IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Smart Irrigation Systems: Integrating Iot Sensors And AI-Driven Decision Support For Water Conservation In Farming

Roma Saxena Department of Computer Science Bareilly College, Bareilly

Abstract: This paper presents an innovative approach to optimize water usage in agricultural settings. This study explores the integration of Internet of Things (IoT) sensors and artificial intelligence (AI) algorithms to create a dynamic, data-driven irrigation management system. The proposed system utilizes a network of soil moisture sensors, weather stations, and crop-specific data to continuously monitor field conditions. AI algorithms process this real-time data to generate precise irrigation schedules and recommendations, adapting to changing environmental factors and crop water requirements. The paper focuses the system architecture, sensor deployment strategies, and machine learning models employed for decision support. This research contributes to sustainable agriculture practices by offering a scalable solution for efficient water management in farming, addressing the critical challenge of water scarcity in agricultural production.

Index Terms: Water conservation, Smart Irrigation, Farming. IoT, Artificial Intelligence

I. INTRODUCTION

Water resource optimization in agriculture has become a critical research focus due to escalating global water scarcity, climate-induced hydrological variability, and the intensification of food production demands. Conventional irrigation systems typically rely on fixed schedules or manual observations, which fail to account for spatial and temporal heterogeneity in soil moisture, crop evapotranspiration (ET) rates, and microclimatic conditions. Such inefficiencies contribute to water wastage, nutrient leaching, and suboptimal crop performance. To mitigate these limitations, precision irrigation, enabled by recent developments in sensing technologies, edge computing, and artificial intelligence (AI), offers a scalable solution for data-driven agricultural water management (Ngulube, 2025).

The integration of Internet of Things (IoT) sensor networks into irrigation infrastructure facilitates continuous monitoring of soil moisture content, volumetric water balance, temperature, and humidity at high spatial and temporal resolutions. These heterogeneous data streams, when processed through cloud-based platforms and AI-driven decision support systems, enable predictive modeling and autonomous control of irrigation events. Machine learning algorithms, particularly regression-based and neural network models, can forecast optimal irrigation timing and volume by leveraging multi-dimensional datasets including weather predictions, soil hydraulic properties, and crop phenological stages (Sharma & Shivandu, 2024).

This study presents the design, implementation, and validation of an IoT-AI integrated smart irrigation system that dynamically modulates water delivery to optimize crop water-use efficiency (WUE). The proposed framework incorporates sensor calibration, real-time data acquisition, and adaptive control algorithms to achieve fine-grained irrigation management at field scale. System performance is evaluated based on parameters such as water savings, crop yield response, and computational efficiency. The findings contribute to advancing precision agrotechnology by establishing a robust, autonomous, and scalable

IJCRT2510704 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org f974

architecture for intelligent irrigation management, aligning with global goals for sustainable agriculture and resource conservation.

II. LIMITATIONS OF TRADITIONAL IRRIGATION METHODS

Traditional irrigation systems such as surface, furrow, basin, and flood irrigation have been practiced for centuries to support agricultural production. While these methods are simple, cost-effective, and accessible to small-scale farmers, they pose several challenges that limit their sustainability and efficiency in modern agriculture.

- 2.1 **Low Water Use Efficiency**: Traditional irrigation techniques typically suffer from poor water use efficiency due to high losses from evaporation, surface runoff, and deep percolation. Studies have shown that surface irrigation systems often utilize less than 40% of the total applied water effectively, with the remainder being wasted (Al-Ghobari & Dewidar, 2018). This inefficiency poses a serious problem in water-scarce regions.
- **2.2 Uneven Water Distribution:** Water distribution across agricultural fields in flood and furrow systems is often non-uniform. These results in over-irrigation in some zones and water deficiency in others, both of which negatively affect crop growth and yield uniformity (Levidow et al., 2014). The uneven supply also complicates nutrient management and increases the risk of pest infestation.
- 2.3 Soil Degradation and Salinization: Excessive or uncontrolled irrigation can degrade soil quality over time. It may lead to soil erosion, nutrient depletion, and salinity accumulation (Daba & Qureshi, 2021). Waterlogging caused by poor drainage further restricts oxygen flow to plant roots, impeding growth and reducing soil fertility.
- **2.4 High Labor and Energy Requirements:** Most traditional systems require manual monitoring and control of water flow, increasing labor intensity and operational time. Field preparation and maintenance activities are also laborious and less compatible with modern automation systems. This limits scalability and productivity, particularly for large farms.
- **2.5** Unsuitability for Modern Crops: Many high-value crops require precise water control, which traditional methods cannot provide. Inconsistent irrigation schedules often stress plants, reduce productivity, and make them more susceptible to pests and diseases (Sajjad et al., 2025). Modern irrigation technologies, such as drip or sprinkler systems, are more effective in maintaining consistent soil moisture levels.
- **2.6 Environmental Impact:** Inefficient water use and over-irrigation can lead to the depletion of groundwater reserves and contamination of nearby water bodies with fertilizers and pesticides (Mekonnen & Hoekstra, 2011). These environmental consequences threaten both biodiversity and human livelihoods dependent on agricultural ecosystems.

Although traditional irrigation systems have historically played an essential role in agricultural development, their limitations such as low water use efficiency, uneven distribution, soil degradation, and high labor demands, render them unsuitable for the sustainable needs of modern agriculture. Transitioning toward modern, technology-driven irrigation systems can significantly enhance water conservation and crop productivity while mitigating environmental impacts.

2.7 Importance of Efficient Irrigation: Efficient irrigation management is fundamental to ensuring the sustainability and productivity of agricultural systems under increasing water scarcity and climatic stress. Agriculture remains the dominant consumer of global freshwater resources, accounting for approximately 70% of total withdrawals. However, it is estimated that up to 40% of this water is lost through inefficiencies such as deep percolation, surface runoff, and evaporation. The optimization of irrigation practices therefore

represents a crucial pathway for enhancing water-use efficiency (WUE) and minimizing environmental degradation.

In conventional irrigation systems, uniform water application fails to accommodate field-level variability in soil characteristics, crop water demands, and microclimatic factors. This mismatch often results in uneven moisture distribution, leading to reduced crop yields, nutrient imbalance, and increased operational costs. Efficient irrigation targets the precise delivery of water in the right quantity, at the right time, and to the right place, thus aligning water input with the physiological requirements of crops. The implementation of such systems directly improves plant health, enhances nutrient uptake, and supports higher productivity with reduced resource input.

From a sustainability perspective, efficient irrigation contributes significantly to groundwater conservation, energy saving, and mitigation of non-point source pollution. Additionally, it enhances the resilience of agroecosystems to extreme climatic events such as droughts and heat waves by maintaining optimal soilwater balance. Advanced technologies—including IoT-enabled sensors, actuator-controlled systems, and AI-based decision models—facilitate closed-loop irrigation control, thereby enabling real-time adaptation to fluctuating environmental and crop conditions (Sharma, 2023).

By ensuring that each irrigation event is both spatially and temporally optimized, efficient irrigation serves as a cornerstone of precision agriculture. It not only promotes water conservation but also fosters economic viability and ecological stability, aligning with the broader objectives of sustainable resource management and climate-smart farming systems.

III. RELATED WORKS

Recent literature underscores the rapid evolution and integration of IoT and artificial intelligence (AI) within smart irrigation systems, driven by the need for improved water-use efficiency and sustainable agricultural practices. The adoption of IoT-based platforms for irrigation management has moved from nascent experimentation to mainstream research and applied field deployment. Current studies highlight that modern systems typically deploy networks of soil moisture, temperature, and environmental sensors for continuous data acquisition; leveraging communication protocols such as WiFi, LoRa, and ZigBee to facilitate real-time, remote monitoring and control across extensive field areas.

The survey by (Abdelmoneim et al., 2025) provides a systematic review of IoT integration in agriculture, emphasizing the shift toward scalable, low-power, and energy-efficient communication technologies and microcontroller-based system architectures. Their findings confirm that IoT enhances irrigation through improved data-driven decision making, remote monitoring, and automated water application, thus reducing water and energy consumption compared to traditional approaches. However, persistent challenges remain, particularly in integrating advanced sensor data with predictive decision-support algorithms and addressing the agronomic impacts of such automation on crop performance and soil health.

The integration of AI, particularly through machine learning and deep learning approaches, is a key recent trend. (Hooda, 2025) and (Ye et al., 2024) describe the application of sophisticated AI models, such as crop growth predictors and the UNet-ConvLSTM framework, which enable responsive irrigation scheduling tailored to crop phenology, soil conditions, and real-time weather inputs. These platforms have demonstrated enhanced resource efficiency, with reported water savings reaching up to 40% and significant improvements in crop yields during field trials in multiple regions. AI-driven anomaly detection also offers proactive system management, identifying irrigation infrastructure issues and potential crop stress before yield-limiting damage occurs.

A comprehensive review by (Gupta, 2023) elaborates on the breadth of precision irrigation technologies, which now increasingly use AI-powered analytics, remote sensing via UAVs or satellites, variable-rate irrigation equipment, and integrated simulation models for optimizing water delivery in heterogeneous agricultural landscapes. Recent approaches also explore multi-objective optimization models and economic simulations, helping farmers maximize both water-use efficiency and economic returns under variable water availability. Extreme weather adaptation and integration of renewable energy, such as solar-powered pumps, are also investigated as avenues for reducing both operational costs and environmental footprint.

Despite these advancements, open challenges persist, including ensuring network reliability in rural environments, seamless integration of heterogeneous sensor systems, data security across IoT devices, and scalability from research plots to commercial farms. The need for further research into interdisciplinary solutions—merging agronomy, computer science, and engineering—remains pressing.

IV. SMART IRRIGATION SYSTEMS: COMPONENTS AND ARCHITECTURE

The rapid growth of global population and increasing demand for food has placed immense pressure on water resources, particularly in agriculture. In response to the challenges in traditional farming, smart irrigation systems have emerged as an innovative approach that integrates Internet of Things (IoT), artificial intelligence (AI), and sensor-based technologies to optimize water usage while maintaining crop health and productivity (Dharashive & Sawale, 2024). Al-driven decision support in smart irrigation combines IoTbased sensing, AI algorithms, and cloud computing to provide intelligent recommendations or autonomous control over irrigation. The system collects real-time data—such as soil moisture, temperature, humidity, and rainfall—through field sensors, processes it using AI models, and determines the most suitable irrigation schedule Smart irrigation leverages real-time data and intelligent control mechanisms to ensure that the right amount of water is delivered to crops at the right time, improving water-use efficiency and sustainability. A smart irrigation system is a technology-driven network that automates the irrigation process by sensing soil moisture, environmental parameters, and crop water requirements. It collects real-time data from sensors deployed in the field and transmits this information to a cloud or edge-based platform for analysis and decision-making (Velmurugan et al., 2020). AI-driven decision support systems (DSS) (Saggi & Jain, 2022) use computational intelligence, machine learning (ML), and data analytics to optimize irrigation decisions based on environmental, soil, and crop data (Wei et al., 2024). These systems not only automate irrigation operations but also ensure sustainable water resource management, higher yield, and reduced operational costs. The core objective of these systems is to minimize water waste, reduce manual intervention, and optimize crop yield while adapting to changing environmental conditions.

- **4.1 Components of Smart Irrigation Systems:** Smart irrigation systems are composed of several interconnected components that work collaboratively to achieve intelligent water management (Jeya et al., 2023). The major components are as follows:
- **4.1.1 Sensors:** Sensors play a crucial role in monitoring the physical and environmental parameters of agricultural fields. Commonly used sensors include:
 - **Soil Moisture Sensors:** Measure the volumetric water content of soil to determine irrigation needs.
 - Temperature and Humidity Sensors: Monitor ambient climate conditions that influence evapotranspiration rates.
 - Rain Sensors: Detect rainfall events to automatically suspend irrigation cycles and prevent overwatering.
 - pH and Nutrient Sensors: Evaluate soil health and nutrient content to adjust water and fertilizer application accordingly.
- **4.1.2 Microcontrollers and Gateways:** Microcontrollers such as Arduino, Raspberry Pi, or ESP8266 act as control units that gather data from sensors, process it, and communicate with remote servers or mobile applications. Gateways facilitate communication between field devices and cloud platforms through wireless protocols like Wi-Fi, ZigBee, LoRa, or GSM (S et al., 2025).

- **4.1.3 Communication Network**: The communication layer enables real-time data transmission between sensors, controllers, and user interfaces. Depending on field size and infrastructure availability, wireless communication technologies such as **LoRaWAN**, **NB-IoT**, and **Bluetooth Low Energy (BLE)** are employed (Musa et al., 2024). This connectivity allows remote monitoring and management of irrigation operations through smartphones or web dashboards.
- **4.1.4 Cloud and Data Processing Layer:** Data collected from sensors are transmitted to a cloud or edge computing environment for storage and analysis. Cloud-based platforms use **machine learning (ML)** and **data analytics** to predict irrigation requirements based on environmental conditions, historical data, and crop type (Del-Coco et al., 2024). These platforms also provide decision-support dashboards for farmers, enabling them to visualize field conditions and irrigation schedules.
- **4.1.5 Actuators and Control Valves:** Actuators control the physical flow of water by operating valves, pumps, and sprinklers. Based on real-time data and control commands, these devices adjust irrigation schedules and water distribution across zones. The automation achieved through actuators eliminates manual control, improving operational accuracy and resource efficiency.
- **4.1.6 User Interface and Mobile Applications:** Smart irrigation systems are typically supported by mobile or web-based interfaces that allow users to monitor system performance, receive alerts, and adjust irrigation settings. These interfaces enhance accessibility and ease of management for both smallholder and large-scale farmers.
- **4.2 Architecture of Smart Irrigation Systems:** The architecture of a smart irrigation system is designed as a multi-layered framework consisting of Perception, Network, Processing, and Application layers.
- **4.2.1 Data Collection and Transmission Layer:** This layer involves the deployment of IoT sensors and wireless networks to monitor real-time environmental conditions. Common sensors include soil moisture sensors, temperature and humidity sensors, and weather conditions. Drones and satellite imaging may also be integrated for large-scale monitoring. This layer acts as the sensory organ of the system, converting environmental parameters into digital signals. The transmission layer transmits sensed data from field devices to processing units via communication technologies. It can employ Wi-Fi for short-range communication or LPWAN (Low Power Wide Area Network) protocols like LoRa and NB-IoT for long-range connectivity. Secure data transmission is a key aspect of this layer (Goap et al., 2018).
- **4.2.2 Data Processing Layer** and Intelligence Layer: In this layer, data is stored, analyzed, and processed using cloud computing or edge AI techniques. Data collected from sensors are pre-processed to remove noise and outliers. Cloud or edge computing frameworks process large datasets to identify trends in soil and climatic conditions. Big Data analytics helps in modeling spatial and temporal variability in water requirements. Advanced algorithms predict irrigation needs and generate automated control signals. The integration of AI enhances system adaptability, allowing predictive scheduling based on weather forecasts and soil dynamics. Techniques such as Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), and Decision Trees are commonly used to predict soil moisture levels and optimize irrigation schedules (Kumar et al., 2021). Moreover, reinforcement learning and fuzzy logic models allow systems to self-learn and refine their decisions based on crop growth stages, evapotranspiration rates, and weather forecasts (Ahmad & Sohel, 2025).
- **4.2.3 Application Layer:** The application layer provides interfaces for user interaction and decision support. Farmers can monitor soil conditions, control irrigation devices, and visualize analytics through mobile apps or dashboards. This layer transforms raw data into actionable insights for effective farm management. These platforms provide real-time alerts, water consumption analytics, and visualization tools, allowing farmers to accept, modify, or automate suggested irrigation actions.

Smart irrigation systems significantly reduce water usage (up to 40–50%), improve crop productivity, and lower labor costs However, challenges such as high installation costs, limited connectivity in rural areas, and data security concerns must be addressed to ensure scalability and adoption. Smart irrigation systems represent a transformative step toward sustainable agriculture by integrating IoT, AI, and data analytics for intelligent water management. Their component-based, layered architecture ensures efficient communication, automation, and control of irrigation processes. As technology advances, future research should focus on developing cost-effective, solar-powered, and AI-enhanced irrigation solutions suitable for diverse climatic and socio-economic contexts (Khan et al., 2021).

Wi-Fi /Mobile data Raspberry Pi WWW of Web service for connection with Arduino Water online weather weather Motor data collection Uno and Relay data Switch n Web service to Ш control water motor Standalone Sensor Centralized Node Scenario database Responsive web based interface for Wi-Fi real time /1 Mobile data monitoring ZigBee n connection Network Intranet/ Soil moisture Internet prediction algorithm Web service for WSN Scenario Application field sensor data Irrigation collection Sensor Node Planning Gateway Node User Server Field data collection device Application Data processing & intelligence Layer **Data Collection and transmission Layer** Laver

Figure (Goap et al., 2018)

V. CHALLENGES AND RESEARCH OPPORTUNITIES

Smart irrigation systems integrating IoT sensors and AI-driven decision support present significant potential for water conservation in farming, but face several challenges. These include the high initial costs of sensor deployment, ensuring reliable connectivity in remote agricultural areas, and developing robust AI algorithms capable of processing complex environmental data. IoT sensors deployed in agricultural environments face durability challenges due to temperature fluctuations, humidity, soil corrosion, and dust exposure. These conditions can cause calibration drift, data inaccuracies, and frequent maintenance requirements. Sensor networks must therefore integrate self-calibration and redundancy algorithms to ensure accuracy over extended field operations. Unreliable network coverage in rural zones restricts real-time data transfer to cloud systems. This limits predictive analytics and remote operation of irrigation systems. Reliable deployment will need hybrid connectivity models leveraging low-power wide-area networks (LPWAN) and satellite-based IoT. AI-driven irrigation models trained on region-specific datasets often fail to generalize to new climatic, soil, or crop conditions. Models require continuous retraining using federated learning and diverse datasets to ensure reliability across geographies. Additionally, farmers may resist adopting new technologies due to lack of technical expertise or concerns about data privacy.

Research opportunities lie in developing low-cost, energy-efficient sensors, improving wireless communication protocols for agricultural settings, and refining machine learning models to accurately predict crop water needs based on real-time data. There is also scope for investigating user-friendly

interfaces that simplify system management for farmers and exploring ways to integrate smart irrigation with other precision agriculture technologies for holistic farm management. Integrating edge computing with AI enables local processing of sensor data without depending on constant connectivity. Research into lightweight deep learning models on microcontrollers can enhance decision-making speed while reducing bandwidth and power consumption. Coupling smart irrigation with renewable energy, such as solar-powered pumps, can foster energy-efficient water management in drought-prone regions. Research could explore adaptive energy scheduling controlled via AI to balance power and water usage. Addressing technical challenges such as sensor resilience, interoperability, and AI adaptability, alongside opportunities in edge intelligence and renewable integration, can drive the next generation of smart farming innovations.

VI. CONCLUSION

Smart irrigation systems integrating IoT sensors and AI-driven decision support offer a promising solution for water conservation in farming. By leveraging real-time data from soil moisture sensors, weather stations, and crop monitoring devices, these systems enable precise and efficient water management. The AI algorithms analyze this data to optimize irrigation schedules, considering factors such as crop type, growth stage, and local environmental conditions. This approach not only reduces water waste but also improves crop yields and quality. As water scarcity becomes an increasingly pressing issue in agriculture, the adoption of smart irrigation systems represents a crucial step towards sustainable farming practices. However, further research and development are needed to enhance the accuracy of AI models, improve sensor reliability, and make these systems more accessible and cost-effective for farmers of all scales.

REFERENCES

- 1. Abdelmoneim, A. A., Kimaita, H. N., Kalaany, C. M. A., Derardja, B., Dragonetti, G., & Khadra, R. (2025). IoT Sensing for Advanced Irrigation Management: A Systematic review of trends, challenges, and future Prospects. *Sensors*, 25(7), 2291. https://doi.org/10.3390/s25072291m
- 2. Ahmad, U., & Sohel, F. (2025). Evaluating decision support systems for precision irrigation and water use efficiency. *Digital Engineering.*, 100038. https://doi.org/10.1016/j.dte.2025.100038
- 3. Al-Ghobari, H. M., & Dewidar, A. Z. (2018). Integrating deficit irrigation into surface and subsurface drip irrigation as a strategy to save water in arid regions. *Agricultural Water Management*, 209, 55–61. https://doi.org/10.1016/j.agwat.2018.07.010
- 4. Daba, A. W., & Qureshi, A. S. (2021). Review of soil salinity and sodicity challenges to crop production in the lowland irrigated areas of Ethiopia and its management strategies. *Land*, 10(12), 1377. https://doi.org/10.3390/land10121377
- 5. Del-Coco, M., Leo, M., & Carcagnì, P. (2024). Machine Learning for Smart Irrigation in Agriculture: How Far along Are We? *Information*, 15(6), 306. https://doi.org/10.3390/info15060306
- 6. Dharashive, P., & Sawale, M. (2024, January 3). *Smart Irrigation System Techniques using Artificial Intelligence and IoT*. https://ijisae.org/index.php/IJISAE/article/view/4424
- 7. Goap, A., Sharma, D., Shukla, A., & Krishna, C. R. (2018c). An IoT based smart irrigation management system using Machine learning and open source technologies. *Computers and Electronics in Agriculture*, 155, 41–49. https://doi.org/10.1016/j.compag.2018.09.040
- 8. Gupta, P. K. (2023). Smart Irrigation Systems using (IoT) A Survey. *INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT*, 07(08). https://doi.org/10.55041/ijsrem24900
- 9. Hooda, R. (2025). HARNESSING ARTIFICIAL INTELLIGENCE IN AGRICULTURE: IN-DEPTH CASE STUDIES AND STRATEGIC INSIGHTS. *International Journal of Advanced Research in Computer Science*, 16(4), 51–56. https://doi.org/10.26483/ijarcs.v16i4.7300
- 10. Jeya, R., Venkatakrishnan, G. R., Rengaraj, R., Rajalakshmi, M., Kumar, K. P. M., & Boopathi, S. (2023). Water resource managements in soil and soilless irrigation systems using AI techniques. In *Advances in environmental engineering and green technologies book series* (pp. 245–266). https://doi.org/10.4018/979-8-3693-0338-2.ch014
- 11. Khan, N., Ray, R. L., Sargani, G. R., Ihtisham, M., Khayyam, M., & Ismail, S. (2021). Current progress and Future Prospects of Agriculture Technology: Gateway to Sustainable Agriculture. *Sustainability*, *13*(9), 4883. https://doi.org/10.3390/su13094883

- 12. Levidow, L., Zaccaria, D., Maia, R., Vivas, E., Todorovic, M., & Scardigno, A. (2014). Improving water-efficient irrigation: Prospects and difficulties of innovative practices. Agricultural Water Management, 146, 84–94. https://doi.org/10.1016/j.agwat.2014.07.012
- 13. Mekonnen, M. M., & Hoekstra, A. Y. (2011). The green, blue and grey water footprint of crops and Hydrology and Earth System Sciences, 15(5), 1577–1600. crop products. https://doi.org/10.5194/hess-15-1577-2011
- 14. Musa, P., Sugeru, H., & Wibowo, E. P. (2024). Wireless Sensor Networks for Precision Agriculture: Review of **NPK** Sensor Implementations. Sensors, 24(1), A https://doi.org/10.3390/s24010051
- 15. Ngulube, P. (2025). Leveraging information and communication technologies for sustainable agriculture and environmental protection among smallholder farmers in tropical Africa. Discover Environment, 3(1). https://doi.org/10.1007/s44274-025-00190-1
- 16. Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R., Drechsel, P., & Noble, A. (2014). Economics of salt-induced land degradation and restoration. *Natural Resources Forum*, 38(4), 282–295. https://doi.org/10.1111/1477-8947.12054
- 17. S. L. G., S. V., Devidas, A. R., & Pushpalatha, R. (2025). Design and Deployment Challenges of IoT-enabled Irrigation System for Sustainable Intercropping. 2025 6th International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), 1640–1646. https://doi.org/10.1109/icicv64824.2025.11085998
- 18. Saggi, M. K., & Jain, S. (2022). A Survey Towards Decision Support System on Smart Irrigation Scheduling Using Machine Learning approaches. Archives of Computational Methods in Engineering, 29(6), 4455–4478. https://doi.org/10.1007/s11831-022-09746-3
- 19. Sajjad, M., Hussain, K., Hakki, E. E., Ilyas, A., Gezgin, S., & Shakil, Q. (2025). Impact of irrigation techniques on Water-Use efficiency, economic returns, and productivity of rice. Sustainability, 17(17), 7712. https://doi.org/10.3390/su17177712
- 20. Sharma, K., & Shivandu, S. K. (2024). Integrating artificial intelligence and Internet of Things (IoT) for enhanced crop monitoring and management in precision agriculture. Sensors International, 5, 100292. https://doi.org/10.1016/j.sintl.2024.100292
- 21. Sharma, S. (2023). PRECISION AGRICULTURE: REVIEWING THE ADVANCEMENTS, TECHNOLOGIES, AND APPLICATIONS IN PRECISION AGRICULTURE FOR IMPROVED CROP PRODUCTIVITY AND RESOURCE MANAGEMENT. Reviews in Food and Agriculture, 4(2), 45–49. https://doi.org/10.26480/rfna.02.2023.45.49
- 22. Velmurugan, S., Balaji, V., Bharathi, T. M., & Saravanan, K. (2020). An IOT based Smart Irrigation System using Soil Moisture and Weather Prediction. International Journal of Engineering Research And, 8(7). https://www.ijert.org/research/an-iot-based-smart-irrigationsystem-using-soil-moisture-and-weather-prediction-IJERTCONV8IS07001.pdf
- 23. Wei, H., Xu, W., Kang, B., Eisner, R., Muleke, A., Rodriguez, D., deVoil, P., Sadras, V., Monjardino, M., & Harrison, M. T. (2024). Irrigation with Artificial Intelligence: Problems, Human-Centric Premises, Promises. Intelligent Systems, 4(2),https://doi.org/10.1007/s44230-024-00072-4
- 24. Ye, Z., Yin, S., Cao, Y., & Wang, Y. (2024). AI-driven optimization of agricultural water management for enhanced sustainability. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-76915-8