

"Microsphere Matrix: Engineering The Future Of Drug Delivery Systems"

Bamankar Akshay A^{*1}; Dr Sachin R Hangarkar²; Kharosekar Pooja P³; Dongare Dnyaneshwar D⁴;
Salunke Harshada B⁵

Corresponding Author

Mr. Akshay A Bamankar

Department of Pharmaceutics,
Shivlingeshwar College of Pharmacy,
Almala, Tq-Ausa, Dist.- Latur,
Maharashtra, India, 413520.

Abstract: -

In pharmaceutical sciences, microspheres spherical, free-flowing particles with sizes ranging from 1 to 1000 μm are frequently employed for precise and regulated medication delivery. They have many benefits, including increased patient compliance, decreased adverse effects, and better absorption. With controlled release, targeted administration, and enhanced therapeutic efficacy for a variety of pharmacological agents, they have become a potent and adaptable drug delivery system. These spherical particles can encapsulate medications to prevent deterioration and gradually regulate their release. They are usually made of biodegradable and biocompatible polymers. Drug loading, polymer properties, and particle size all affect how well microspheres work. Techniques like solvent evaporation, spray drying, and coacervation are used in the engineering of microspheres.

Keywords: - Microspheres, Controlled drug delivery, Types of microspheres, Methods of preparation, Evaluation of Microsphere, Application of Microspheres.

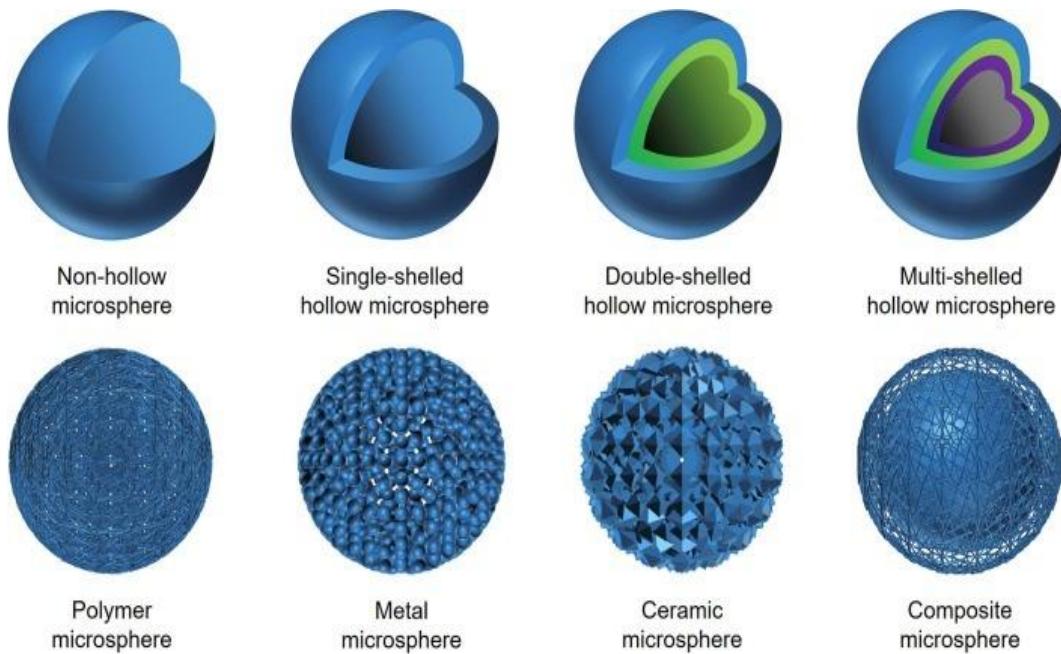
Introduction

Previously, patients were treating acute and chronic diseases with conventional dosage forms such as tablets and capsules, but these forms required multiple daily doses to maintain the peak plasma level concentration. Therefore, a controlled release drug delivery system was developed to address these issues. The controlled release drug delivery system (Microspheres) releases the drug at a controlled rate, thereby resolving the issues with conventional drug delivery systems and improving the therapeutic efficacy of a particular drug [11].

It becomes essential to transport the drug to the target tissue in the ideal quantity within the ideal time frame in order to achieve maximal therapeutic efficiency, resulting in minimal side effects and low toxicity. A medicinal ingredient can be delivered to the target region using a variety of methods in a continuous controlled release function. Using microspheres as medication carriers is one such strategy. [9]

One kind of polymer-based medication delivery system is the microsphere. Small, spherical particles, microspheres range in diameter from 1 μm to 1000 μm . The word "polymer" comes from the Greek word "meros," which describes big molecules joined by covalent bonds in repeated patterns. Microspheres, another name for spherical particles, range in size from high nanometres to microns. [5]

Microparticles are another name for microspheres. A variety of synthetic and natural materials can be used to create microspheres. Microspheres are crucial for reducing adverse effects and increasing the absorption of traditional medications. [10]


Fig 1: -Therapeutic Action of Microspheres

History of Microsphere:^[18]

History of Microspheres		
Period	Key Development	Image
1950s–60s	Concept of microencapsulation	
1970s	Entry into pharmaceuticals	Controlled drug release
1980s	Biodegradable polymers (PLA, PLGA)	Sustained release systems
1990s	Advanced formulation techniques	Injectable microspheres
2000s–Present	Smart, targeted, and bioresponsive microspheres	Drug, gene, and vaccine delivery

Structure of Microsphere: -

- Core:
 - Contains the drug or active ingredient.
 - Can be solid or hollow depending on formulation.
- Polymer matrix or shell:
 - Surrounds the core and controls drug release.
 - Made of biodegradable or non-biodegradable polymers (e.g., PLGA, chitosan, gelatin).
- Surface layer:
 - May have functional groups or coatings for targeting or stability.
 - Can be modified to improve bio adhesion or reduce immune response.
- Internal structure types:
 - Matrix type: Drug is uniformly dispersed within the polymer.
 - Reservoir type: Drug is in the core surrounded by a distinct polymer shell

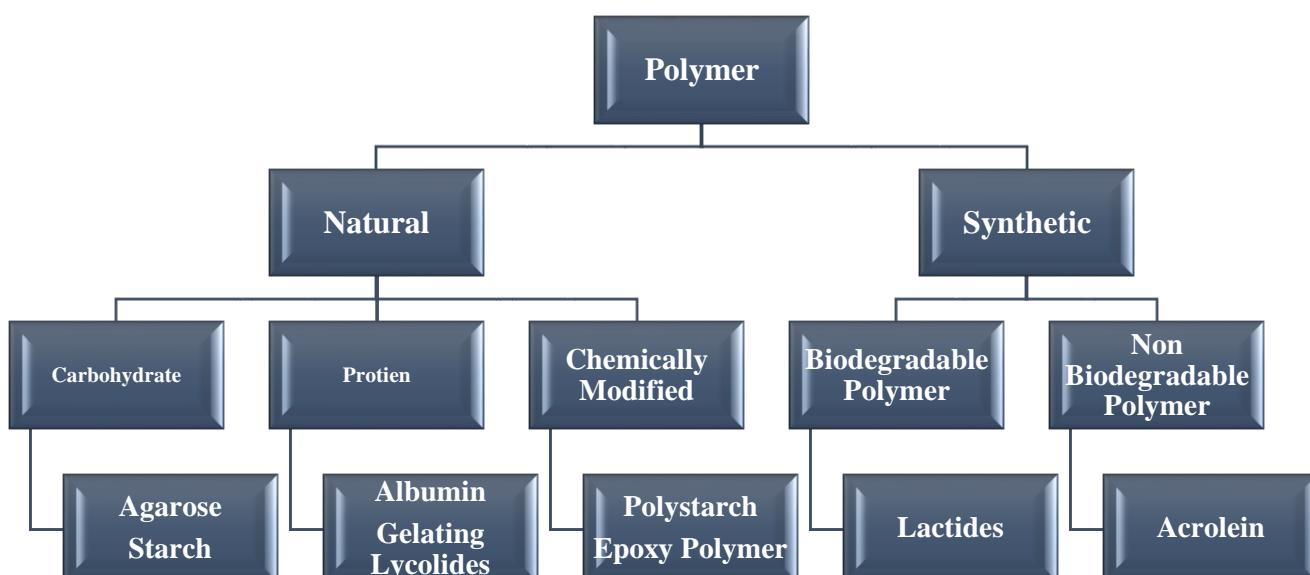
Fig 2: - Structure of Microsphere

Advantages of Microsphere: -

- 1) Prolonged and constant therapeutic effect – ensures continuous drug action over an extended period.
- 2) Reduced dosing frequency – leads to better patient compliance and convenience.
- 3) Controlled and sustained drug release – allows precise regulation of drug delivery rate.
- 4) Enhanced bioavailability – improves absorption and effectiveness of the drug.
- 5) Protection of drugs from degradation – shields against enzymatic, photolytic, or environmental damage.
- 6) Reduction in dose and toxicity – minimizes side effects and maintains steady drug levels.
- 7) Masking of unpleasant taste and Odor – improves patient acceptability.
- 8) Avoidance of first-pass metabolism – enhances systemic availability of drugs.
- 9) Reduced gastric irritation and local side effects – provides better tolerance in the gastrointestinal tract.
- 10) Ease of administration and injectability – due to small, spherical, and smooth particle nature. [11,12,15,17]

Disadvantages of Microsphere: -

- 1) High cost of materials and processing compared to conventional formulations.
- 2) Low reproducibility due to variations in preparation methods and process parameters.
- 3) Influence of physiological factors (such as food intake, gut transit time, and mucin turnover) on drug release rate.
- 4) Difficulty in removing carrier completely from the body after parenteral administration.
- 5) Possible interaction with blood components in case of injectable microspheres.
- 6) Low drug loading capacity, especially in parenteral formulations.
- 7) Potential toxicity if the release pattern or polymer integrity is altered.


- 8) Environmental concerns regarding the degradation and fate of polymer matrix and additives (plasticizers, stabilizers, etc.).
- 9) Controlled release dosage forms cannot be crushed or chewed, limiting their administration flexibility.
- 10) Process variables (temperature, pH, solvent type, agitation, evaporation) can affect microsphere stability and performance. [11,12,15,17]

❖ **Ideal Characteristics of Microsphere:-**

□ **Materials used in the formulation of microsphere:-**

In the preparation of microsphere used a polymer according to the following categories: - [2, 9,12,13,17,22,23]

Types of Microsphere:-

1. Bio adhesive microspheres
2. Magnetic microspheres
3. Radioactive microspheres
4. Floating microspheres
5. Polymeric microspheres
 - i) Biodegradable polymeric microspheres
 - ii) Synthetic polymeric microspheres

1. Bio-adhesive Microsphere: -

The process by which a drug sticks to a membrane using the adhesive properties of water-soluble polymers is known as adhesion. When drug delivery devices adhere to mucosal membranes, such as those on the buccal, ocular, rectal, or nasal surfaces, the phenomenon is referred to as bio-adhesion. Bio-adhesive microspheres have a longer residence time at the application site to guarantee tight contact with the absorption surface, enhance drug absorption, and increase therapeutic efficacy. This prolonged retention results in a decrease in dose frequency and an increase in patient compliance [3, 1, 2, 8, 10]

2. Magnetic microspheres:-

Magnetic microspheres are advanced drug delivery devices that locate drugs at the site of illness by using magnetic carriers that respond to an external magnetic field. These carriers, which are typically made of materials like chitosan and dextran, help distribute medications in a targeted and controlled way. By using less magnetically focused medication and more freely circulating medication, this approach decreases systemic side effects and improves therapeutic efficacy. Magnetic microspheres are mainly classified into 2 types.

- I. Therapeutic magnetic microspheres: These can target proteins and peptides and are utilized to deliver chemotherapy medicines to liver tumours.
- II. Diagnostic magnetic microspheres: Using supramagnetic iron oxide nanoparticles, they are used to image liver metastases and differentiate bowel loops from other abdominal structures. [3, 1, 2, 8, 10]

3. Radioactive microspheres: -

Radioactive microspheres, which are larger than blood capillaries and range in size from 10 to 30 nm, can induce tumours of interest and As a result, these radioactive microspheres provide a significant radiation dose to the targeted areas while sparing the nearby healthy tissues. Radioactive microspheres, which do not harm healthy tissues, are used to deliver high radiation doses to the targeted areas. They use mucoadhesive microspheres as a gastro-retentive drug delivery method without releasing radioactivity, which sets them apart from earlier delivery systems. High radiation doses can be delivered to a specific area using radioactive microspheres. A variety of radioactive microsphere types, such as α , β , and γ emitters, are in use. [3, 1, 2, 8, 10]

4. Floating microspheres:-

Floating types are unaffected by the rate at which the stomach empties since their bulk density is lower than that of gastric fluid. The medicine is released gradually at the intended pace if the system is floating on stomach content, increasing gastric residency and causing fluctuations in plasma concentration. It also produces a long-lasting therapeutic effect and reduces the risk of striking and dose dumping. This type is used to give medication (ketoprofen). [3, 1, 2, 8 ,10]

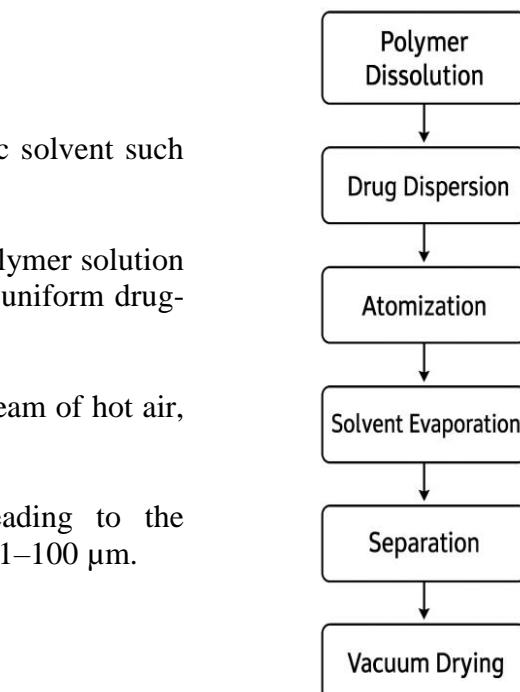
5. Polymeric microspheres:-

The various kinds of polymeric microspheres can be divided into 2 types

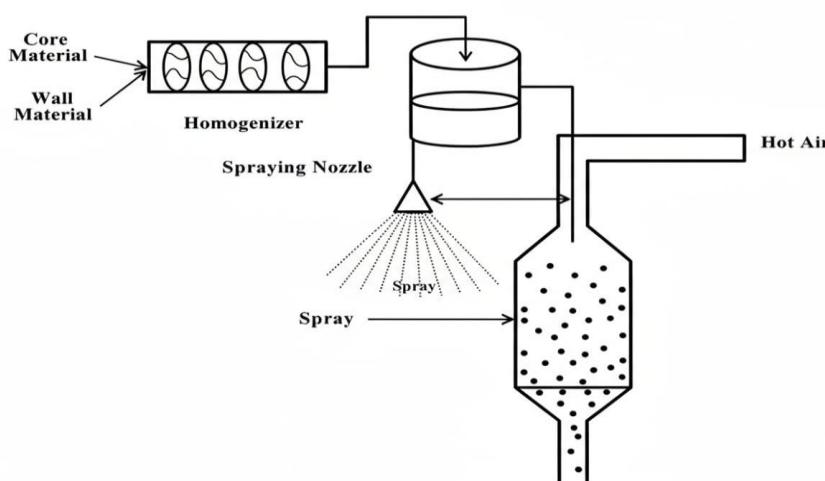
A. Biodegradable polymeric microspheres:-

The idea behind using natural polymers like starch is that they are biocompatible, biodegradable, and bioadhesive. Because biodegradable polymers have a high degree of swelling with aqueous medium, they prolong their residence period when they come into touch with mucosal membranes. Drug release is regulated by polymer concentration, and the release pattern is sustained. The primary drawback is that biodegradable microspheres' drug loading effectiveness in clinical use

B. Synthetic polymeric microspheres:-


It has been demonstrated that synthetic polymeric microspheres are safe and biocompatible, and they are frequently utilized in clinical applications as bulking agents, fillers, embolic particles, drug delivery vehicles, and other uses. The primary drawback of these microspheres, however, is their propensity to migrate away from the injection site, increasing the risk of organ injury and embolism. [3, 1 ,2, 8 ,10]

Method of Preparation: -


1. Spray Drying
2. Solvent Evaporation
3. Phase separation coacervation technique
4. Single emulsion technique
5. Double emulsion technique
6. Spray drying and spray congealing
7. Solvent extraction
8. Quassi emulsion solvent diffusion

1 Spray Drying:-

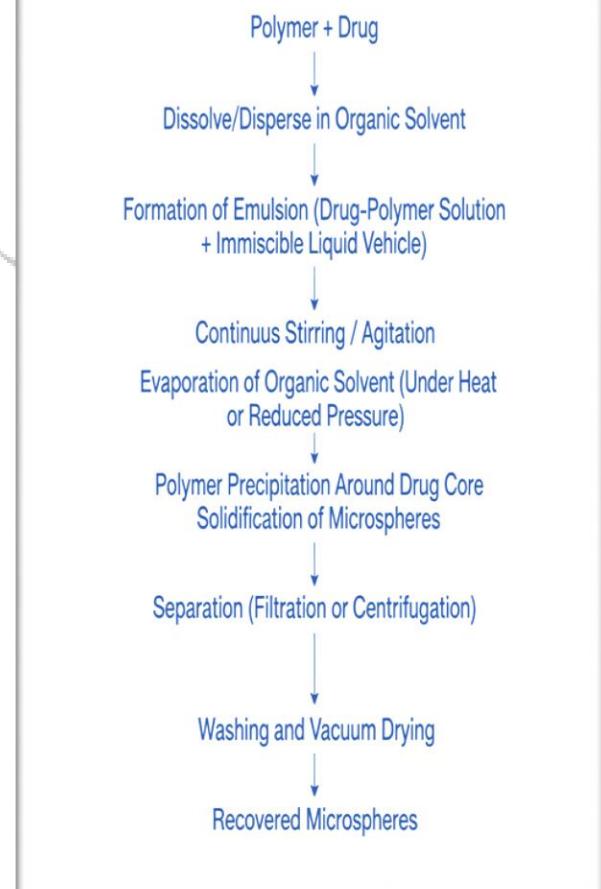
- The polymer is dissolved in a volatile organic solvent such as dichloromethane or acetone.
- The drug (in solid form) is dispersed in the polymer solution under high-speed homogenization to obtain a uniform drug-polymer dispersion.
- The prepared dispersion is atomized into a stream of hot air, resulting in the formation of fine droplets.
- The solvent evaporates instantaneously, leading to the formation of microspheres in the size range of 1–100 μm .

- The microparticles are separated from the hot air using a cyclone separator.
- Residual solvent traces are removed by vacuum drying to yield dry microspheres.

Fig 3: - Spray Drying Method

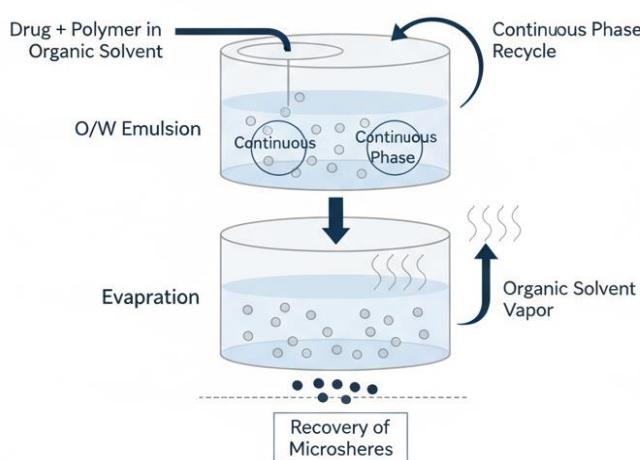
2. Solvent Evaporation: -

I.


The polymer is dissolved in a suitable volatile organic solvent (e.g., dichloromethane, acetone, methylene-chloride). The drug is either dissolved or dispersed in this polymer solution.

II.

The prepared polymer drug solution is emulsified into an immiscible liquid manufacturing vehicle phase (aqueous or non-aqueous) under continuous stirring to form an oil-in-water (o/w) emulsion. A surfactant or stabilizer may be added to maintain droplet stability.


III.

The organic solvent is evaporated either by increasing temperature, reducing pressure, or continuous stirring. As the solvent evaporates, the polymer precipitates around the drug core, forming solid microspheres. Polymer shrinkage occurs around the core material during solvent removal, leading to the formation of spherical and rigid microspheres.

IV.

The formed microspheres are collected by filtration or centrifugation, washed to remove residues, and dried under vacuum.

Schematic Diagram of Solvent Evaporation for Microparticle Production

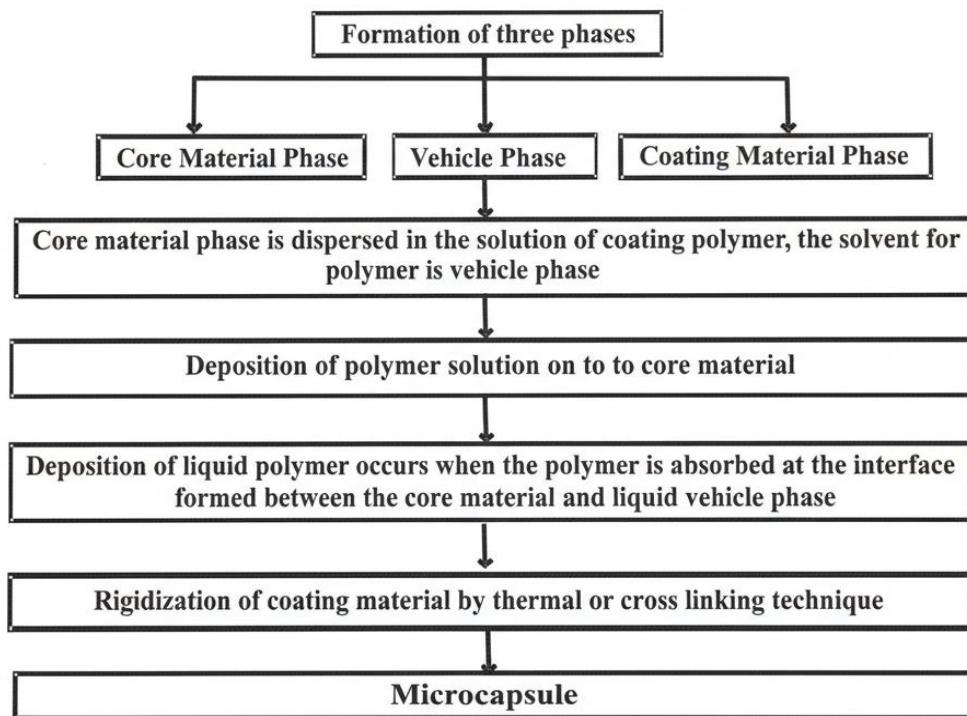
Fig 4 - Solvent Evaporation

3. Phase Separation Coacervation technique: -

Microencapsulation by coacervation phase separation is introduced by National Cash Register (NCR) Corporation and the patented by B.K. Green et.al. This process consists of three steps:

1. Formation of three immiscible chemical phases.
2. Deposition of coating material.
3. Rigidization of the coating.

Step I: It involves formation of three immiscible phases that is


- a) Liquid manufacturing vehicle phase.
- b) Core material phase.
- c) Coating material phase.

To form three phases, core material is dispersed in a solution of coating polymer, the solvent for the polymer being the liquid manufacturing vehicle phase. The coating material phase, an immiscible polymer in a liquid state, is formed by one of the following method of phase separation/coacervation-

- ✓ By changing temperature.
- ✓ By addition of salt.
- ✓ By addition of non-solvent.
- ✓ By addition of incompatible polymer
- ✓ By polymer-polymer interaction.

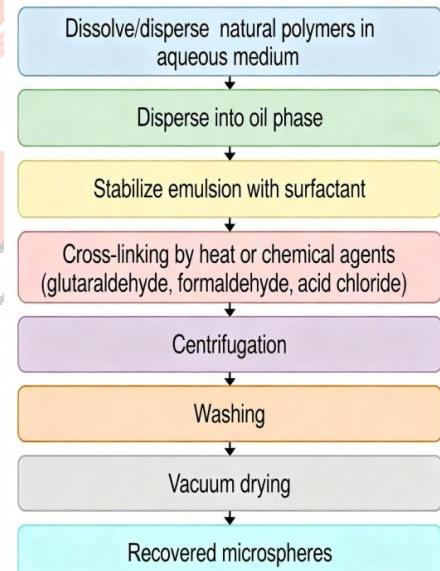
Step II: It involves the deposition of coating material on core. This is achieved by controlled, physical mixing of core material and coating material. Deposition of liquid polymer or coating on core occurs if the polymer is adsorbed at the interface formed between core material and liquid vehicle phase.

Step III: It involves the rigidizing or stiffening the coating usually by thermal, cross linking or desolvation techniques.

Fig 5 - Phase Separation Coacervation technique

4. Single Emulsion Technique: -

1. Natural polymers (proteins or carbohydrates) are dissolved or dispersed in an aqueous medium.


2. The aqueous polymer solution is then dispersed into a non-aqueous medium (such as oil) under continuous stirring to form a stable emulsion.

3. The dispersed globules are cross-linked to harden and stabilize the microspheres.

Cross-linking can be achieved by: -

- Heat Method: Dispersion is added into heated oil (not suitable for thermolabile drugs).
- Chemical Method: Using chemical cross-linkers such as glutaraldehyde, formaldehyde, or acid chloride.

4. The cross-linked microspheres are allowed to stabilize within the emulsion medium.

5. The microspheres are separated from the emulsion by centrifugation or filtration.

6. The obtained microspheres are washed several times to remove residual oil and unreacted chemicals.

7. Finally, the microspheres are dried under vacuum or ambient conditions.

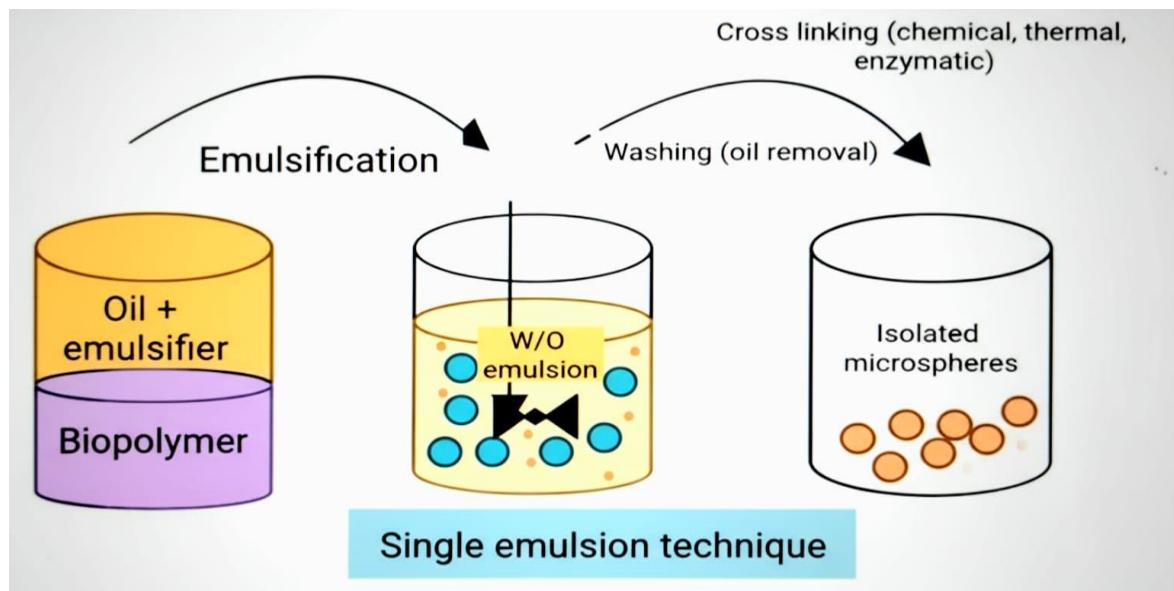
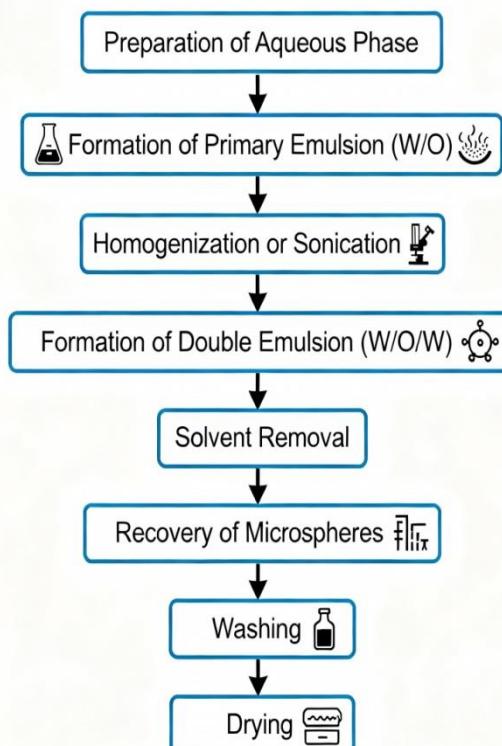
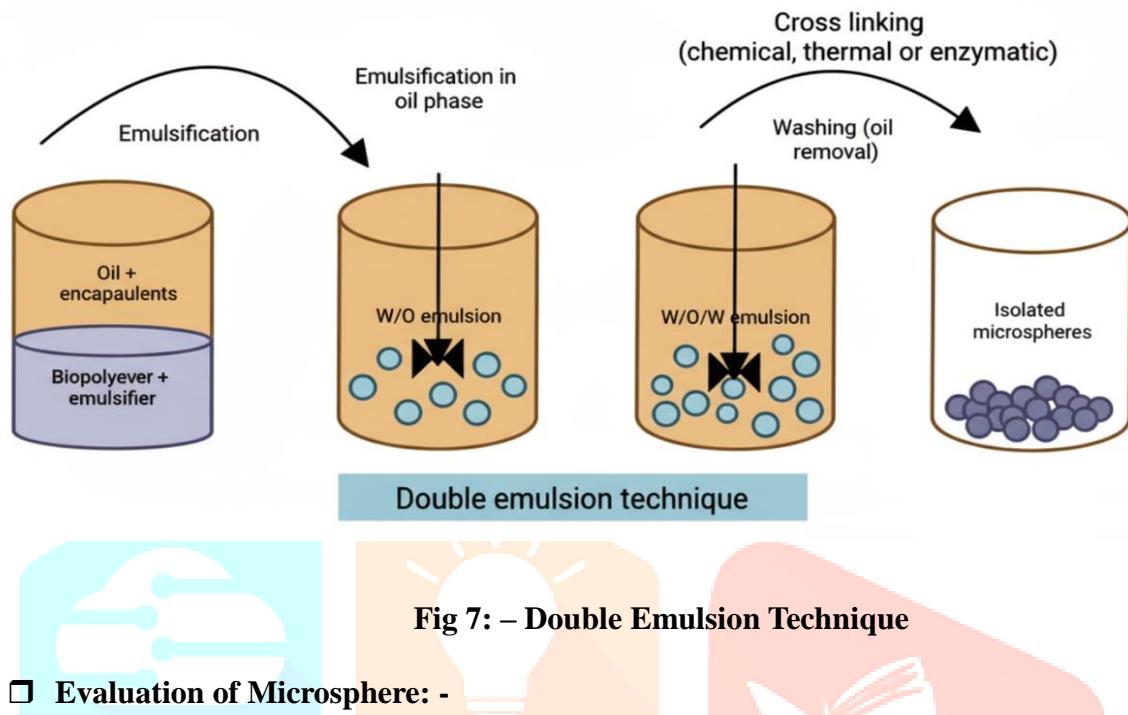
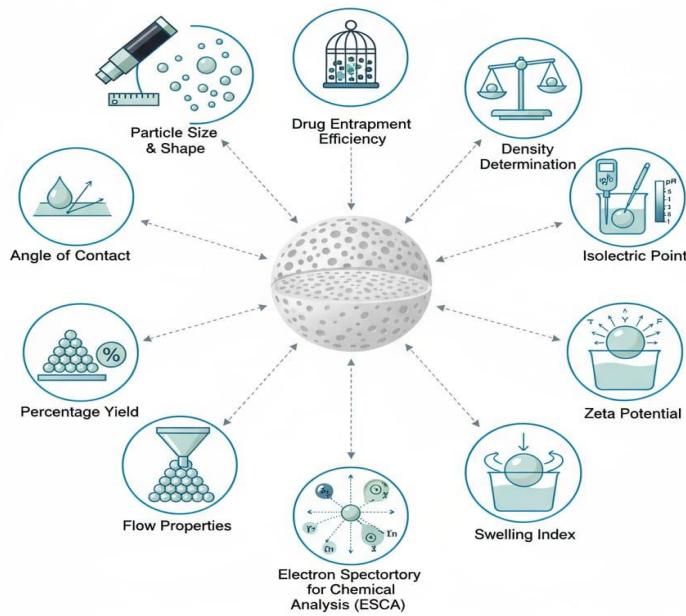



Fig 6: - Single Emulsion Technique


5. Double Emulsion Technique:-

- The aqueous solution of drug or protein is prepared. This solution may contain the active ingredient to be encapsulated.
- The aqueous protein/drug solution is dispersed into a lipophilic organic phase containing the polymer (such as PLGA or other suitable polymer).
- The dispersion is performed under continuous stirring to form a water-in-oil (W/O) primary. The primary emulsion is subjected to homogenization or sonication to reduce droplet size and improve uniformity. The primary emulsion (W/O) is added to an external aqueous phase containing an emulsifying agent such as polyvinyl alcohol (PVA).
- This leads to the formation of a water-in-oil-in-water (W/O/W) double emulsion.
- The emulsion is then subjected to solvent evaporation or solvent extraction


to remove the organic solvent.

- As the solvent is removed, the polymer hardens, encapsulating the drug within microspheres.
- The hardened microspheres are separated from the emulsion by centrifugation or filtration.
- The collected microspheres are washed several times with distilled water to remove residual PVA and unencapsulated material.
- Finally, the microspheres are dried under vacuum or ambient conditions to obtain free-flowing microsphere powder.

Evaluation of Microsphere: -

Microsphere Evaluation Parameters

1. Particle size and shape:

Conventional light microscopy (LM) and Scanning electron microscopy (SEM) are the most popular methods for visualizing microparticles. The average particle size of about 100 microspheres is determined using the formula

$$D_{\text{mean}} = \frac{\sum n d}{\sum n}$$

where d is the mean size and n is the number of microspheres examined.

For double-walled microspheres, LM offers control over coating settings. The architecture of the microspheres may be seen both before and after coating, and the change can be quantified under a microscope.

Compared to the LM17, SEM offers a better resolution. SEM makes it possible to examine the surfaces of microspheres, and it may also be used to examine double-walled systems once particles have been cross-sectioned.

In addition to experimental approaches, laser light scattering and multisize coulter counters can be employed to characterize the size, shape, and morphology of the microspheres. [3]

2. Drug entrapment efficiency: -

By letting cleaned microspheres lysate, one can ascertain the microspheres' capture effectiveness or the percentage of entrapment. The active components of the lysate are then determined in accordance with the requirements of the monograph. The following formula can be used to determine drug entrapment efficiency [1]. [10]

$$\% \text{ Entrapment} = \text{Actual content/Theoretical content} \times 100.$$

The efficiency of trapping is determined by the ratio of theoretical to actual drug content. [2]

Density determination

A tool known as a multi-volume pychnometer can be used to determine the density of the microspheres. [10]

The multi-volume pychnometer is filled with a precisely weighed sample in a cup. The chamber is filled with helium at a steady pressure and given time to expand. The pressure inside the chamber drops as a result of this expansion. Two successive measurements of the pressure drop at various starting pressures are recorded. The volume and, thus, the density of microsphere carriers are calculated from two pressure readings. Based on two weight measurements, the volume may calculate the thickness of the microsphere's transporter. [3] [10] [12]

4. Isoelectric point: -

The isoelectric point can be ascertained by measuring the electrophoretic mobility of microspheres using a device called micro electrophoresis. The isoelectric point can be ascertained by measuring the electrophoretic mobility of microspheres using a device called micro electrophoresis. The time it takes for a particle to move across a distance of one millimeter is used to compute the mean velocity at various pH values between three and ten. This information can be used to calculate the particle's electrical mobility. Ion absorption, ionizable behavior, and surface contained charge can all be linked to electrophoretic mobility. [13]

5. Swelling index:-

Measure the amount that microspheres expand in a certain solvent to get the swelling index. By letting 5 mg of dried microspheres expand overnight in a measuring cylinder filled with 5 ml of buffer solution, you may determine the equilibrium swelling degree. [10]

The following formula was used to get the microsphere's swelling index:

Swelling index = (mass of swollen microspheres - mass of dry microspheres/mass of dried microspheres) 100. [1]

6. Zeta potential: -

The zeta potential of microspheres dispersed in 0.0005M phosphate buffer at pH 6.8 was measured using a zeta metre. The directional movement of 200 microspheres in each formulation was noted and averaged over three measurements. [14]

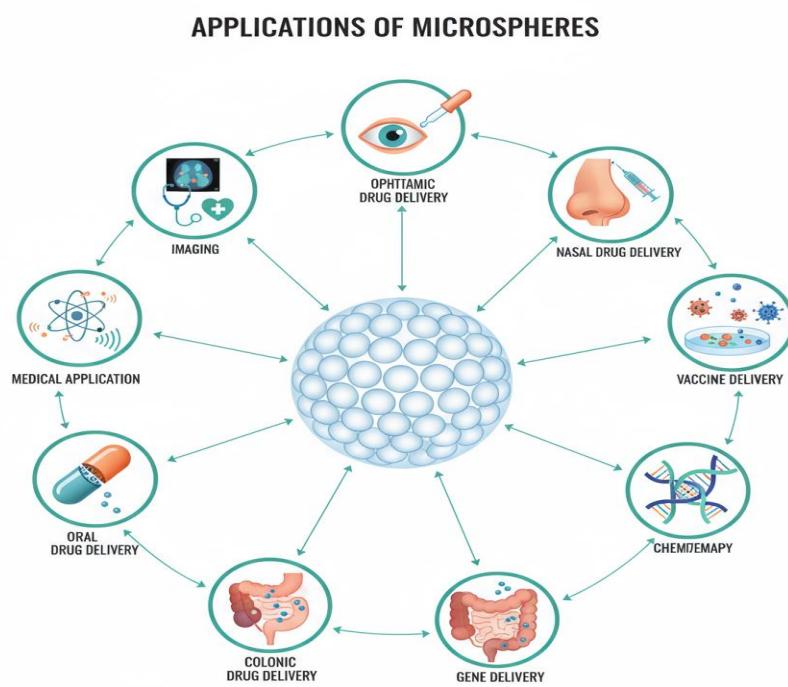
7. Percentage Yield:-

It is computed by dividing the total weight of the drug and polymer needed to prepare each batch by the weight of the microspheres derived from that batch, then multiplying the result by 100. [10]

$$\% \text{ Yield} = \text{Practical yield} / \text{theoretical yield} \times 100$$

8. Flow properties: -

Flow qualities can be analysed using the Hausner ratio, the Carr's compressibility index, and the resting angle of repose. The densities of the bulk and tapped materials were determined using a volumetric cylinder.[10]


9. Electron spectroscopy for chemical analysis:

9. Electron spectroscopy for chemical analysis: The surface chemistry of the microspheres is ascertained using electron spectroscopy for chemical analysis (ESCA). The atomic composition of the surface can be determined using the Electron Spectroscopy for Chemical Analysis (ESCA) technology. The biodegradable microspheres' surface deterioration can be evaluated using the spectra acquired using ECSA. [10] [1]

10. Angle of contact:

The angle of contact is measured to determine a microparticulate carrier's wetting property. This determines the hydrophilicity or hydrophobicity of microspheres. This is a solid-specific thermodynamic property that is influenced by the adsorbed component. The angle of contact is measured at the interface of solid, air, and water. A droplet is placed in a circular cell that is positioned above the inverted microscope's objective to measure the advancing and receding angle of contact. One minute after the microspheres are deposited, the contact angle is measured at 20°C. [10]

Application:-

1. Ophthalmic Drug Delivery:-

Polymer-based microspheres offer several advantages for drug delivery to the eyes. By lowering drug loss through lacrimal drainage, the potent bioadhesive properties of polymers such as chitosan, alginate, and gelatine improve adherence to the ocular mucin layer and prolong the time that a drug remains on the surface of the eye. These polymers also improve therapeutic outcomes by increasing the permeability of medications through ocular tissues. When added to hydrogels, drug-loaded microspheres enable controlled and extended drug release, ensuring consistent dosing over extended periods of time. Additionally, these technologies improve biocompatibility, reduce the frequency of administration, and ensure uniform drug distribution across the cornea and conjunctiva all of which increase patient compliance. [1], [2], [4], [12]

2. Nasal drug delivery:-

Microspheres, which are polymer-based drug delivery systems that increase medication bioavailability and residence time, have strong bioadhesive properties and readily swell when they come into contact with the nasal mucosa. Common polymers include chitosan and its salts (including chitosan lactate, aspartate, glutamate, and hydrochloride), as well as starch, dextran, albumin, and gelatin. These devices allow needle-free, non-invasive, self-administered delivery with rapid onset due to the nasal mucosa's large surface area and robust vascularization. Microspheres, in particular, improve drug absorption by directly interacting with the mucus layer, reducing mucociliary clearance, and opening tight junctions. They are effective for both local and systemic treatments, including insulin and vaccines like diphtheria toxoid, which increase immunity and improve treatment outcomes. Furthermore, mucoadhesive polymers enhance drug absorption when administered in the lungs. Techniques like ionic gelation (e.g., for ondansetron alginic microspheres) are used to prolong nasal drug release. [1] [2] [3] [5] [6] [12] [15]

3. Microspheres in vaccine delivery:-

A vaccine's main objective is to protect against germs or the harmful byproducts they produce. Efficacy, safety, cost-effectiveness, and convenience of administration are all requirements for a perfect vaccination. The safety profile and the intensity of the antibody response are directly influenced by the mode of administration. Biodegradable polymer-based microspheres have several advantages over

conventional methods when used in parenteral vaccine delivery (such as subcutaneous, intramuscular, or intradermal routes). These advantages include improved antigenicity through adjuvant effects, controlled and sustained antigen release, antigen stabilization, and fewer systemic side effects. These microspheres prevent antigens from breaking down too quickly and can contain multiple adjuvants or antigenic components. Commonly used polymers, such as chitosan and polylactic-co-glycolic acid (PLGA), have been effectively used to deliver cholera, diphtheria, and tetanus vaccines and allow for prolonged immune responses. In addition to improving the immune system's response, this controlled release approach might make single-dose vaccinations possible. [2] [3] [9] [10] [12] [13]

4. Microsphere in chemotherapy: -

Microspheres show great promise as targeted delivery systems for anti-tumor treatment. They can be engineered to accumulate in tumour tissues due to leaky vasculature, enhancing drug absorption and endocytic activity. Stealth microspheres coated with polyoxyethylene help to evade immune detection, while non-stealth microspheres can accumulate in the reticuloendothelial system (RES), which may be helpful for some cancer treatments. Radioactive microspheres (like yttrium-90) are used to treat liver tumours by injecting localised radiation into the hepatic artery, which kills tumour cells with minimal damage to surrounding tissues. Additionally, because they provide protection against gastrointestinal system degradation and enable controlled drug release, polymeric microspheres containing drugs like 5-fluorouracil are used in the treatment of colon cancer. [2] [14] [15]

5. Gene delivery:-

Microspheres are perfect for oral gene transfer because of their strong adhesion and GI tract transport capabilities. Materials like chitosan, gelatin, cationic liposomes, viral vectors, and polycation complexes are frequently used. These technologies enable the delivery of DNA plasmids and gene therapy medications such as insulin. Despite their efficacy and broad cell targeting capabilities, viral vectors can have immunological reactions and carcinogenic effects when used *in vivo*. Because of their low immunogenicity, ease of preparation, ability to target specific tissues or cells, scalability, and unlimited plasmid size, non-viral microsphere-based techniques are preferred to overcome these limitations. Microspheres also make it possible for controlled and extended gene release, which increases the effectiveness of treatment. Plasmid DNA has been effectively delivered into the intestinal tract using chitosan-based microspheres in particular. Furthermore, biodegradable microspheres work well for delivering vaccines, including tetanus and diphtheria vaccines. [1], [6], [10], [12], [17]

6. Colonic drug delivery:-

Polymers such as chitosan have been used to successfully deliver insulin to the colon. This technique coats chitosan capsules with enteric polymers such as hydroxypropyl methylcellulose phthalate (HPMCP) to stop insulin from being broken down in the upper gastrointestinal tract. These capsules also contain absorption boosters and enzyme inhibitors to improve the absorption of insulin. The capsules break down, especially in the colonic region. This could be because the polymer is broken down by colonic bacterial enzymes or because the ascending colon has a lower pH than the terminal ileum. This strategy enhances insulin stability and absorption at the targeted site. [1] [6] [10] [12]

7. Oral drug delivery:-

Film dosage forms can be produced by microspheres composed of polymers such as chitosan and gelatin, which offer a practical alternative to traditional pharmaceutical tablets. Because of their sensitivity to pH and the reactivity of primary amine groups, they are particularly well suited for the delivery of medications orally. Studies using diazepam-loaded polymer films in rabbits have shown that drug-polymer films (e.g., 1:0.5 ratio) can have therapeutic effects comparable to those of commercial tablet forms. Because of their flexible formulation potential, these film-forming microspheres enhance drug

stability and absorption and are ideal for patient-friendly, controlled-release oral dosage forms. [1] [2] [6] [10] [15]

8. Radioactive Application:-

Radioactive microspheres are effective in radioembolization therapy for conditions such as liver and spleen tumours, arthritis (by radiosynovectomy), and local radiotherapy. They also aid in the imaging of deep vein thrombosis (DVT) thrombi, the liver, spleen, bone marrow, and lungs. Because these microspheres, which are typically 10–30 μm in size, are larger than capillary widths, they can lodge in the first capillary bed they encounter and directly deliver localised radiation to the targeted tissues without harming healthy cells nearby. Unlike conventional drug delivery methods, radioactive microspheres do not release a medication; instead, they emit radiation from the radioisotope inside the microsphere. α , β , and γ -emitting microspheres are some of the different types made for specific medical or diagnostic applications. [16] [11] [10]

9. Medical Application:-

Microspheres have numerous medical applications, including the prolonged release of hormones, peptides, and proteins. Both active targeting of tumour cells and antigens as well as passive targeting of leaky tumour vasculature can be achieved when administered intravenously or intraarterially. Magnetic microspheres are also helpful tools for extracting stem cells and purging bone marrow. Microspheres are used in a number of diagnostic tests for infectious diseases, such as bacterial, viral, and fungal infections, due to their exceptional sensitivity and specificity in biomarker identification. [11]

10. Imaging:-

Microspheres have been thoroughly studied and employed for targeted imaging of various cells, tissues, and organs using radio-labeled formulations. Particle size, which affects the site of accumulation, is one of the most important aspects of their efficacy. Because microspheres tend to lodge in the lung capillary beds when injected intravenously (apart from the portal vein), they are very helpful for scintigraphic imaging of lung tumours. Utilizing this characteristic, lung tumour masses can be precisely visualized using human serum albumin-based microspheres labelled with radioisotopes. [9] [3] [10] [11] [13] [14] [23]

Future Challenges

Microspheres in medicine appear to have a bright future due to their expanding applications in areas such as targeted cancer treatment, molecular biology, and vaccine administration. Emerging technologies include yttrium 90 loaded microspheres to prevent tumour recurrence after liver transplantation and microsphere-based genotyping platforms to find single nucleotide polymorphisms (SNPs). Target specificity optimization, scalability in manufacturing, biocompatibility, and accurate, regulated distribution of vaccines and therapeutic proteins for broader clinical use are still issues in spite of these advancements. [13]

Conclusion

Microspheres offer controlled release, improved bioavailability, and targeted distribution, making them a versatile and promising drug delivery technique. They are employed in diagnostics, drug therapy, imaging, and the delivery of genes and vaccines. Ionotropic gelation techniques enhance stomach retention, while chitosan and alginate ensure efficient encapsulation. Despite some formulation and scaling challenges, microspheres are an essential tool for novel drug delivery and biological applications in the future.

References: -

1. Kadam NR, Suvarna V. Microspheres: A brief review. *J Pharm Res.* 2017;11(9):1174–1179.
2. Yadav V, Galande P, Borkar S. A review on microspheres: Preparation, characterization and applications. *Asian J Pharm Res Dev.* 2022;10(6):1–6
3. Das MK, Ahmed AB, Saha D. Microsphere: A drug delivery system – A review. *Int J Curr Pharm Res.* 2019;11(4):34–41.
4. Karaman D, Williams K, Phelps J, La Boucan F, Lewandowski G, O'Grady K, Yu B, Willerth SM. Microspheres for 3D bioprinting: a review of fabrication methods and applications. *Front Bioeng Biotechnol.* 2025;13:1551199
5. Singh S, Devi A, Sharma S, Sabharwal S, Sharma S, Dhiman S, Chauhan S. A review on microspheres and its role in different drug delivery system as a novel approach. *Int J Pharm Sci Drug Res.* 2024;16(1):1–7.
6. Kataria S, Middha A, Sandhu P, Bilandi A, Kapoor B. Microsphere: A review. *Int J Res Pharm Chem.* 2015;5(3):550–558.
7. Arefin P, Habib MS, Ahmed NU, Abdurrahim M, Ibrahim M, Bhattacharjee SC, Chakraborty D, Das S, Karmakar D, Bhowmik D, Islam S, Arefin MS. Microspheres and microcapsules: A review of manufacturing techniques for pharmaceutical industries. *Int J Novel Drug Deliv.* 2020;12(4):1–10.
8. Sharma K, Bhardwaj P, Handa V, Sharma S, Alam S. Mucoadhesive microspheres as a gastroretentive drug delivery system – A review. *Int J Pharm Res Sch.* 2017;6(2):47–54.
9. Alagusundaram M, Chetty MS, Umashankari K, Badarinath AV, Lavanya C, Ramkanth S. Microspheres as a novel drug delivery system – A review. *Int J ChemTech Res.* 2009;1(3):526–534
10. Yadav R, Singh A, Zarreen S, Verma JK, Maurya P. A review on microspheres: Types, formulation methods, characterization and application. *Int J Novel Res Dev.* 2024;3(6):150–158.
11. Sharma N, Purwar N, Gupta PC. Microspheres as drug carriers for controlled drug delivery: A review. *Int J Pharm Sci Res.* 2009;1(1):1–8.
12. Ingle TG, Pande SD, Sawarkar R, Padole D. The current trends in microspheres: A review. *J Drug Deliv Ther.* 2023;13(1):5915.
13. Prasad BSG, Gupta VRM, Devanna N, Jayasurya K. Microspheres as drug delivery system – A review. *Int J Pharm Sci Nanotech.* 2011;4(1):1359–1367.

15. Jadhav PS. Microsphere. *Int J Pharm Res Appl.* 2022;7(3):1694–1701. doi:10.35629/7781-070316941701
16. Khalid M, Gautam A. Microsphere: A novel drug delivery system – A review. *Int J Sci Res Sci Technol.* 2023;10(1):406–411.
17. Athira K, Vineetha K, Kamath KK, Shabaraya AR. Microspheres as a novel drug delivery system – A review. *Int J Pharm Sci Rev Res.* 2022;75(1):160–165. doi:10.47583/ijpsrr.2022.v75i01.027
18. Vasava D, Patel J, Upadhyay U. A review article on: Microsphere. *Natl J Pharm Sci.* 2022;2(2):xx–xx.
19. Figueiredo AM, Glória JC, Chaves YO, Neves WLL, Mariúba LAM

21. Hossain KMZ, Patel U, Ahmed I. Development of microspheres for biomedical applications: a review. *J Biomater Sci Polym Ed.* 2015;26(2):86–105. doi:10.1080/09205063.2014.998731
22. Tadwee IAK, Shahi S, Thube M, Ankit S. Review on microspheres. *Int J Pharm Res Allied Sci.* 2015;4(3):1–6.
23. Dhamapurkar SP, Desai DM. A review on microsphere for novel drug delivery system. *World J Adv Res Rev.* 2022;16(3):529–538. doi:10.30574/wjarr.2022.16.3.1368.

