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ABSTRACT 

Near-rings constitute a significant generalization of rings and semigroups, offering a flexible 

algebraic framework for both theoretical exploration and applied contexts. A left near – ring N is called 

weak commutative if xyz = xzy for every x,y,z є N. A left near – ring N is called pseudo commutative if 

xyz = zyx for every x,y,z є N. A left near – ring N is called quasi weak commutative near- ring if xyz = 

yxz for every x,y,z є N. We establish fundamental results concerning the existence, uniqueness, and 

characterization of ideals within these classes and provide necessary and sufficient conditions under which 

a left Boolean near-ring admits a quasi-weak commutative structure.This findings not only extend existing 

results in near-ring theory but also highlight potential avenues for applications in automata theory, 

cryptographic systems, and error-correcting codes. These results enrich the structural understanding of 

near-rings, provide new tools for analysing their ideal theory, and suggest applications in coding theory 

and cryptography where idempotent-based algebraic systems are of particular interest. 
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I PRELIMINARIES 

Definition 1.1 [5] 

 A (right)Near ring is a set N together with two binary operations “+” and “.” such that 

a) (N,+) is a group (not necessarily abelian), 

b) (N,.) is a semigroup 

c) (n1 + n2) n3 = n1n3 + n2n3, for all n1,n2,n3 in N (right distributive law) 

Definition 1.2 [1] 

The function f: R → R’ is said to be a homomorphism if:  

(i) f(a+b) = f(a) + f(b)  

(ii) f(ab) = f(a) f(b), for all a,b in R 

Definition 1.3 [1] 

 The function f: R → R’ is said to be an anti-homomorphism if:  

(i) f(a+b) = f(b) + f(a)  

     (ii) f(ab) = f(b) f(a), for all a,b in R 

Definition 1.4 [2] 

An element a in G is said to be an idempotent element if a2 = a and the set of all idempotents is denoted 

by E. 

Definition 1.5 [4] 

A near ring R is said to be zero commutative if ab = 0 implies ba = 0, for all a,b in R. 

Definition 1.6 [6] 

A near ring N is said to be boolean if a2 = a for every a in N. 

Proposition 1.7 [5] 

Let N be a near ring. 

a) N is abelian and N is commutative if and only if N is a commutative ring. 

b) N is abelian and N is distributive if and only if N is a ring. 

c) N2 = N and N is distributive implies that N is a ring. 

Definition 1.8 [4] 

Let N be a regular quasi weak commutative near – ring. Then every N sub group is an ideal N = Na = 

Na2 = aN = aNa for all a in N 
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Definition 1.9 [4] 

A near ring N is said to be weak commutative if xyz = xzy for all x,y,z in N 

Definition 1.10 [4] 

Let N be a regular quasi weak commutative near – ring. Then 

(i) A = √𝑨𝑨, for every N – subgroup A of N.  

(ii) N is reduced.  

(iii) N has insertion of factors property (IFP) 

Definition 1.11 [2] 

A near ring N is said to be commutative if ax = xa for all a,x in N. 

Theorem 1.12 [5] 

i)If I is an ideal of N, then the canonical mapping f: N  → N\I (defined by f(n) = (n + I)) is a near ring 

epimorphism. Also, N\I is a homomorphic image of N. 

ii) Conversely, if h: N  → N1 is an epimorphism, then ker(h) is an ideal of N, and N \ ker(h) is 

isomorphic to N1. 

Proposition 1.13 [2] 

Let N be a near ring. 

a) n ϵ N is right cancellable if and only if n is not a zero divisor; 

b) If n ϵ N0 is left cancellable then n is not a left zero divisor. But converse need not to be true. 

c) If N ϵ η0 then the left cancellation law implies the right one. 

Definition 1.14 [5] 

A near ring N is said to be left self – distributive if xyz = xyxz, for all x,y,z in N. 

Definition 1.15 [5] 

A near ring N is said to be right self – distributive if xyz = xzyz, for all x,y,z in N. 

Definition 1.16 [4] 

N is said to be subcommutative, if aN = Na for all a ϵ N 

Definition 1.17 [2] 

An element a in N is called central if ax = xa for all x in N. 
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Definition 1.18 [2] 

A near ring N is said to be anti-boolean if a2 = - a for every a in N. 

Definition 1.19 [5] 

A non – zero symmetric near – ring N has Intersection of factors Property (IFP) if and only if (O:S) 

is an ideal for any subset S of N. 

Proposition 1.20 [3] 

If N is a Boolean (left) near – ring, then for any a,b є N, ab = 0 => ba = 0.a. 

Proposition 1.21 [3] 

If N is a Boolean (left) near – ring, then for any x,y є N, xyx = yx. 

Proposition 1.22 [3] 

If N is anti – Boolean left near – ring then for any a,b є N, ab =0⇒ ba = - 0a. 

II MAIN RESULTS 

Theorem 2.1 

If N is a Boolean (left) near ring, then xyx = 0.x, for all x in N. 

Proof: 

Given that N is a Boolean (left) near ring, then for any x,y ϵ N, 

xy = 0 implies that yx = 0.x (By Proposition 1.20) 

To Prove:  xyx = 0.x, for all x in N. 

xyx = (xyx)2 = (xyx) (xyx) 

                     = xy(x)2yx 

                     = xyxyx 

                     = xy(xy)x 

                     -= xy(0)x (By Proposition 1.20) 

                       = 0.x 

xyx = 0.x, for all x,y in N 

Theorem 2.2 

If N is a Boolean (left) weak commutative near ring and x.y = 0, then y.x = 0 for all x, y in N. 

http://www.ijcrt.org/


www.ijcrt.org                                            © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882 

IJCRT2510399 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org d367 
 

Proof 

Given that N is a Boolean left near ring, (i.e,) xy = 0 

Then xyx = yx for all x,y in N (By Proposition 1.21) 

Consider yx  

yx = xyx (By Proposition 1.21) 

     = xxy  

     = x2y 

     = xy 

     = 0  

This implies, yx = 0, for all x,y in N. 

Theorem 2.3 

If N is a Boolean (left) near ring, then for any x,y in N, xyx = xy. 

Proof 

Let x,y ϵ N 

Now, xy(xyx – xy) = xyx2y – (xy)2 

                                                 = xyxy – (xy)2 

                                                 = 0 

Then (xyx – xy) xy = 0.xy --------(1) (By Proposition 1.20) 

 ⇒ (xyx – xy) xy = 0.xy 

Also, xyx (xyx-xy) = xyx2yx – xyxyx 

                                = xyxyx – xyxyx 

                                = 0 

⇒ xyx (xyx-xy) = 0 

Then (xyx – xy) xyx = 0.xyx --------(2) (By Proposition 1.20) 

Now, xyx – xy = (xyx – xy)2 

                         = (xyx – xy) (xyx-xy) 

                         = (xyx -xy) xyx – (xyx – yx) xy (By (1) and (2) 
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                         = 0. xyx – 0. xy  

⇒ xyx -xy = 0 (xyx -xy) -------(3) 

Now, 0 = x (xyx – xy) 

            = x (0(xyx-xy)) (By (3)) 

            = 0(xyx-xy) 

            = xyx – xy (By (3)) 

⇒ xyx = xy, for all x,y in N. 

Theorem 2.4 

If N is anti-boolean (left) weak commutative near ring and xy = 0, then yx = y0, for all x,y in N. 

Proof 

Given that N is anti-boolean, then x2 = x for all x in N 

N is weak commutative, xyz = xzy, for all x,y,z in N 

Consider yx 

yx = (yx)2 

     = (yx) (yx) 

     = y (xyx) 

     = y (xxy)  

     = yx2 y 

     = -yxy 

⇒  yx = y(xy) 

          = y0 

⇒yx = y0, for all x,y in N. 

Theorem 2.5 

If N is anti-boolean (left) near ring, then for any x, y in N, xyx = -xy 
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Proof 

Given that that N is anti-boolean, then x2 = x for all x in N 

Let x,y ϵ N 

xy (xyx + xy) = xyx2y + (xy)2 

                       = - xyxy + (xy)2 

                      = 0. 

Then (xyx + xy) = - 0xy ------(1) (By Proposition 1.22) 

Also, xyx (xyx + xy) = xyx2yx + xyxyx 

                                   = -xyxyx + xyxyx 

                                  = 0 

Then (xyx + xy) xyx = - 0xyx -------(2) (By Proposition 1.22) 

Now, (xyx + xy) = (xyx + xy)2 

                              = (xyx + xy) (xyx + xy) 

                              = (xyx + xy) xyx - (xyx + xy) xy 

                              = -0xyx – 0xy (By (1) & (2)) 

  ⇒ xyx + xy = 0 (xyx +xy) -------(3) 

Now, 0 = x (xyx + xy) 

            = x.0 (xyx + xy) (By (3)) 

            = 0. (xyx + xy) 

            = (xyx + xy) (By (3)) 

  ⇒ xyx = - xy, for all x,y in N. 

Theorem 2.6 

If N is a Boolean (left) near ring, then for any x,y in N, xmynxm = xmyn where m ≥ 1, n≥ 1 and m,n 

are fixed integers. 
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Proof 

Let x,y ϵ N 

Consider xmyn (xmynxm - xmyn) 

xmyn (xmynxm - xmyn) = xmyn x2myn – xmynxmyn 

                                   = xmynxmyn - xmynxmyn 

                                   = 0 

Then, (xmynxm - xmyn) xmyn = 0. xmyn ------(1) (By Proposition 1.20) 

Also, xmynxm (xmynxm - xmyn) = xmyn x2mynxm - xmynxmynxm 

                                                                       = xmynxmynxm - xmynxmynxm 

                                                       = 0 

(xmynxm - xmyn) xmynxm = 0. xmynxm -------(2) (By Proposition 1.20) 

Now, (xmynxm - xmyn) = (xmynxm - xmyn)2 

                                                    = (xmynxm - xmyn) (xmynxm - xmyn) 

                                  = (xmynxm - xmyn) xmynxm - (xmynxm - xmyn) xmyn 

                                                    = 0. xmynxm - 0. xmyn (By (1) and (2)) 

                                     = 0 (xmynxm - xmyn) -----(3) 

Now, 0 = xm (xmynxm - xmyn) 

            = xm 0 (xmynxm - xmyn) (By (3)) 

            = 0 (xmynxm - xmyn) 

            = (xmynxm - xmyn) (By (3)) 

⇒ xmynxm = xmyn, where m ≥ 1, n≥ 1 and for every x,y in N. 

Theorem 2.7 

If N is anti-boolean(left) near ring, then for any x,y in N, xmynxm = 2xmynxmyn (xm + 1), where m ≥ 1, 

n≥ 1 and m,n are fixed inegers. 
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Proof 

Let x,y ϵ N. 

xmyn(xmynxm – ynxm) = xmynx2myn – xmynxmyn 

                                   = - xmynxmyn – xmynxmyn 

                                   = - 2xmynxmyn ------(1) 

Now, xmynxm(xmynxm – xmyn) = xmynx2mynxm – xmynxmynxm 

                                               = - xmynxmynxm – xmynxmynxm 

                                                                        = - 2 xmynxmynxm -----(2) 

xmynxm - xmyn = - (xmynxmynxm - xmyn)2 

                      = - [(xmynxm - xmyn) (xmynxm - xmyn)] 

                      = - [ xmynxm(xmynxm - xmyn)- xmyn (xmynxm - xmyn)] 

                      = - [-2 xmynxmynxm - 2 xmynxmyn] (By (1) and (2)) 

                      = 2 xmynxmynxm + 2 xmynxmyn 

                      = 2 xmynxmyn (xm+1) 

Hence the proof.     
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