JCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE **RESEARCH THOUGHTS (IJCRT)**

An International Open Access, Peer-reviewed, Refereed Journal

SOFT αωΪ_s – HOMEOMORPHISM IN SOFT IDEAL TOPOLOGICAL SPACES

^{1*}V. Kiruthika, ²N. Chandramathi and ³P. Nithya

¹Research scholar, ²Assistant Professor, ³Research scholar ¹Department of Mathematics, ¹Government Arts College, Udumalpet, India

Abstract: In this paper, we introduce a soft $\alpha \omega \ddot{I}_s$ – homeomorphism in soft ideal topological spaces. Furthermore, we introduce to Enlightment and Edification of some properties, theorems and examples, which is the of the concept of soft mappings in soft ideal topological spaces.

Keywords: Soft set, soft ideal topological space, Soft αωΪ_s -Closed set, Soft continuous, Soft αωΪ_s -continuous, Soft homeomorphism, Soft αωΪ_s – homeomorphism.

I. INTRODUCTION

The concept of soft set theory was introduced by Molodstov [14] and the concept of soft ideal theory, soft local function was introduced by A.Kandil,et.al [12]. The concepts of soft α-open and soft continuous function was introduced by M.Akdag and A.Ozkan [2]. The concepts of soft αω-closed sets was introduced by S.Jafari,et.al [9]. The concepts of soft αωΪ_s- Closed sets was introduced by N.Chandramathi and V.Kiruthika [4]. The concepts of soft homeomorphism was introduced by S.Jackson and J.Carlin [11].

II. PRELIMINARIES

2.1 DEFINITION [1]

Let D be a non-empty subset of E and a soft set over U is a parameterized family of subsets of an initial universe U. For a particular $e \in E$, F(e) may be considered the set of e-approximate elements of the soft set (F,E) and if $e \notin E$, then $F(e) = \emptyset$, that is, $(F,E) = \{f(e): e \in E \subseteq E, f: E \rightarrow P(U)\}$ is called a soft set over U. Then the family of all these soft sets denoted by SS(U)_E.

2.2 DEFINITION [7]

Let C_s be the collection of soft sets over U. Then C_s is said to be a soft topology on U if satisfies the following axioms:

- (i). (\emptyset, E) , (U, E) belongs to C_s
- (ii). The union of any number of soft sets in C_s belongs to C_s
- (iii). The intersection of two number of soft sets in C_s belongs to C_s .

The triplet (U,C_s,E) is said to be soft topological space and we note that the member of C_s are said to be C_{s-1} soft open sets.

2.3 DEFINITION [1]

Let I be a non-null collection of soft sets over an initial universe U with the same set of parameter E. Then \ddot{I}_s containing SS(U)_E is called as a soft Ideal on U with same set E if,

- (i). $(F, E) \in \overline{I}$ and $(G, E) \in \overline{I}$ then $(F, E) \cup (G, E) \in \overline{I}$.
- (ii). $(F, E) \in \overline{I}$ and $(G, E) \subseteq (F, E)$ then $(G, E) \in \overline{I}$.

2.4 DEFINITION [5]

Let (X,C_s,E) and (Y,Ω_s,N) be a soft topological spaces. Then E and N are parameters. A soft mapping f: $(X,C_s,E) \rightarrow (Y,\Omega_s,N)$ is said to be soft continuous if the inverse image of soft closed set in (Y,Ω_s,N) is soft closed in (X,C_s,E) .

2.5 DEFINITION [5]

Let (X,C_s,E) and (Y,Ω_s,N) be a soft topological spaces. Then E and N are parameters and f: (X,C_s,E) \rightarrow (Y, Ω_s ,N) be a soft mapping. If f is a bijection, soft continuous mapping, then f is said to be soft homeomorphism from X to Y. When a homeomorphism f exist between X and Y, we say that X is soft homeomorphic to Y.

III. SOFT αωΪ_S – CLOSED MAPPINGS IN SOFT IDEAL TOPOLOGICAL SPACES

In this section we introduce and study about a new continuous mapping is known as soft $\alpha\omega\ddot{I}_s$ – continuous mapping in Soft Ideal topological spaces.

3.1 DEFINITION

Let (V,Cs,Q) and $(W,\Omega s,N,\ddot{I}_1s)$ be a soft and soft ideal topological spaces. Then Q and N are parameters. Suppose that $\mu: V \to W$ and $\rho: Q \to N$ are soft mappings and $m_{\rho\mu}: SS(V)_Q \to SS(W)_N$ is a soft mapping, where $SS(V)_0$ and $SS(W)_N$ are two familes. Then the soft mapping is said to be soft $\alpha\omega$ is – closed if the image of every closed in (V,C_S,Q) is soft $\alpha\omega\ddot{I}_S$ – closed in $(W,\Omega_S,\dot{N},\ddot{I}_1S)$.

3.2 EXAMPLE

```
Let Y = \{\alpha, \beta, \gamma\}, Q = \{\sigma_1, \sigma_2\}, C_s = \{(\{\}, Q), (Y, Q), (F_1, Q), (F_2, Q), (F_3, Q)\}, \text{ where } (F_1, Q) = \{\sigma_1, \sigma_2\}, C_s = \{(\{\}, Q), (Y, Q), (F_1, Q), (F_2, Q), (F_3, Q)\}, C_s = \{(\{\}, Q), (Y, Q), (F_1, Q), (F_2, Q), (F_3, Q)\}, C_s = \{(\{\}, Q), (Y, Q), (F_1, Q), (F_2, Q), (F_3, Q)\}, C_s = \{(\{\}, Q), (Y, Q), (F_1, Q), (F_2, Q), (F_3, Q)\}, C_s = \{(\{\}, Q), (Y, Q), (F_1, Q), (F_2, Q), (F_3, Q)\}, C_s = \{(\{\}, Q), (Y, Q), (F_1, Q), (F_2, Q), (F_3, Q)\}, C_s = \{(\{\}, Q), (Y, Q), (F_1, Q), (F_2, Q), (F_3, Q)\}, C_s = \{(\{\}, Q), (Y, Q), (F_1, Q), (F_2, Q), (F_2, Q), (F_3, Q)\}, C_s = \{(\{\}, Q), (Y, Q), (F_1, Q), (F_2, Q), (F_2, Q), (F_3, Q)\}, C_s = \{(\{\}, Q), (F_1, Q), (F_2, Q), (F_2, Q), (F_2, Q), (F_2, Q)\}, C_s = \{(\{\}, Q), (F_2, Q), (F_2, Q), (F_2, Q), (F_2, Q), (F_2, Q)\}, C_s = \{(\{\}, Q), (F_2, Q), (F_2, Q), (F_2, Q), (F_2, Q), (F_2, Q), (F_2, Q)\}, C_s = \{(\{\}, Q), (F_2, Q), (F_2, Q), (F_2, Q), (F_2, Q), (F_2, Q), (F_2, Q)\}, C_s = \{(\{\}, Q), (F_2, Q), (F_2, Q), (F_2, Q), (F_2, Q), (F_2, Q), (F_2, Q)\}, C_s = \{(\{\}, Q), (F_2, Q)\}, C_s = \{(\{\}, Q), (F_2, Q)\}, C_s = \{(\{\}, Q), (F_2, Q), 
                                                                                                                                                                                         (F_2,Q) = \{\{\gamma\},\{\alpha,\gamma\}\}, (F_3,Q) = \{\widetilde{V},\{\gamma\}\}, (F_4,Q)\} = \{\widetilde{\{\}},\{\alpha\}\}.
 \{\{\},\{\beta,\gamma\}\},
Let W = \{\delta, \eta, \lambda\}, \hat{N} = \{\pi_1, \pi_2\}, \Omega_s = \{(\{\}, \hat{N}), (W, \hat{N}), (G_1, \hat{N}), (G_2, \hat{N})\}, \text{ where, } (G_1, \hat{N}) = \{\{\lambda\}, \{\delta, \lambda\}\}, (G_2, \hat{N})\}
                                                                                                                                                                                        \ddot{\mathbf{I}}_{s} = (\mathbf{G}_{3}, \dot{\mathbf{N}}) = \{\widetilde{\mathbf{I}}_{s}, \{\delta\}\}. Then we define \mathbf{m}_{\rho\mu}(\alpha) = \{\delta\}, \mathbf{m}_{\rho\mu}(\gamma) = \{\eta\}, \mathbf{m}(\beta) = \{\lambda\}.
 Clearly, m_{\rho\mu}(\vec{Y}_3, Q)^c = m_{\rho\mu}(\vec{Y}, \{\gamma\})^c is soft \alpha\omega \ddot{I}_s - closed mapping in (\dot{W}, \Omega_s, \dot{N}, \ddot{I}_{1s}).
```

3.3 THEOREM

A soft mapping $m_{\rho\mu}: (\dot{V}, C_s, Q) \to (\dot{W}, \Omega_s, \dot{N}, \ddot{I}_{1s})$ is soft $\alpha\omega\ddot{I}_s$ - closed if and only if Soft $\alpha\omega\ddot{I}_s$ - $Cl^s(m_{\rho\mu}(F,Q)) \subseteq m_{\rho\mu}(Cl^s(F,Q))$ for every subset (F,Q) of (V,C_s,Q) .

PROOF.

NECESSARY PART: Suppose that a soft mapping $m_{\rho\mu}$ is soft $\alpha\omega\ddot{I}_s$ – Closed and $(F,Q)\subseteq (V,C_s,Q)$. Then $m_{\rho\mu}(Cl^s(F,Q))$ is soft $\alpha\omega\ddot{I}_s$ - closed in $(\dot{W},\Omega_s,\dot{N},\ddot{I}_{1s})$, we have $m_{\rho\mu}(F,Q) \subseteq m_{\rho\mu}(Cl^s(F,Q))$ and by lemma (1) "For any $(L,Q) \subseteq (V,C_s,Q)$, (i) Soft $\alpha\omega\ddot{I}_s - Cl^s(L,Q)$ is the smallest Soft $\alpha\omega\ddot{I}_s - closed$ set containing (L,Q), (ii) (L,Q) is Soft $\alpha\omega\ddot{l}_s$ – closed if and only if Soft $\alpha\omega\ddot{l}_s$ – $Cl^s(L,Q)$ = $Cl^s(L,Q)$ " and by lemma(2) " For any two subsets (L_1,Q) and (L_2,Q) of (V,C_s,Q,\ddot{I}_s) , (i) If $(L_1,Q)\subseteq (L_2,Q)$ then Soft $\alpha\omega\ddot{I}_s-Cl^s(L_1,Q)\subseteq Soft\ \alpha\omega\ddot{I}_s-Cl^s(L_1,Q)$ $Cl^{s}(L_{2},Q)$, (ii) Soft $\alpha\omega\ddot{l}_{s}-Cl^{s}((L_{1},Q)\cap(L_{2},Q))\subseteq [Soft\ \alpha\omega\ddot{l}_{s}-Cl^{s}(L_{1},Q)]\cap [Soft\ \alpha\omega\ddot{l}_{s}-Cl^{s}(L_{2},Q)]$, By using above two theorems, Soft $\alpha\omega\ddot{I}_s - Cl^s(m_{\rho\mu}(F,Q)) \subseteq Soft \alpha\omega\ddot{I}_s - Cl^s(m_{\rho\mu}(F,Q))$ therefore, Soft $\alpha\omega\ddot{I}_s Cl^{s}(m_{\rho\mu}(F,Q)) = m_{\rho\mu}(Cl^{s}(F,Q)).$

SUFFICENCY PART: Let (F,Q) be any soft closed set in (V,C_s,Q) . Then $(F,Q) = Cl^s(F,Q)$ and so $m_{\rho\mu}(F,Q) = m_{\rho\mu}(Cl^s(F,Q))$ containing Soft $\alpha\omega\ddot{I}_s - Cl^s(m_{\rho\mu}(F,Q))$, by hypothesis, we have, $m_{\rho\mu}(F,Q) \subseteq Soft \alpha\omega\ddot{I}_s$ $-\operatorname{Cl}^{s}(m_{\rho\mu}(F,Q))$ by lemma (1), Therefore, $m_{\rho\mu}(F,Q) = \operatorname{Soft} \alpha\omega \ddot{I}_{s} - \operatorname{Cl}^{s}(m_{\rho\mu}(F,Q))$. That is $m_{\rho\mu}(F,Q)$ is Soft $\alpha\omega \ddot{I}_{s}$ - closed and Hence $m_{\rho\mu}$ is a soft $\alpha\omega\ddot{I}_s$ - Closed.

3.4 THEOREM

Let $m_{\rho\mu}: (V, C_s, Q) \to (W, \Omega_s, N, \ddot{I}_{1s})$ be a soft mapping such that Soft $\alpha\omega\ddot{I}_s - Cl^s(m_{\rho\mu}(F, Q)) \subseteq m_{\rho\mu}(Cl^s)$ (F,Q) for every subset $(F,Q) \subseteq (V,C_s,Q)$. Then the image $m_{\rho\mu}(F,Q)$ of a soft closed set (F,Q) in (V,C_s,Q) is $C_{s\alpha\omega\ddot{l}s}$ – soft closed in $(\dot{W},\Omega_s,\dot{N},\ddot{l}_{1s})$.

PROOF.

Let (F,Q) be a soft closed set in (V,C_s,Q) , Then by hypothesis, Soft $\alpha\omega\ddot{I}_s$ - $Cl^s(m_{ou}(F,Q)) \subseteq m_{ou}(Cl^s(F,Q))$ $= m_{\rho\mu}(F,Q)$ and so Soft $\alpha\omega\ddot{I}_s - Cl^s(m_{\rho\mu}(F,Q))$, Therefore $m_{\rho\mu}(F,Q)$ is $C_{s\alpha\omega\ddot{I}_s} - soft$ closed in $(\dot{W},\Omega_s,\dot{N},\ddot{I}_{1s})$.

3.5 THEOREM

A soft mapping $m_{\rho\mu}: (V, C_s, Q) \to (W, \Omega_s, \acute{N}, \ddot{I}_{1s})$ be a soft $\alpha\omega\ddot{I}_s$ – Closed if and only if for each soft subset (F,Q) of $(W,\Omega_s,N,\ddot{I}_{1s})$ and for each soft closed set $(H,Q)^c$ containing $m_{\rho\mu}^{-1}(F,Q)$ there is a Soft $\alpha\omega\ddot{I}_s$ – Closed set $(\dot{Z}, \dot{N})^c$ of $(\dot{W}, \Omega_s, \dot{N}, \ddot{I}_{1s})$ such that $(\dot{F}, Q) \subseteq (\dot{Z}, \dot{N})^c$ and $m_{\rho\mu}^{-1}(\dot{Z}, \dot{N})^c \subseteq (\dot{H}, Q)^c$.

PROOF.

NECESSARY PART: Suppose that $m_{\rho\mu}$ is a Soft $\alpha\omega\ddot{l}_s$ – Closed. Let $((f,Q)\subseteq (\dot{W},\Omega_s,\dot{N},\ddot{l}_s)$ and $(f,Q)^c$ be a Soft closed set of (\dot{V}, C_s, Q) such that $m_{\rho\mu}^{-1}(\dot{F}, Q) \subseteq (\dot{H}, Q)^c$. Then $(\dot{Z}, \dot{N})^c = m_{\rho\mu}((\dot{H}, Q)^c)$ is a Soft $\alpha\omega\ddot{I}_s$ closed set containing (F,Q) Such that $m_{\rho\mu}^{-1}(\dot{Z}, \dot{N})^c \subseteq (H, Q)^c$.

SUFFICIENT PART: Let $m_{\rho\mu}$ be a soft closed set of (V, C_s, Q) . Then $m_{\rho\mu}^{-1}(m_{\rho\mu}(M)) \subseteq M$, by assumption, there exists a Soft $\alpha\omega\ddot{I}_s$ – Closed set $(\dot{Z}, \dot{N})^c$ of $(\dot{W}, \Omega_s, \dot{N}, \ddot{I}_{1s})$. Such that $(m_{\rho\mu}(M)) \subseteq (\dot{Z}, \dot{N})^c$ and $m_{\rho\mu}^{-1}(\dot{Z}, \dot{N})^c \subseteq (\dot{Z}, \dot{N})^c$ M and so $M \subseteq m_{\rho\mu}^{-1}(\dot{Z}, \acute{N})^c$. Hence, $(\dot{Z}, \acute{N})^c \subseteq m_{\rho\mu}(M)^c \subseteq (m_{\rho\mu}(m_{\rho\mu}^{-1}(\dot{Z}, \acute{N})^c)) \subseteq m_{\rho\mu}^{-1}(\dot{Z}, \acute{N})^c$ which implies $m_{ou}(M) = (\dot{Z}, \dot{N})^c$, Since $(\dot{Z}, \dot{N})^c$ is Soft $\alpha \omega \ddot{I}_s$ – Closed, m_{ou} (M) is a Soft $\alpha \omega \ddot{I}_s$ – Closed and therefore, m_{ou} is a Soft αωΪ_s –Closed.

3.6 THEOREM

If $m_{ou}: (V, C_s, Q, \ddot{I}_s) \to (W, \Omega_s, \dot{N}, \ddot{I}_{1s})$ is a \ddot{I}_s – soft irresolute $\alpha \omega \ddot{I}_s$ – Closed and (F, Q) is a Soft $\alpha \omega \ddot{I}_s$ – Closed subset of (V, C_s, Q, \ddot{I}_s) , then $m_{\rho\mu}(F,Q)$ is a Soft $\alpha\omega\ddot{I}_s$ -Closed.

PROOF.

Let (H, Q) is a Soft α - \ddot{I}_s -open set in $(\dot{W}, \Omega_s, \dot{N}, \ddot{I}_{1s})$ such that $m_{\rho\mu}$ $(F, Q) \subseteq (H, Q)$. Since $m_{\rho\mu}$ is \ddot{I}_s – soft irresolute, $m_{\rho\mu}^{-1}(H, Q)$ is a soft α - \ddot{I}_s -open containing (F,Q). Hence $\omega Cl^{*s}(F,Q) \subseteq m_{\rho\mu}^{-1}(H, Q)$ as (F,Q) is a Soft $\alpha\omega\ddot{I}_s$ –Closed in (V, C_s, Q, \ddot{I}_s) . Since $m_{\rho\mu}$ is Soft $\alpha\omega\ddot{I}_s$ –Closed, $m_{\rho\mu}(\omega C1^{*s}(F,Q))$ is a Soft $\alpha\omega\ddot{I}_s$ –Closed set containing in the Soft α - \ddot{I}_s –open (H,Q), which implies that $\omega C1^{*s}(m_{ou}(\omega C1^{*s}(F,Q) \subseteq (H,Q))$ and hence $\omega C1^{*s}(m_{\rho\mu}(F,Q)) \subseteq (H,Q)$. Therefore, $m_{\rho\mu}(F,Q)$ is a Soft $\alpha \omega \ddot{I}_s$ —Closed.

The following example shows that is composition of two Soft $\alpha\omega\ddot{I}_s$ —Closed mappings are not be Soft $\alpha\omega\ddot{I}_s$ — Closed.

3.7 EXAMPLE

Let
$$Y = W = {\alpha, \beta, \gamma}$$
, $Q = \hat{N} = {\sigma_1, \sigma_2}$, $C_s = {(({}, Q), (Y, Q), (F_1, Q), (F_2, Q)}$, where, (F_1, Q)

= $\{\{\alpha\}, \{\alpha, \beta\}\}, (F_2, Q)\{\{\widetilde{\{\}}, \{\beta\}\}\}, \Omega_s = \{(\{\}, \hat{N}), (\hat{W}, \hat{N}), (G_1, \hat{N}), (G_2, \hat{N})\}\}, \text{ where, } (G_1, \hat{N}) = \{\{\widetilde{\{\}}, \{\beta, \gamma\}\}\}, (G_2, \hat{N})\} = \{\{\alpha\}, \{\alpha, \beta\}\}, (F_2, Q)\{\{\widetilde{\{\}}, \{\beta\}\}\}, \Omega_s = \{(\{\}, \hat{N}), (\hat{W}, \hat{N}), (G_1, \hat{N}), (G_2, \hat{N})\}\}, (G_2, \hat{N})\}$ $\{\widetilde{W}, \{\alpha\}\}\}$. $\ddot{I}_{2s} = \{\widetilde{f}\}$. Then we define, $m_{\rho\mu}(\alpha) = \{\alpha\}$, $m_{\rho\mu}(\beta) = \{\beta\}$, $m_{\rho\mu}(\gamma) = \{\gamma\}$. Let $\dot{Z} = \{\delta, \eta, \lambda\}$, $S = \{\pi_1, \pi_2\}$, $\dot{\Gamma}_s = \{(\{\}, \dot{N}), (\dot{W}, \dot{N}), (L_1, \dot{N}), (L_2, \dot{N})\} \text{ where,}$ $(L_1, \acute{\mathbf{N}}) = \{\widetilde{\mathbf{f}}, \widetilde{\mathbf{W}}\}, (L_2, \acute{\mathbf{N}}) = \{\widetilde{\mathbf{f}}, \{\delta, \lambda\}\}, \ddot{\mathbf{J}}_{3s} = \{\widetilde{\mathbf{f}}, \{\lambda\}\}\}$ = (L_3, \acute{N}) . Let $m_{\rho\mu}: (V, C_s, Q) \rightarrow (W, \Omega_s, \acute{N}, \ddot{I}_{1s})$ be a identity function and $p_{\rho\mu}: (W, \Omega_s, \acute{N}, \ddot{I}_{1s}) \rightarrow (\dot{Z}, \acute{\Gamma}_s, \bar{O}, \ddot{L}_{2s})$. Then we define, $p_{\rho\mu}(\alpha) = \{\delta\}$, $p_{\rho\mu}(\beta) = \{\eta\}$, $p_{\rho\mu}(\gamma) = \{\lambda\}$. Then both $m_{\rho\mu}$ and $p_{\rho\mu}$ are Soft $\alpha\omega\ddot{I}_s$ —Closed mapping. But their composition, $(p^{\circ}m)_{\rho\mu}\{\alpha\} = p_{\rho\mu}(m_{\rho\mu}(\alpha)) = p_{\rho\mu}(\alpha) = \{\delta\}$. Since for the soft closed set $\{\alpha\}$ in (V, C_s, Q) and $(p^{\circ}m)_{\rho\mu}\{\alpha\} = \{\delta\}$, which is not a Soft $\alpha\omega\ddot{I}_s$ —Closed in $(\dot{Z}, \dot{\Gamma}_s, \bar{O}, \ddot{I}_{2s})$.

3.8 THEOREM

Let $m_{\rho\mu}: (V, C_s, Q, \ddot{I}_s) \to (\dot{W}, \Omega_s, \dot{N}, \ddot{I}_{1s})$ be a Soft $\alpha\omega\ddot{I}_s$ -Closed and $p: (\dot{W}, \Omega_s, \dot{N}, \ddot{I}_{1s}) \to (\dot{Z}, \dot{\Gamma}_s, \bar{O}, \ddot{I}_{2s})$ be a Soft $\alpha\omega\ddot{I}_s$ —Closed and \ddot{I}_s – soft irresolute, where $\ddot{I}_s,\ddot{I}_{1s},\ddot{I}_{2s}$ are soft ideals on \dot{V} , \dot{W} and \dot{Z} respectively, Then their composition $p_{\rho\mu}^{\circ}m_{\rho\mu}: (V, C_s, Q, \ddot{I}_s) \rightarrow$ $(\dot{Z}, \dot{\Gamma}_s, \bar{O}, \ddot{I}_{2s})$ is a Soft $\alpha \omega \ddot{I}_s$ – Closed in $(\dot{Z}, \dot{\Gamma}_s, \bar{O}, \ddot{I}_{2s})$.

PROOF.

Let (F,Q) is a soft closed set of (V,C_s,Q,\ddot{I}_s) . Then by hypothesis $m_{\rho\mu}$ (F,Q) is a Soft $\alpha\omega\ddot{I}_s$ -Closed set of $(W,\Omega_s,N,\ddot{I}_{1s})$. Since $p_{\rho\mu}$ is Soft $\alpha\omega\ddot{I}_s$ -Closed and \ddot{I}_s - soft irresolute by theorem 3.6, $p_{\rho\mu}$ $(m_{\rho\mu}$ (F,Q)) = $(p_{\rho\mu}^{\circ}m_{\rho\mu})(F,Q)$ is a Soft $\alpha\omega\ddot{I}_s$ -Closed in $(\dot{Z}, \dot{\Gamma}_s, \bar{O}, \ddot{I}_{2s})$ and therefore, $(p_{\rho\mu}^{\circ}m_{\rho\mu})$ is a Soft $\alpha\omega\ddot{I}_s$ -Closed.

IV. SOFT αωΪ_S – HOMEOMORPHISM IN SOFT IDEAL TOPOLOGICAL SPACES

In this section we introduce and study about a new mapping is known as soft $\alpha\omega\ddot{I}_s$ – homeomorphism in Soft Ideal topological space and we workout some basic theorems and examples.

4.1 DEFINITION

Let (V, C_s, Q, \ddot{I}_s) and $(\dot{V}, \Omega_s, \dot{N}, m_{\rho\mu}(\ddot{I}_s))$ be a soft ideal topological spaces and $m_{\rho\mu}: (\dot{V}, C_s, Q, \ddot{I}_s) \rightarrow$ $(\dot{W},\Omega_s,\dot{N},m_{\rho\mu}(\ddot{I}_s))$ be a soft mappings. Then Q and \dot{N} are parameters. Suppose that $\mu:\dot{V}\to\dot{W}$ and $\rho:\dot{Q}\to\dot{N}$ are soft mappings and $m_{\rho\mu}: SS(V)_O \to SS(W)_N$ is a soft mapping, where $SS(V)_O$ and $SS(W)_N$ are two families. Then a bijective soft function is said to be soft $\alpha\omega\ddot{l}_s$ - homeomorphism, if $m_{\rho\mu}(\dot{Z},\dot{N})$ and $m^{-1}_{\rho\mu}(\dot{Z},\dot{N})$ is both soft $\alpha \omega \ddot{I}_s$ – continuous and soft $\alpha \omega \ddot{I}_s$ – Closed.

4.2 EXAMPLE

Let $Y = \{\alpha, \beta, \gamma\}$, $Q = \{\sigma_1, \sigma_2\}$, $C_s = \{(\{\}, Q), (Y, Q), (F_1, Q), (F_2, Q)\}$ and $\ddot{I}_s = (F_3, Q)$ where, $(F_1, Q) = (F_3, Q)$ $(F_2, Q) = {\widetilde{V}, {\beta}}, (F_3, Q) = {\widetilde{f}, {\beta}}.$ $\{\{\beta\}, \{\beta, \gamma\}\},\$ Let $W = \{\delta, \eta, \lambda\}, \ \dot{N} = \{\pi_1, \pi_2\}, \ \Omega_s = \{(\{\}, \dot{N}), (\dot{W}, \dot{N}), (G_1, \dot{N}), (G_2, \dot{N})\}, \ m_{\rho\mu}(\ddot{I}_s) = (G_2, \dot{N}) \ \text{where, } (G_1, \dot{N}) = (G_2, \dot{N})$ (G_2, \acute{N}) = $\{\widetilde{W}, \{\eta\}\}$. Then we define $m_{\rho\mu}(\delta) = \{\alpha\}$, $m_{\rho\mu}(\eta) = \{\beta\}$, $m_{\rho\mu}(\lambda) = \{\gamma\}$. Then $\{\{\delta\},\{\delta,\eta\}\},\$ we define $m_{\rho\mu}: (V, C_s, Q, \ddot{I}_s) \to (W, \Omega_s, \dot{N}, m_{\rho\mu}(\ddot{I}_s))$ be a soft mapping. Then $m_{\rho\mu}$ is bijective, Soft $\alpha\omega\ddot{I}_s$ continuous and Soft $\alpha\omega\ddot{I}_s$ – Closed. So m_{ou} is Soft $\alpha\omega\ddot{I}_s$ – homeomorphism.

4.3 THEOREM

Every soft homeomorphism in (V, C_s, Q) is a Soft $\alpha \omega \ddot{I}_s$ – homeomorphism in (V, C_s, Q, \ddot{I}_s) . PROOF.

Let m: $(V, C_s, Q, \ddot{I}_s) \rightarrow (W, \Omega_s, N, m_{\rho\mu}(\ddot{I}_s))$ be a soft homeomorphism. Then $m_{\rho\mu}$ and $m_{\rho\mu}^{-1}$ are soft continuous and $m_{\rho\mu}$ is bijective. As every soft continuous function is Soft $\alpha\omega\ddot{I}_s$ – continuous, we have $m_{\rho\mu}$ and $m_{\rho\mu}^{-1}$ are Soft $\alpha\omega\ddot{I}_s$ – continuous. Therefore $m_{\rho\mu}$ is Soft $\alpha\omega\ddot{I}_s$ – homeomorphism. The soft mapping in Example 4.2 is Soft $\alpha\omega\ddot{I}_s$ – homeomorphism but not a soft homeomorphism because it is not soft continuous.

4.4 THEOREM

Every soft α -homeomorphism in (V, C_s, Q) is a Soft $\alpha \omega \ddot{I}_s$ – continuous in $(V, C_s, \acute{N}, \ddot{I}_s)$. PROOF.

Let $m_{\rho\mu}: (V, C_s, Q, \ddot{I}_s) \to (W, \Omega_s, \dot{N}, m_{\rho\mu}(\ddot{I}_s))$ be a soft α -homeomorphism in (V, C_s, Q) . By hypothesis, $m_{\rho\mu}$ is bijective and for every soft α -closed $(\dot{Z}, \dot{N})^c \subseteq (\dot{V}, C_s, \dot{Q}, \ddot{I}_s)$ the image $m_{\rho\mu}(\dot{V}, \dot{Q})$ is soft α -closed in $(\dot{W}, \Omega_s, \dot{N})$. We have to show that, m is Soft $\alpha\omega\ddot{l}_s$ – continuous, that is, for every Soft $\alpha\omega\ddot{l}_s$ – closed set $(\dot{Z}, \acute{N})^c \subseteq (\dot{W}, \acute{N})$ the preimage $m_{pu}^{-1}(\dot{Z}, \dot{N})^c$ is soft Soft $\alpha\omega\ddot{I}_s$ – closed in (V, C_s, Q, \ddot{I}_s) . Then we take an arbitrary Soft $\alpha\omega\ddot{I}_s$ – closed $(\dot{Z}, \dot{N})^c \subseteq (\dot{W}, \Omega_s, \dot{N})$. By the assumption on Soft $\alpha \omega \ddot{I}_s$ – closed sets, $(\dot{Z}, \dot{N})^c$ can be written as a soft union of Soft α -closed sets $(\dot{Z}, \dot{N})^c = U(\dot{Z}, \dot{N})^c$ with each $(\dot{Z}, \dot{N})^c$ is Soft α -closed in (W, Ω_s, \dot{N}) . The converse of the above theorem is not true as seen in the following example.

4.5 EXAMPLE

Let $Y = {\alpha, \beta, \gamma}$, $Q = {\sigma_1, \sigma_2}$, $C_s = {(\{\}, Q), (Y, Q), (F_1, Q), (F_2, Q)}$ and $\ddot{I}_s = (F_3, Q)$ where, $(F_1, Q) = (F_3, Q)$ $(F_2,Q) = {\widetilde{V}, {\beta}}, (F_3,Q) = {\widetilde{f}, {\beta}}.$ $\{\{\beta\}, \{\beta, \gamma\}\},\$ Let $\dot{\mathbf{W}} = \{\delta, \eta, \lambda\}, \ \dot{\mathbf{N}} = \{\pi_1, \pi_2\}, \ \Omega_s = \{(\{\}, \dot{\mathbf{N}}), (\dot{\mathbf{W}}, \dot{\mathbf{N}}), (G_1, \dot{\mathbf{N}}), (G_2, \dot{\mathbf{N}})\}, \ m_{\rho\mu}(\ddot{\mathbf{I}}_s) = (G_2, \dot{\mathbf{N}}) \ \text{where, } (G_1, \dot{\mathbf{N}}) = (G_2,$ (G_2, \hat{N}) = $\{\widetilde{W}, \{\eta\}\}$. Then we define $m_{\rho\mu}(\delta) = \{\alpha\}$, $m_{\rho\mu}(\eta) = \{\beta\}$, $m_{\rho\mu}(\lambda) = \{\gamma\}$. Then we define m_{ou} : $(V,C_s,Q,\ddot{I}_s) \rightarrow (W,\Omega_s,\dot{N},m_{ou}(\ddot{I}_s))$ be a soft mapping. Then m_{ou} is bijective, Soft $\alpha\omega\ddot{I}_s$ – continuous and Soft $\alpha\omega\ddot{I}_s$ – closed. but Soft $\alpha\omega\ddot{I}_s$ - homeomorphism must be bijective between the Universes. So every Soft $\alpha\omega\ddot{I}_s$ – continuous mapping is not Soft $\alpha\omega\ddot{I}_s$ – homeomorphism in (V, C_s, Q, \ddot{I}_s) .

4.6 THEOREM

Every soft ω -homeomorphism in (V, C_s, Q) is a Soft $\alpha \omega \ddot{I}_s$ – homeomorphism in (V, C_s, Q, \ddot{I}_s) . PROOF.

Let $m_{\rho\mu}$: $(V, C_s, Q, \ddot{I}_s) \rightarrow (W, \Omega_s, \dot{N}, m_{\rho\mu}(\ddot{I}_s))$ be a soft ω -homeomorphism in (V, C_s, Q) So $m_{\rho\mu}$ is bijective and for every soft ω – closed set $(W, \hat{N}) \subseteq (V, C_s, Q, \ddot{I}_s)$ the image of $m_{\rho\mu}(W, \hat{N})$ is soft ω – closed in (W, Ω_s, \hat{N}) . Then we take an arbitrary Soft $\alpha\omega\ddot{I}_s$ – closed $(H,Q)^c \subseteq (V,C_s,Q)$. By the definition of soft $\alpha\omega\ddot{I}_s$ – closed sets, $(H,Q)^c$ can be written as a soft union of soft ω – closed sets $(H,Q)^c = \bigcup (W,N)_i$ for all i belongs to I with each $(W, N)_i$ is Soft ω – closed in (V, C_s, O, \ddot{I}_s) .

The converse of the above theorem is not true as seen in the following example.

4.7 EXAMPLE

Let $V = \{\alpha, \beta, \gamma\}$, $Q = \{\sigma_1, \sigma_2\}$, $C_s = \{(\{\}, Q), (V, Q), (F_1, Q), (F_2, Q)\}$ and $\ddot{I}_s = (F_3, Q)$ where, $(F_1, Q) = \{\{\beta\}, \{\beta, \gamma\}\}\}$, $(F_2, Q) = \{\widetilde{V}, \{\beta\}\}, (F_3, Q)\} = \{\widetilde{\{}\}, \{\beta\}\}\}$. Let $W = \{\delta, \eta, \lambda\}$, $N = \{\pi_1, \pi_2\}$, $\Omega_s = \{(\{\}, N), (W, N), (G_1, N), (G_2, N)\}$, and $M_{\rho\mu}(\ddot{I}_s) = (G_2, N)$ where, $(G_1, N) = \{\{\delta\}, \{\delta, \eta\}\}, (G_2, N)\} = \{\widetilde{W}, \{\eta\}\}$. Then we define $M_{\rho\mu}(\delta) = \{\alpha\}$, $M_{\rho\mu}(\eta) = \{\beta\}$, $M_{\rho\mu}(\lambda) = \{\gamma\}$. Then we define $M_{\rho\mu}: (V, C_s, Q, \ddot{I}_s) \to (W, \Omega_s, N, M_{\rho\mu}(\ddot{I}_s))$ be a soft mapping. Then $M_{\rho\mu}: S_s = \{(V, C_s, Q, \ddot{I}_s) \to (W, \Omega_s, N, M_{\rho\mu}(\ddot{I}_s))$ be a soft mapping. Then $M_{\rho\mu}: S_s = \{(V, C_s, Q, \ddot{I}_s) \to (W, \Omega_s, N, M_{\rho\mu}(\ddot{I}_s))$ be a soft mapping.

4.8 THEOREM

Let $m_{\rho\mu}$: $(V, C_s, Q, \ddot{I}_s) \to (W, \Omega_s, \acute{N}, m_{\rho\mu}(\ddot{I}_s))$ be a bijective and Soft $\alpha\omega\ddot{I}_s$ – continuous function. Then the following statements are equivalent :

(i) $m_{\rho\mu}$ is Soft $\alpha\omega\ddot{I}_s$ – open mapping.

 ω – homeomorphism in (V,C_s,Q, \ddot{I}_s).

- (ii) $m_{\rho\mu}$ is Soft $\alpha\omega\ddot{I}_s$ homeomorphism.
- (iii) $m_{\rho\mu}$ is Soft $\alpha\omega \ddot{I}_s$ Closed mapping.

PROOF.

- (i) \rightarrow (ii) : If $m_{\rho\mu}$ is Soft $\alpha\omega\ddot{I}_s$ open, then m is Soft $\alpha\omega\ddot{I}_s$ homeomorphism. Since by assumption $m_{\rho\mu}$ is given to be bijective and Soft $\alpha\omega\ddot{I}_s$ continuous and $m_{\rho\mu}$ is Soft $\alpha\omega\ddot{I}_s$ open, then for any Soft $\alpha\omega\ddot{I}_s$ open set $(H,Q)\subseteq (V,Q)$, m(H,Q) is Soft $\alpha\omega\ddot{I}_s$ open in (W,Ω_s,\acute{N}) . Hence, for any Soft $\alpha\omega\ddot{I}_s$ open set $(\dot{Z},\acute{N})\subseteq (W,\Omega_s,\acute{N})$, then the $(\dot{Z},\acute{N})=m_{\rho\mu}$ ((H,Q)) for some $(H,Q)\subseteq (V,C_s,Q)$, and since $m_{\rho\mu}$ is bijective, $(H,Q)=m_{\rho\mu}$ ((H,Q)) is Soft $\alpha\omega\ddot{I}_s$ open mapping. Therefore, $m_{\rho\mu}$ is Soft $\alpha\omega\ddot{I}_s$ continuous. Thus, $m_{\rho\mu}$ is bijective, Soft $\alpha\omega\ddot{I}_s$ continuous mapping with a Soft $\alpha\omega\ddot{I}_s$ continuous inverse and which implies that $m_{\rho\mu}$ is Soft $\alpha\omega\ddot{I}_s$ homeomorphism.
- (ii) \rightarrow (iii): If $m_{\rho\mu}$ is Soft $\alpha\omega\ddot{I}_s$ homeomorphism, then $m_{\rho\mu}$ is Soft $\alpha\omega\ddot{I}_s$ Closed mapping. Since $m_{\rho\mu}$ is Soft $\alpha\omega\ddot{I}_s$ homeomorphism, which implies that $m_{\rho\mu}$ is bijective, Soft $\alpha\omega\ddot{I}_s$ continuous and $m_{\rho\mu}^{-1}$ is Soft $\alpha\omega\ddot{I}_s$ continuous. Then $m_{\rho\mu}^{-1}$ maps Soft $\alpha\omega\ddot{I}_s$ open sets in (\dot{W} , Ω_s , \dot{N}) to Soft $\alpha\omega\ddot{I}_s$ open sets in (\dot{V} , C_s , Q), which means that it maps Soft $\alpha\omega\ddot{I}_s$ Closed sets to Soft $\alpha\omega\ddot{I}_s$ Closed sets under pre image, thus $m_{\rho\mu}$ maps Soft $\alpha\omega\ddot{I}_s$ Closed sets in (\dot{W} , Ω_s , \dot{N}) to Soft $\alpha\omega\ddot{I}_s$ Closed sets in (\dot{V} , \dot{C}_s ,Q). Therefore, $m_{\rho\mu}$ is Soft $\alpha\omega\ddot{I}_s$ Closed mapping.
- (iii) \rightarrow (i) If $m_{\rho\mu}$ is Soft $\alpha\omega\ddot{I}_s$ Closed mapping, then $m_{\rho\mu}$ is Soft $\alpha\omega\ddot{I}_s$ open mapping. Since $m_{\rho\mu}$ is bijective and $m_{\rho\mu}$ is Soft $\alpha\omega\ddot{I}_s$ – continuous and now assuming $m_{\rho\mu}$ is Soft $\alpha\omega\ddot{I}_s$ – Closed. Then consider $m_{\rho\mu}$ -1, which is also bijective and we know that $m_{\rho\mu}$ is homeomorphism which implies that $m_{\rho\mu}$ is Soft $\alpha\omega\ddot{I}_s$ – open mapping.

V. ACKNOWLEDGMENT

I would like to express my sincere gratitude to Dr. N. Chandramathi, Department of Mathematics for her valuable guidance and encouragement throughout the work. We are also thankful to the anonymous reviewer for their helpful comments and suggestions which significantly improved the qualitity of this paper.

REFERENCES

- [1] Ahmad AI-Omari, Soft topology in ideal topological spaces, AI al-Bayt University, Faculty of Science, Department of Mathematics P.O.Box 130095, Mafraq 25113.
- [2] Akdag.M and Ozkan.A, Soft α-open sets and Soft α-continuous functions, Abstract and Applied Analysis, 7(2014), Article ID:891341.
- [3] Chandramathi.N and Bhuvaneswari.K , On ωI continuous functions in ideal topological space, International Journal of Mathematical Archive 2(9), 2011, ISSN: 2229 5046
- [4] Chandramathi.N and Kiruthika.V, Soft $\alpha\omega\ddot{I}_S$ closed sets in soft ideal topological spaces, Indian journal of natural sciences, ISSN: 0976-0997
- [5] Cigdem gunduz aras, Ayse sonmez and Huseyin cakalli, On Soft mapping Mathematics. General Mathematics, Vol.1(1305.4545), May 2013.
- [6] Erdal ekici and Takashi Noiri, On subsets and Decompositions of continuity in ideal topological spaces, The Arabian journal for science and Engineering, Vol.34, no.1A, January 2009.

- [7] Hazra.H., Majumdar.P, and Samanta.S.K, Soft Topology, Comput.Math.Appl,2012.
- [8] Jackson. S and Chitra. S, New Class of Homeomorphism in Soft Topological Spaces, Recent Trends in modern Mathematics (Volume II), ISBN: 978-93-5578-172-7.
- [9] Jackson.S and Carlin . J, Soft J^C Homeomorphism in soft topological space, Futuristic Trends in Computing Technologies and Data Sciences, IIP series, Vol 3,E-ISBN: 978-93-6252-246-7.
- [10] Jafari. S, Noiri. T, Viswanathan .K and Rajamani. K, Decomposition of ω -continuity in topological spaces, J. Adv. Math studies, Vol.3(2010), no.2, 49-55.
- [11] Jankovic.D and Hamlett T.R, New topologies from old via ideals, Amer.Math.Monthly,97(4) (1990), 295-310.
- [12] Kandil.A, O.A.E. Tantawy, S.A. EI-Sheikh and A.M. Abd EI-latif, Soft ideal theory, Soft local Function and generated soft topological spaces, Appl. Math. Inf. Sci.1595-1603, 2014.
- [13] Kuratowski. K. (1996). Topology, Vol.1, Academic Press, Newyork.
- [14] Molodstov .D, Soft set theory-First results, Comput. Math. Appl.37 (4-5), 131,1999.
- [15] Parimala. M, Jeevitha.R, Jafari .S and Udhayakumar. R, Soft αω– closed sets in soft topological spaces, ResearchGate, march 2019.
- [16] Periyasamy.P and Rock Ramesh, Local δ-Closure functions in ideal topological space, Advances in Mathematics: Scientific Journal 9 (2020), no.5, 2427-2436.
- [17] Rodyna A. Hosy, Soft semi open sets with respect to Soft ideals, Applied Mathematical Sciences, Vol.8, 2014 no.150, 7487-7501.

