IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE **RESEARCH THOUGHTS (IJCRT)**

An International Open Access, Peer-reviewed, Refereed Journal

Structural Parallels Of Weakly Commutative **Near Rings**

S.R.Shimony Rathna Kumari¹, R.Rajeswari²

¹Research Scholar (Reg. No.2421119122005),

PG and Research Department of Mathematics,

²Assistant Professor, PG and Research Department of Mathematics,

^{1,2}A.P.C. Mahalaxmi College for Women, Thoothukudi- 628 002

Affiliated to Manonmaniam Sundaranar University, Abishekapatti,

Tirunelveli – 627 012, Tamilnadu, India.

ABSTRACT

Near-rings constitute a significant generalization of rings and semigroups, offering a flexible algebraic framework for both theoretical exploration and applied contexts. A left near – ring N is called weak commutative if xyz = xzy for every $x,y,z \in N$. A left near – ring N is called pseudo commutative if xyz = zyx for every $x,y,z \in N$. A left near – ring N is called quasi weak commutative near- ring if xyz =yxz for every x,y,z \in N. We establish fundamental results concerning the existence, uniqueness, and characterization of ideals within these classes and provide necessary and sufficient conditions under which a left Boolean near-ring admits a quasi-weak commutative structure. This findings not only extend existing results in near-ring theory but also highlight potential avenues for applications in automata theory, cryptographic systems, and error-correcting codes. These results enrich the structural understanding of near-rings, provide new tools for analysing their ideal theory, and suggest applications in coding theory and cryptography where idempotent-based algebraic systems are of particular interest.

KEYWORDS: Quasi-weak commutative, Boolean near ring, Left near ring.

I PRELIMINARIES

Definition 1.1 [5]

A (right)Near ring is a set N together with two binary operations "+" and "." such that

- a) (N,+) is a group (not necessarily abelian),
- b) (N,.) is a semigroup
- c) $(n_1 + n_2) n_3 = n_1 n_3 + n_2 n_3$, for all n_1, n_2, n_3 in N (right distributive law)

Definition 1.2 [1]

The function f: $R \rightarrow R'$ is said to be a homomorphism if:

- (i) f(a+b) = f(a) + f(b)
- (ii) f(ab) = f(a) f(b), for all a,b in R

Definition 1.3 [1]

The function f: $R \rightarrow R'$ is said to be an anti-homomorphism if:

- (i) f(a+b) = f(b) + f(a)
- (ii) f(ab) = f(b) f(a), for all a,b in R

Definition 1.4 [2]

An element a in G is said to be an idempotent element if $a^2 = a$ and the set of all idempotents is denoted by E.

Definition 1.5 [4]

A near ring R is said to be zero commutative if ab = 0 implies ba = 0, for all a,b in R.

Definition 1.6 [6]

A near ring N is said to be boolean if $a^2 = a$ for every a in N.

Proposition 1.7 [5]

Let N be a near ring.

- a) N is abelian and N is commutative if and only if N is a commutative ring.
- b) N is abelian and N is distributive if and only if N is a ring.
- c) $N^2 = N$ and N is distributive implies that N is a ring.

Definition 1.8 [4]

Let N be a regular quasi weak commutative near – ring. Then every N sub group is an ideal N = Na = Na2 = aN = aNa for all a in N

Definition 1.9 [4]

A near ring N is said to be weak commutative if xyz = xzy for all x,y,z in N

Definition 1.10 [4]

Let N be a regular quasi weak commutative near – ring. Then

- $A = \sqrt{AA}$, for every N subgroup A of N. (i)
- N is reduced. (ii)
- (iii) N has insertion of factors property (IFP)

Definition 1.11 [2]

A near ring N is said to be commutative if ax = xa for all a,x in N.

Theorem 1.12 [5]

- i) If I is an ideal of N, then the canonical mapping f: N \rightarrow N\I (defined by f(n) = (n + I)) is a near ring epimorphism. Also, N\I is a homomorphic image of N.
- ii) Conversely, if h: $N \rightarrow N^1$ is an epimorphism, then ker(h) is an ideal of N, and N \ ker(h) is isomorphic to N¹.

Proposition 1.13 [2]

Let N be a near ring.

- a) $n \in N$ is right cancellable if and only if n is not a zero divisor;
- b) If $n \in \mathbb{N}_0$ is left cancellable then n is not a left zero divisor. But converse need not to be true.
- c) If N \in η_0 then the left cancellation law implies the right one.

Definition 1.14 [5]

A near ring N is said to be left self – distributive if xyz = xyxz, for all x,y,z in N.

Definition 1.15 [5]

A near ring N is said to be right self – distributive if xyz = xzyz, for all x,y,z in N.

Definition 1.16 [4]

N is said to be subcommutative, if aN = Na for all a \in N

Definition 1.17 [2]

An element a in N is called central if ax = xa for all x in N.

Definition 1.18 [2]

A near ring N is said to be anti-boolean if $a^2 = -a$ for every a in N.

Definition 1.19 [5]

A non – zero symmetric near – ring N has Intersection of factors Property (IFP) if and only if (O:S) is an ideal for any subset S of N.

Proposition 1.20 [3]

If N is a Boolean (left) near – ring, then for any a,b ϵ N, ab = 0 => ba = 0.a.

Proposition 1.21 [3]

If N is a Boolean (left) near – ring, then for any $x,y \in N$, xyx = yx.

Proposition 1.22 [3]

If N is anti – Boolean left near – ring then for any a,b ϵ N, ab =0 \Rightarrow ba = -0a.

II MAIN RESULTS

Theorem 2.1

If N is a Boolean (left) near ring, then xyx = 0.x, for all x in N.

Proof:

Given that N is a Boolean (left) near ring, then for any $x,y \in N$,

xy = 0 implies that yx = 0.x (By Proposition 1.20)

To Prove: xyx = 0.x, for all x in N.

$$xyx = (xyx)^{2} = (xyx) (xyx)$$

$$= xy(x)^{2}yx$$

$$= xyxyx$$

$$= xy(xy)x$$

$$= xy(0)x (By Proposition 1.20)$$

$$= 0.x$$

xyx = 0.x, for all x,y in N

Theorem 2.2

If N is a Boolean (left) weak commutative near ring and x.y = 0, then y.x = 0 for all x, y in N.

IJCRI

Proof

Given that N is a Boolean left near ring, (i.e,) xy = 0

Then xyx = yx for all x,y in N (By Proposition 1.21)

Consider yx

yx = xyx (By Proposition 1.21)

= xxy

 $= x^2y$

= xy

=0

This implies, yx = 0, for all x,y in N.

Theorem 2.3

If N is a Boolean (left) near ring, then for any x,y in N, xyx = xy.

Proof

Let $x, y \in N$

Now,
$$xy(xyx - xy) = xyx^2y - (xy)^2$$
$$= xyxy - (xy)^2$$

$$=0$$

Then (xyx - xy) xy = 0.xy -----(1) (By Proposition 1.20)

$$\Rightarrow (xyx - xy) xy = 0.xy$$

Also,
$$xyx (xyx-xy) = xyx^2yx - xyxyx$$

= $xyxyx - xyxyx$

$$=0$$

$$\Rightarrow$$
 xyx (xyx-xy) = 0

Then (xyx - xy) xyx = 0.xyx -----(2) (By Proposition 1.20)

Now,
$$xyx - xy = (xyx - xy)^2$$

$$= (xyx - xy) (xyx-xy)$$

$$= (xyx - xy) xyx - (xyx - yx) xy (By (1) and (2)$$

JCRI

$$= 0. xyx - 0. xy$$

$$\Rightarrow$$
 xyx -xy = 0 (xyx -xy) -----(3)

Now,
$$0 = x (xyx - xy)$$

$$= x (0(xyx-xy)) (By (3))$$

$$= 0(xyx-xy)$$

$$= xyx - xy (By (3))$$

$$\Rightarrow$$
 xyx = xy, for all x,y in N.

Theorem 2.4

If N is anti-boolean (left) weak commutative near ring and xy = 0, then yx = y0, for all x,y in N.

Proof

Given that N is anti-boolean, then $x^2 = x$ for all x in N

N is weak commutative, xyz = xzy, for all x,y,z in N

Consider yx

$$yx = (yx)^2$$

$$=$$
 (yx) (yx)

$$= y (xyx)$$

$$= y(xxy)$$

$$= yx^2y$$

$$= -yxy$$

$$\Rightarrow$$
 yx = y(xy)

$$= y0$$

 \Rightarrow yx = y0, for all x,y in N.

Theorem 2.5

If N is anti-boolean (left) near ring, then for any x, y in N, xyx = -xy

IJCRI

Proof

Given that that N is anti-boolean, then $x^2 = x$ for all x in N

Let $x,y \in N$

$$xy (xyx + xy) = xyx^2y + (xy)^2$$
$$= -xyxy + (xy)^2$$
$$= 0.$$

Then (xyx + xy) = -0xy -----(1) (By Proposition 1.22)

Also,
$$xyx (xyx + xy) = xyx^2yx + xyxyx$$

= $-xyxyx + xyxyx$
= 0

Then (xyx + xy) xyx = -0xyx -----(2) (By Proposition 1.22)

Now,
$$(xyx + xy) = (xyx + xy)^2$$

$$= (xyx + xy) (xyx + xy)$$

$$= (xyx + xy) xyx - (xyx + xy) xy$$

$$= -0xyx - 0xy (By (1) & (2))$$

$$\Rightarrow xyx + xy = 0 (xyx + xy) -----(3)$$

Now,
$$0 = x (xyx + xy)$$

= x.0 (xyx + xy) (By (3))
= 0. (xyx + xy)
= (xyx + xy) (By (3))

 \Rightarrow xyx = - xy, for all x,y in N.

Theorem 2.6

If N is a Boolean (left) near ring, then for any x,y in N, $x^my^nx^m = x^my^n$ where $m \ge 1$, $n \ge 1$ and m,n are fixed integers.

Proof

Let $x,y \in N$

Consider
$$x^m y^n (x^m y^n x^m - x^m y^n)$$

$$x^{m}y^{n} (x^{m}y^{n}x^{m} - x^{m}y^{n}) = x^{m}y^{n} x^{2m}y^{n} - x^{m}y^{n}x^{m}y^{n}$$

$$= x^{m}y^{n}x^{m}y^{n} - x^{m}y^{n}x^{m}y^{n}$$

$$= 0$$

Then,
$$(x^m y^n x^m - x^m y^n) x^m y^n = 0$$
. $x^m y^n$ -----(1) (By Proposition 1.20)

Also,
$$x^{m}y^{n}x^{m} (x^{m}y^{n}x^{m} - x^{m}y^{n}) = x^{m}y^{n} x^{2m}y^{n}x^{m} - x^{m}y^{n}x^{m}y^{n}x^{m}$$

$$= x^{m}y^{n}x^{m}y^{n}x^{m} - x^{m}y^{n}x^{m}y^{n}x^{m}$$

$$= 0$$

$$(x^{m}y^{n}x^{m} - x^{m}y^{n}) x^{m}y^{n}x^{m} = 0. x^{m}y^{n}x^{m}$$
 -----(2) (By Proposition 1.20)

Now,
$$(x^{m}y^{n}x^{m} - x^{m}y^{n}) = (x^{m}y^{n}x^{m} - x^{m}y^{n})^{2}$$

$$= (x^{m}y^{n}x^{m} - x^{m}y^{n}) (x^{m}y^{n}x^{m} - x^{m}y^{n})$$

$$= (x^{m}y^{n}x^{m} - x^{m}y^{n}) x^{m}y^{n}x^{m} - (x^{m}y^{n}x^{m} - x^{m}y^{n}) x^{m}y^{n}$$

$$= 0. x^{m}y^{n}x^{m} - 0. x^{m}y^{n} (By (1) and (2))$$

$$= 0 (x^{m}y^{n}x^{m} - x^{m}y^{n}) -----(3)$$
Now, $0 = x^{m} (x^{m}y^{n}x^{m} - x^{m}y^{n})$

Now,
$$0 = x^m (x^m y^n x^m - x^m y^n)$$

 $= x^m 0 (x^m y^n x^m - x^m y^n) (By (3))$
 $= 0 (x^m y^n x^m - x^m y^n)$
 $= (x^m y^n x^m - x^m y^n) (By (3))$

 \Rightarrow $x^m y^n x^m = x^m y^n$, where $m \ge 1$, $n \ge 1$ and for every x,y in N.

Theorem 2.7

If N is anti-boolean(left) near ring, then for any x,y in N, $x^my^nx^m = 2x^my^nx^my^n$ ($x^m + 1$), where $m \ge 1$, $n \ge 1$ and m,n are fixed inegers.

Proof

Let $x,y \in N$.

$$x^{m}y^{n}(x^{m}y^{n}x^{m} - ynxm) = x^{m}y^{n}x^{2m}y^{n} - x^{m}y^{n}x^{m}y^{n}$$

$$= -x^{m}y^{n}x^{m}y^{n} - x^{m}y^{n}x^{m}y^{n}$$

$$= -2x^{m}y^{n}x^{m}y^{n} - \cdots (1)$$
Now,
$$x^{m}y^{n}x^{m}(x^{m}y^{n}x^{m} - x^{m}y^{n}) = x^{m}y^{n}x^{2m}y^{n}x^{m} - x^{m}y^{n}x^{m}y^{n}x^{m}$$

$$= -x^{m}y^{n}x^{m}y^{n}x^{m} - x^{m}y^{n}x^{m}y^{n}x^{m}$$

$$= -2x^{m}y^{n}x^{m}y^{n}x^{m} - x^{m}y^{n}x^{m}$$

$$= -2x^{m}y^{n}x^{m}y^{n}x^{m} - x^{m}y^{n}x^{m}$$

$$= -2x^{m}y^{n}x^{m}y^{n}x^{m} - x^{m}y^{n}$$

$$= -[(x^{m}y^{n}x^{m} - x^{m}y^{n})(x^{m}y^{n}x^{m} - x^{m}y^{n})]$$

$$= -[(x^{m}y^{n}x^{m}(x^{m}y^{n}x^{m} - x^{m}y^{n}) - x^{m}y^{n}(x^{m}y^{n}x^{m} - x^{m}y^{n})]$$

$$= -[-2x^{m}y^{n}x^{m}y^{n}x^{m} - 2x^{m}y^{n}x^{m}y^{n}] (By (1) and (2))$$

$$= 2x^{m}y^{n}x^{m}y^{n}x^{m} + 2x^{m}y^{n}x^{m}y^{n}$$

$$= 2x^{m}y^{n}x^{m}y^{n}x^{m} + 2x^{m}y^{n}x^{m}y^{n}$$

Hence the proof.

REFERENCES

- [1] K.Chandrasekhara Rao, V.Swarninathan. Anti-Homomorpshim in Near Rings. Journal of Institute of Maths & Computer Sciences, (Maths. Ser.) Vol. 21, No.2 (2008)83-88.
- [2] C.Dhivya, D.Radha. Near Rings A glimpse. Maha Publications, ISBN: 978-91-942832-2-5.
- [3] S.Geetha, Dr.G.Gopalakrishnamoorthy, On Quasi Weak Commutative Near Rings III. Advances in Mathematics: Scientific Journal 8 (2019), no.3, 423–429 (Special issue on ICRAPAM) ISSN 1857-8365 (printed version) & ISSN 1857-8438 (electronic version)
- [4] Dr. G. Gopalakrishnamoorthy, Dr. M. Kamaraj, S. Geetha. On Quasi Weak Commutative Near Rings. International Journal of Mathematics Research. ISSN- 0976-5840, Volume 5, Number 5 920130, pg. 431 440.
- [5] Gunter Pilz. Near-rings: the theory and its applications, Elsevier, 2011.
- [6] James R. Clay and Donald A. Lawver. Boolean near rings. Cambridge University Press. 20 November 2018. Canadian Mathematical Bulletin, Volume 12, Issue 3, June 1969, pp. 265 273.

- [7] K.Karthy, P.Dheena. On Unit Regular Near rings. Journal of the Indian Math., Soc. Vol.68, Nos 1-4; 2001, 239-243.
- [8] D.Radha, S.R. Veronica Valli, R.Soundarya, R.Geetha. A Study on SR Near rings. Science, Technology and Development. ISSN: 0950 – 0707.
- [9] D. Radha, M. Vinutha, C. Raja Lakshmi. A Study on GS near ring. Journal of Emerging Technologies and Innovative Research (JETIR), February 2019, Volume 6, Issue 2. ISSN-2349-5162.
- [10] S. Silviya, R.Balakrishnan, T. Tamizh Chelvam. Strong S₁-Near Rings. International Journal of Algebra, Vol. 4, 2010, no. 14, 685 – 691.
- [11] S.R. Veronica Valli, Dr.K. Bala Deepa Arasi, S.R. Shimony Rathna Kumari. On Regative Semigroups. Volume 11, Issue 6, June 2023International Journal of Creative Research Thoughts (IJCRT). ISSN: 2320-2882.

