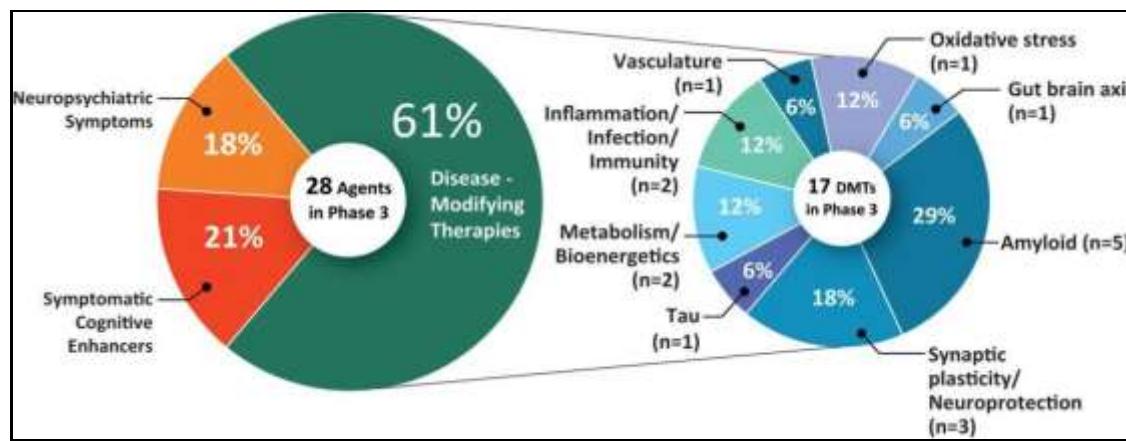
- Drug effectiveness for the targeted disease or condition - Maximum tolerated dose (MTD) - Common short-term side effects and dangers

- Pharmacokinetics: percentage of drugs progressing to the next phase 3.

Phase 3 (Therapeutic Confirmatory) – Pivotal Trials:

Trail Design:

- Patients: Between 1,000 and 3,000 people with the specified illness or condition aged.


- Study duration: one to four years.

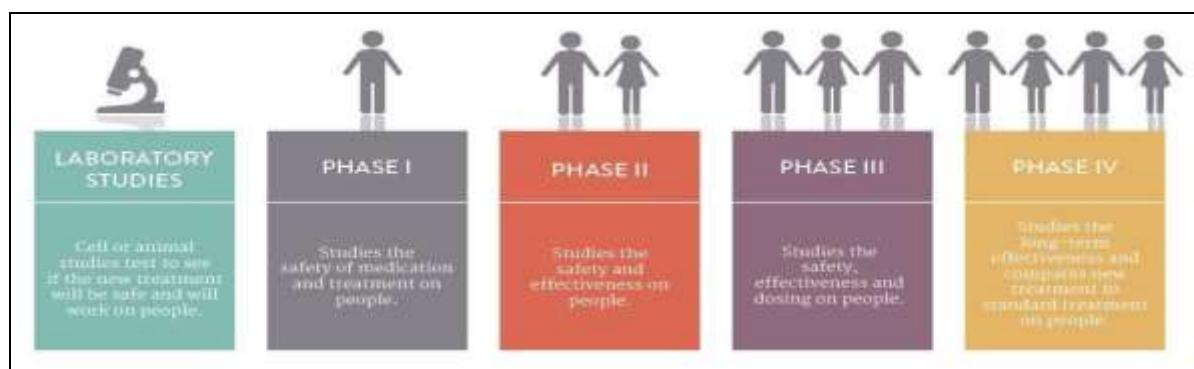
- Study Type: Multicenter, parallel, double-blind, randomized, placebo, or active control.

Purpose: [33].

- Large-scale effectiveness.

- The proportion of drugs that advance to the next phases is between 25% and 30%. • The link between relative risk and benefits. phases 25–30%.
- Long-term safety details: typical side
- Following the completion of phase III trials, an application is submitted to the relevant regulatory authorities for approval, addressing the effects, medication interactions, and age, rate, and gender inequalities.
- Fig. 3 displays the dosage (for labeling).
- After receiving the necessary permission from regulatory agencies and going on sale, the product is The product undergoes an evaluation to determine its effectiveness and safety. entered the market [8,9]

Fig 3: Showing Phase 3 Distribution


New Drug Application

A drug molecule's whole narrative is expressed in a New Drug Application (NDA). Its goal is to confirm a drug's safety and efficacy for the intended application in the individuals under study. All information about a medication, from preclinical research to Phase 3 trial outcomes, must be included in the NDA. Developers are required to provide reports on all data, analysis, and research. In addition to clinical study results, developers need to provide:

- Safety updates
- Drug abuse information
- Patent information
- Institutional review board compliance information
- Proposed labeling
- Usage instructions [10]

FDA Review

It may take the FDA review team six to ten months after receiving a completed NDA before making a decision on whether to approve it. The FDA review panel will reject an incomplete NDA. The FDA must collaborate with the medicine's producer to update prescription instructions if it determines that the drug is safe and effective for the intended purpose.

Fig. 4: Phases of Clinical Trials

This is known as labeling. Labeling clearly outlines the rationale for approval and provides instructions on how to use the medication. However, there are still problems that need to be resolved before the medication can be approved for sale. In other instances, the FDA requires more research. The developer can decide at this point whether or not to carry out additional work. There are procedures for filing an official appeal if a developer is unhappy with an FDA ruling [11].

Phase 4: Post-Market Drug Safety Monitoring

Phase 4 studies are carried out following FDA approval of the medication or device. These studies are also known as postmarketing surveillance, which includes ongoing technical assistance and pharmacovigilance following clearance. Phase 4 trials employ various observational techniques and evaluation patterns to gauge the safety, cost-efficiency, and effectiveness of an intervention in real-world situations. Phase IV studies may be conducted by the sponsoring corporation for competitive or other reasons, or they may be mandated by regulatory bodies (e.g., labeling changes, risk management/minimization action plans). Thus, the real test of a drug's safety basically takes place over the months and even years that make up the drug's shelf life. After reviewing complaints about problems with both prescription and over-the-counter medications, the FDA may opt to include warnings about dose or practice information, as well as additional events for more severe adverse drug responses[12].

Challenges In Drug Development

Developing drugs for rare diseases requires balancing rapid access with ensuring safety and efficacy. While accelerated approvals and compassionate use can benefit patients, they raise ethical and regulatory challenges that demand careful oversight. This review discusses the evolving approval landscape, emphasizing the role of real-world data in minimizing risks and improving outcomes. Drug discovery, spanning pharmacology, chemistry, and biology, remains a long, costly process, though digital innovations and advanced delivery systems are reshaping the field. Regulatory submissions pose major challenges, requiring coordination across R&D, QA, clinical, and marketing teams to meet global standards efficiently. Increasingly, patient perspectives influence regulatory expectations, prompting a shift toward patient-centered development and design that balances innovation with safe, timely access [13].

Emerging Trends and Future Directions

Precision medicine recognizes the interplay between genetics and environment in disease subtypes, requiring accurate biomarkers like plasma proteins for targeted treatment. Traditional methods (FC, AUC) often miss subtype-specific markers, while the Difference in Bi-cluster Distances (DBD) machine-learning method effectively identifies subtype-linked biomarkers, as shown in Alzheimer's disease studies. The rise of AI and ML is transforming drug discovery by predicting pharmacological targets, analyzing datasets, and accelerating genetic and cellular therapy development, though continuous innovation and evaluation remain essential. Advances in genomics, molecular profiling, and digital biomarkers now enable large-scale data analysis, supporting personalized diagnosis and treatment. Integrating AI, computational biology, and "omics" technologies accelerates disease understanding and response to pandemics and infections [14,15].

Conclusion

Drug discovery and development are still costly and unpredictable. However, ongoing progress in science and technology is improving the process. Using AI, nanotechnology, and biotechnology can lower costs, save time, and boost success rates. Close teamwork among researchers, industry, and regulators is crucial to tackle existing challenges and provide safer, more effective medicines to patients.

Reference

1. Shayne, C.G. 2005. Introduction: Drug discovery in the 21st century. *Drug Discovery Handbook*, Wiley Press, pp. 1–10.
2. Smith, G.C. & O'Donnell, J.T. 2006. The process of new drug discovery and development. 2nd ed. Informa Healthcare, New York.
3. Moffat, J., Vincent, F., Lee, J., Eder, J. & Prunotto, M. 2017. Opportunities and challenges in phenotypic drug discovery: an industry perspective. *Nature Reviews Drug Discovery*, 16(8): 531–543.
4. DiMasi, J.A., Hansen, R.W. & Grabowski, H.G. 2003. The price of innovation: new estimates of drug development costs. *Journal of Health Economics*, pp. 151–185.
5. Gashaw, I., Ellinghaus, P., Sommer, A. & Asadullah, K. 2012. What makes a good drug target. *Drug Discovery Today*, 17(Suppl): S24–S30.
6. Zoehler, B., Fracaro, L., Senegaglia, A.C. & Bicalho, M.D.G. 2020. Infusion of mesenchymal stem cells to treat graft versus host disease: the role of HLA-G and the impact of its polymorphisms. *Stem Cell Reviews and Reports*, 16(3): 459–471.
7. Marino, L., Castaldi, M.A., Rosamilio, R., Ragni, E., Vitolo, R., Fulgione, C. & Selleri, C. 2019. Mesenchymal stem cells from the Wharton's jelly of the human umbilical cord: biological properties and therapeutic potential. *International Journal of Stem Cells*, 12(2): 218.
8. Barrett, J. & Galipeau, J. 2019. Mesenchymal stem cells: from bench to bedside and back. *Cell and Gene Therapies*, pp. 219–242.
9. Wang, S., Zhu, R., Li, H., Li, J., Han, Q. & Zhao, R.C. 2019. Mesenchymal stem cells and immune disorders: from basic science to clinical transition. *Frontiers of Medicine*, 13(2): 138–151.
10. Amor, I.B., Lainas, P., Kassir, R., Chenaitia, H., Dagher, I. & Gugenheim, J. 2019. Treatment of complex recurrent fistula-in-ano by surgery combined with autologous bone marrow–derived mesenchymal stromal cells and platelet-rich plasma injection. *International Journal of Colorectal Disease*, 34(10): 1795–1799.
11. Salmenkari, H.A.N.N.E., Laitinen, A., Forsgård, R.A., Holappa, M., Linden, J., Pasanen, L. & Nystedt, J. 2019. The use of unlicensed bone marrow–derived platelet lysate–expanded mesenchymal stromal cells in colitis: a pre-clinical study. *Cyotherapy*, 21(2): 175–188.
12. Huber, W. 2005. A new strategy for improved secondary screening and lead optimization using high-resolution SPR characterization of compound–target interactions. *Journal of Molecular Recognition*, 18: 273–281.
13. Lofas, S. 2004. Optimizing the hit-to-lead process using SPR analysis. *Assay and Drug Development Technologies*, 2: 407–416.
14. Barile, F.A. 2008. *Principles of Toxicological Testing*. CRC Press, USA.
15. Friedman, L.M., Furberg, C.D. & Demets, D.L. 2010. *Fundamentals of Clinical Trials*. 4th ed. Springer Science and Business Media LLC, New York.