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ABSTRACT

Near-rings constitute a significant generalization of rings and semigroups, offering a flexible
algebraic framework for both theoretical exploration and applied contexts. A left near — ring N is called
weak commutative if xyz = xzy for every x,y,z € N. A left near - ring N is called pseudo commutative if
xyz = zyx for every x,y,z € N. A left near — ring N is called quasi weak commutative near- ring if xyz =
yxz for every x,y,z € N. We establish fundamental results concerning the existence, uniqueness, and
characterization of ideals within these classes and provide necessary and sufficient conditions under which
a left Boolean near-ring admits a quasi-weak commutative structure.This findings not only extend existing
results in near-ring theory but also highlight potential avenues for applications in automata theory,
cryptographic systems, and error-correcting codes. These results enrich the structural understanding of
near-rings, provide new tools for analysing their ideal theory, and suggest applications in coding theory

and cryptography where idempotent-based algebraic systems are of particular interest.
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I PRELIMINARIES
Definition 1.1 [5]
A (right)Near ring is a set N together with two binary operations “+” and “.” such that

a) (N,+) is a group (not necessarily abelian),
b) (N,.) is a semigroup

¢) (ni +nyn3=nn3 + nons, for all ni,n2,n3 in N (right distributive law)
Definition 1.2 [1]
The function f: R — R’ is said to be a homomorphism if:

(i) f(a+b) = f(a) + f(b)
(ii) f(ab) = f(a) f(b), for all a,b in R

Definition 1.3 [1]

The function f: R — R’ is said to be an anti-homomorphism if:
(1) f(at+b) = f(b) + f(a)
(i) f(ab) = f(b) f(a), for all a,b in R

Definition 1.4 [2]

An element a in G is said to be an idempotent element if a? = a and the set of all idempotents is denoted

by E.

Definition 1.5 [4]

A near ring R is said to be zero commutative if ab = 0 implies ba = 0, for all a,b in R.
Definition 1.6 [6]

A near ring N is said to be boolean if a*> = a for every a in N.

Proposition 1.7 [5]

Let N be a near ring.

a) N is abelian and N is commutative if and only if N is a commutative ring.
b) N is abelian and N is distributive if and only if N is a ring.
c) N?=Nand N is distributive implies that N is a ring.

Definition 1.8 [4]

Let N be a regular quasi weak commutative near — ring. Then every N sub group is an ideal N = Na =
Na2 =aN =aNa forallain N
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Definition 1.9 [4]

A near ring N is said to be weak commutative if xyz = xzy for all x,y,z in N
Definition 1.10 [4]

Let N be a regular quasi weak commutative near — ring. Then

(1) A =+AA, for every N — subgroup A of N.
(i1) N s reduced.

(i11) N has insertion of factors property (IFP)

Definition 1.11 |2]

A near ring N is said to be commutative if ax = xa for all a,x in N.
Theorem 1.12 [5]

1)If I is an ideal of N, then the canonical mapping f: N — N\I (defined by f(n) = (n + 1)) is a near ring

epimorphism. Also, N\I is a homomorphic image of N.

ii) Conversely, if h: N — N! is an epimorphism, then ker(h) is an ideal of N, and N \ ker(h) is

isomorphic to N'.
Proposition 1.13 [2]
Let N be a near ring.

a) n e N is right cancellable if and only if n is not a zero divisor;
b) Ifn e No is left cancellable then n is not a left zero divisor. But converse need not to be true.

¢) IfN e nothen the left cancellation law implies the right one.
Definition 1.14 [5]
A near ring N is said to be left self — distributive if xyz = xyxz, for all x,y,z in N.
Definition 1.15 [5]
A near ring N is said to be right self — distributive if xyz = xzyz, for all x,y,z in N.
Definition 1.16 [4]
N is said to be subcommutative, if aN = Na for all a ¢ N
Definition 1.17 [2]

An element a in N is called central if ax = xa for all x in N.
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Definition 1.18 [2]
A near ring N is said to be anti-boolean if a> = - a for every a in N.
Definition 1.19 [5]

A non — zero symmetric near — ring N has Intersection of factors Property (IFP) if and only if (O:S)

is an ideal for any subset S of N.
Proposition 1.20 [3]
If N is a Boolean (left) near — ring, then for any a,b € N, ab=0=>ba = 0.a.
Proposition 1.21 [3]
If N is a Boolean (left) near — ring, then for any x,y € N, xyx = yx.
Proposition 1.22 [3]
If N is anti — Boolean left near — ring then for any a,b € N, ab =0= ba = - Oa.
II MAIN RESULTS
Theorem 2.1
If N is a Boolean (left) near ring, then xyx = 0.x, for all x in N.
Proof:
Given that N 1s a Boolean (left) near ring, then for any x,y € N,
xy = 0 implies that yx = 0.x (By Proposition 1.20)
To Prove: xyx = 0.x, for all x in N.
xyx = (xyx)” = (xyx) (xyx)

= xy(x)’yx

= XyXyX

= Xy(xy)x

-=xy(0)x (By Proposition 1.20)

=0.x

xyx = 0.x, for all x,y in N
Theorem 2.2

If N is a Boolean (left) weak commutative near ring and x.y = 0, then y.x = 0 for all x, y in N.
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Proof
Given that N is a Boolean left near ring, (i.e,) xy =0
Then xyx = yx for all x,y in N (By Proposition 1.21)
Consider yx
yx = xyx (By Proposition 1.21)
= XXy
— X%y
=Xy
=0
This implies, yx = 0, for all x,y in N.
Theorem 2.3
If N is a Boolean (left) near ring, then for any x,y in N, Xyx = Xxy.

Proof

Letx,y e N

Now, xy(xyx — xy) = Xyx’y — (xy)*

= Xyxy - (xy)?
=0
Then (xyx — xy) xy = 0.Xy -------- (1) (By Proposition 1.20)

= (xyx —xy) xy = 0.xy
Also, XyXx (XyX-Xy) = XyX’yX — XyXyX

= XyXyX — XyXyX

=0
= XyX (xyx-xy) =0
Then (xyx — xy) xyx = 0.XyX -------- (2) (By Proposition 1.20)
Now, xyx — Xy = (Xyx — xy)*

= (Xyx — Xy) (Xyx-xy)

= (Xyx -Xy) XyX — (Xyx — yx) Xy (By (1) and (2)
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=0.xyx — 0. xy
= xyx -Xy = 0 (XyX -xy) ------- 3)
Now, 0 = x (XyX — Xy)
=x (0(xyx-xy)) (By (3))
= 0(xyx-xy)
= Xxyx —xy (By (3))
= XyX = xy, for all x,y in N.
Theorem 2.4
If N is anti-boolean (left) weak commutative near ring and xy = 0, then yx = y0, for all x,y in N.
Proof
Given that N is anti-boolean, then x> = x for all x in N
N is weak commutative, xyz = xzy, for all x,y,z in N
Consider yx
yx = (yx)*
= (yx) (y%)
=y (xyx)
=y (xxy)
=yx’y
= -YyxXy
= yx=yxy)
=y0
=yx =y0, for all x,y in N.
Theorem 2.5

If N is anti-boolean (left) near ring, then for any x, y in N, xyx = -xy
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Proof
Given that that N is anti-boolean, then x> = x for all x in N
Letx,y e N
Xy (xyx +xy) = xyx’y + (xy)’
= - Xyxy + (xy)?
=0.
Then (xyx + xy) = - Oxy ------ (1) (By Proposition 1.22)
Also, xyx (xyx + xy) = Xyx’yX + Xyxyx
= -XyXyX T XyXyXx
=0
Then (xyx + Xy) Xyx = - 0XyX ------- (2) (By Proposition 1.22)
Now, (xyx + xy) = (Xyx + xy)?
= (xyx +xy) (xyx +xy)
= (Xyx + Xy) Xyx - (Xyx + Xy) Xy
= -Oxyx — Oxy (By (1) & (2))
= Xyx + Xy = 0 (XyX +Xy) ------- 3)
Now, 0 = x (xyx + Xy)
=x.0 (xyx + xy) (By (3))
=0. (xyx +Xxy)
= (xyx +xy) (By (3))
= XyX = - Xy, for all X,y in N.
Theorem 2.6

If N is a Boolean (left) near ring, then for any x,y in N, x™y"x™ = x"y" where m > 1, n> 1 and m,n

are fixed integers.
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Proof
Letx,y e N
Consider x™y" (x™y"x™ - x™y")
XTy" (xMy X - XMy = XMy XMy — XMy
— xMyfgiyn | ymynymyn
=0
Then, (x™y"x™ - x™y") x™y"= 0. x"y" ------ (1) (By Proposition 1.20)
Also, XMy x™ (XTy"x™ - XMy = x Myt x2Myixm _ xMylymyiym
“xMy"x My 'x ™ - x My Tytx™
=
(xMy"™x™ - xMy") xMy"x™ = 0. x"y"X" ------- (2) (By Proposition 1.20)
Now, (xmy"x™ - xMy") = (x™y"x™ - xMy")?
=(x"y"x™ - x"y") (x"y"x™ - x"y")
= (xTy"x™ - xTy") XMy X" - (x"y"x™ - x"y") x"y"
=0. x"y"x™ - 0. x™y" (By (1) and (2))
=0 (x"y"x" - X"y --(3)
Now, 0 = x™ (x™y"x™ - x"y")
=x"0 (x"y™x™ - x"y") (By (3))
=0 (xmy"™x" - X"y")
= (xTy"x"™ - x"y") (By (3))
= xMy"x™ = x"y", where m > 1, n> 1 and for every X,y in N.

Theorem 2.7

If' N is anti-boolean(left) near ring, then for any x,y in N, x"y"x™ = 2x"y"x"y" (x™+ 1), where m > 1,

n> 1 and m,n are fixed inegers.

IJCRT2510399 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | d370


http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882

Proof

Let x,y € N.

m my,ny 2me,n my Ny, mg,n

XMy (xMy"x™ — ynxm) = X"y xy" — xy"x My
= - xMy"xMy" — x"Ty'xMy"
= - 22Xy Xy -omee- (D
Now, XMy xT(xMy"x™ — xMym) = xMylx2myiym _ xmyiymyiym
R S 1 G G G

m Ny My Ny M

XTyIx™ - XMyl = - (xTyxMyixm_ xmym)2
= - [(xXTy™x™ - xTy") (x"y"x™ - X"y
= - [xTy™X Py X" - xTy")- xTy" (xTy"X" - x"y")]
= - [-2 Xmy"x"yx™ - 2 x"yx"y"] (By (1) and (2)
=2 xTy"™xMy"x™+ 2 xMy"x"y"
=2 xTy"x"y" (x™+1)

Hence the proof.
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