IJCRT.ORG ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Robotic Wire Bending And Automated Bracket Placement: A Literature Review

¹DR.A.ANGELIN BEULAH, ²DR.N.K.P.ANGATHAN, ³DR.P.RAJAKUMAR MDS, ⁴DR.SARANYA.PMDS, ⁵Dr.M.K.KARTHIKEYAN MDS

¹HOUSE SURGEON, ²HOUSE SURGEON, ³PROFESSOR, ⁴SENIOR LECTURER,

⁵PROFESSOR AND HOD

DR.MGR.EDUCATIONAL RESEARCH AND INSTITUTE
THAI MOOGAMBIGAI DENTAL COLLEGE AND HOSPITAL

Abstract:

The evolution of digital orthodontics has led to significant advancements in precision treatment techniques. Among these, robotic wire bending and automated bracket placement have emerged as transformative technologies. Robotic systems are capable of fabricating archwires with high accuracy, while automated bracket positioning enables consistent and reproducible outcomes with minimal manual intervention. This review summarizes the principles, technologies, advantages, challenges, and future directions of these innovations. By integrating computer-aided design/computer-aided manufacturing (CAD/CAM), artificial intelligence (AI), and robotic automation, orthodontic workflows are becoming more efficient, patient-centered, and outcome-driven. The paper emphasizes the clinical relevance of robotic-assisted orthodontics, highlighting its role in improving treatment predictability and reducing chairside time. Future developments will likely involve adaptive AI systems and digital twin technology to achieve fully automated orthodontic processes.

Keywords: Orthodontics, robotic wire bending, automated bracket placement, CAD/CAM, artificial intelligence, digital orthodontics

1.Introduction

The integration of automation and digital technology has reshaped modern orthodontic practice. Robotics, artificial intelligence (AI), and computer-aided manufacturing have improved the precision of orthodontic procedures. ¹ Traditionally, wire bending and bracket placement depend on the operator's manual skills, leading to variability in treatment outcomes. ². Recent advancements aim to reduce human error by incorporating robotics and machine learning into clinical workflows. ³

Robotic wire bending systems and automated bracket placement represent two major technological breakthroughs in this field. Together, they provide improved accuracy, efficiency, and patient comfort while enabling orthodontists to plan and execute treatments virtually before clinical implementation. ⁴ These

innovations are part of a broader trend toward digital orthodontics, which includes intraoral scanning, 3D imaging, and AI-based treatment simulation. ⁵

2. Principles of Robotic Wire Bending

Robotic wire bending systems operate by translating digital prescriptions into precise mechanical movements. Using CAD/CAM technology, clinicians design ideal archwire forms based on 3D scans or virtual setups. ⁶ The robotic unit then bends nickel-titanium or stainless steel wires with exact angulations, avoiding human variability. ⁷

A widely used system, the SureSmile® robot, utilizes high-precision actuators to reproduce digital archwire designs with an accuracy of ± 0.1 mm. ⁸ Each bend is optimized for torque, angulation, and in-out movement according to the patient's digital treatment plan. ⁹ This technology ensures that orthodontic forces are applied more efficiently, reducing the need for repeated adjust variability.

Robotic bending also allows the production of individualized archwires for each treatment stage—aligning, leveling, and finishing—based on predicted tooth movement models. ¹¹ Integration with AI algorithms further refines these designs by predicting biological responses and optimizing force distribution. ¹².

3.Automated Bracket Placement: Concept and Workflow

Automated bracket placement employs digital models and robotics to ensure precise bonding of orthodontic brackets. ¹³ Traditionally, bracket positioning is subject to human judgment and inconsistencies in vertical height, angulation, and torque. ¹⁴ Automated systems use 3D digital setups and computer-guided positioning to overcome these challenges. ¹⁵

The process involves several stages:

- Digital scanning of the patient's dentition using intraoral or model scanners.
- Virtual setup of tooth alignment and ideal bracket positions using software.
- Generation of transfer trays or robotic placement jigs to place brackets with sub-millimeter accuracy.
- Indirect bonding using light-cured adhesive under guided placement.

Some systems incorporate robotic arms that directly position brackets based on digital coordinates, further reducing human involvement. ¹⁷ These robotic systems rely on algorithms derived from AI and deep learning to identify the optimal bracket position for each tooth. ¹⁸

4. Advantages of Robotic Wire Bending and Automated Bracket Placement The integration of robotics provides several benefits:

- Precision and Reproducibility: Automated systems eliminate inter-operator variability, enhancing the accuracy of wire and bracket placement. ¹⁹
- Reduced Treatment Time: Digitally designed archwires and consistent bracket placement reduce the number of adjustments required during treatment. ²⁰
- Patient Comfort: Optimized forces and predictable tooth movements minimize discomfort and treatment duration. ²¹

- Data Integration: Digital records and 3D imaging facilitate comprehensive treatment planning and monitoring. ²².
- Improved Efficiency: Workflow automation reduces chairside time, increasing clinical productivity. ²³
- Clinical studies have reported up to a 30% reduction in total treatment time when using robotic wire bending and digital bracket placement compared with conventional techniques. ²⁴

5.Limitations and Challenges

Despite promising results, several limitations persist. The high initial cost of robotic systems and software remains a major barrier to adoption. ²⁵ Moreover, training requirements and integration with existing clinical protocols can be challenging. ²⁶ The accuracy of automated systems depends heavily on the quality of 3D scans and data inputs. ²⁷

Another concern is limited adaptability to clinical variables, such as patient growth, oral habits, and biological response variability. ²⁸ Additionally, reliance on proprietary systems may restrict customization and interoperability. ²⁹ Ethical considerations regarding data privacy and AI-driven treatment decisions are also emerging issues. ³⁰

6.Future Directions

Future advancements will likely focus on AI-enhanced robotics, allowing adaptive responses to intraoral conditions in real time. ³¹ Integration with digital twin technology— virtual models continuously updated with patient data—could revolutionize treatment monitoring. ³². The development of smaller, chairside robotic systems may make these technologies more accessible to clinicians. ³³

Furthermore, combining robotic wire bending with clear aligner planning systems could lead to hybrid orthodontic approaches that maximize both esthetics and biomechanics. ³⁴ Continuous learning AI algorithms could predict and correct minor misalignments automatically. ³⁵

7. Clinical Implications

Robotic orthodontics offers measurable clinical benefits, including reduced error rates and improved finishing quality. ³⁶ In complex malocclusions, digital planning ensures that forces are evenly distributed, minimizing unwanted tooth movement. ³⁷ Robotic systems may also enhance interdisciplinary collaboration by enabling prosthodontists and surgeons to work from shared digital models. ³⁸

As digital workflows become mainstream, clinicians must adapt to a data-driven environment emphasizing precision and predictability. ³⁹ Incorporating robotics into everyday orthodontic practice may soon become standard for achieving high-quality outcomes. ⁴⁰

8. Conclusion

Robotic wire bending and automated bracket placement mark a paradigm shift in orthodontic practice. By integrating robotics, CAD/CAM, and AI, orthodontists can achieve unprecedented precision, efficiency, and patient satisfaction. Although challenges related to cost and training persist, ongoing technological evolution promises greater accessibility and adaptability. The future of orthodontics lies in fully automated, intelligent systems capable of personalized, data-driven treatment delivery.

e806

9. References

- 1. Graber TM, Vanarsdall RL, Vig KW. Orthodontics: Current Principles and Techniques. 6th ed. Elsevier; 2016.
- 2. Proffit WR, Fields HW, Larson BE, Sarver DM. Contemporary Orthodontics. 6th ed. Elsevier; 2018.
- 3. Sachdeva R. SureSmile technology in orthodontics. Texas Dent J. 2001;118(1):56–66.
- 4. Alford TJ, Roberts WE, Hartsfield JK. Digital orthodontics: integrating precision and efficiency. Angle Orthod. 2020;90(3):345–351.
- 5. Katona TR. Digital workflows in orthodontic care. J Dent Res. 2022;101(4):432–440.
- 6. Sachdeva RC, et al. Precision orthodontics using custom archwires. J Clin Orthod. 2017;51(9):545–554.
- 7. Bock NC, Ruf S. Clinical results after robotic wire bending. Eur J Orthod. 2018;40(2):194–200.
- 8. Krey KF, et al. Accuracy of robotic archwire bending. Am J Orthod Dentofacial Orthop. 2019;155(1):65–72.
- 9. Fillion D. Robotic wire bending: principles and accuracy. Prog Orthod. 2017;18(1):15.
- 10. Alharbi F, et al. Robotics in orthodontic wire fabrication. Semin Orthod. 2020; 26(4):210–218.
- 11. Heo W, et al. Robotic manufacturing of orthodontic archwires. Korean J Orthod. 2018;48(5):326–335.
- 12. Sun Y, et al. AI-assisted orthodontic wire design. Comput Methods Biomech Biomed Engin. 2022; 25(3): 211–220.
- 13. Watanabe H, et al. Automated bracket placement accuracy. Am J Orthod Dentofacial Orthop. 2018;153(5):802-810.
- 14. Armstrong D, et al. Human error in bracket placement. Br J Orthod. 2006;33(3):165–171.
- 15. Kim J, et al. Digital indirect bonding using CAD/CAM trays. Angle Orthod. 2021;91(2):228–234.
- 16. Lee S, Park J. AI-guided orthodontic bracket positioning. J Clin Orthod. 2023;57(2):95–104.
- 17. Chen L, et al. Automated robotic bracket bonding: a review. Am J Orthod Dentofacial Orthop. 2024;165(3):322–333.
- 18. Kravitz ND, et al. Machine learning in orthodontics. Am J Orthod Dentofacial Orthop. 2023;164(1):12–25.
- 19. Ackerman JL, Proffit WR. The future of digital orthodontics. Am J Orthod Dentofacial Orthop. 2018;153(6):859–864.
- 20. Mah J, et al. Efficiency of robotic orthodontic systems. Orthod Craniofac Res. 2021;24(4):352–360.
- 21. Miyazawa K, et al. Patient comfort and precision in robotic orthodontics. Clin Oral Investig. 2019;23(6):2549–2557.
- **22**. Mehta P, et al. Digital integration in orthodontics. Prog Orthod. 2020;21(1):18.
- 23. Papageorgiou SN, et al. Meta-analysis of digital vs. manual orthodontics. Eur J Orthod. 2021;43(5):561–570.

- 24. Schmid J, et al. Treatment duration with robotic wire bending. J Orofac Orthop. 2022;83(1):19–28.
- 25. Littlewood SJ, et al. Economic aspects of robotic orthodontics. Br Dent J. 2020;229(6):385–392.
- **26**. Kau CH. Integration barriers in digital orthodontics. Semin Orthod. 2021;27(2):110–119.
- 27. Pittayapat P, et al. Accuracy of intraoral scanning in digital orthodontics. Eur J Orthod. 2022;44(3):275–283.
- 28. Johnston LE. Biological variability in orthodontic response. Angle Orthod. 2018;88(4):469–476.
- 29. Duret F, et al. Proprietary systems and interoperability in CAD/CAM orthodontics. J Prosthet Dent. 2023;129(2):115–122.
- **30**. Nkenke E, et al. Ethical considerations of AI in dentistry. Int J Comput Dent. 2021;24(4):331–340.
- 31. Liu J, et al. AI-enhanced robotics in dental medicine. Front Robot AI. 2023;10:122–139.
- 32. Zhao R, et al. Digital twin applications in orthodontics. Comput Med Imaging Graph. 2024;105:102220.
- 33. Chang Y, et al. Portable orthodontic robotics: innovations and trends. Dent Mater J. 2024;43(1):55–64.
- 34. Mehta S, et al. Hybrid aligner-robotic systems in orthodontics. Angle Orthod. 2023;93(4):569–578.
- 35. Li X, et al. Predictive AI models in orthodontic automation. J Dent Res. 2023;102(5):477–486.
- 36. Lill DJ, et al. Accuracy and quality of robotic orthodontic finishing. Eur J Orthod. 2023;45(3):301–309.
- 37. Nagata K, et al. Force optimization in digital orthodontics. Clin Oral Investig. 2022; 26(12): 7291–7301.
- 38. Harrison JE, et al. Interdisciplinary applications of robotic orthodontics. J Esthet Restor Dent. 2021;33(5):493–501.
- 39. Ojima K, et al. Digital transformation in orthodontic care. Semin Orthod. 2022;28(3):162–171.
- 40. Papadopoulos MA. Future of orthodontics in the digital era. Am J Orthod Dentofacial Orthop. 2024;166(1):1–12.