www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882

IJCRT.ORG ISSN : 2320-2882

éb INTERNATIONAL JOURNAL OF CREATIVE
? RESEARCH THOUGHTS (1JCRT)
o

%a An International Open Access, Peer-reviewed, Refereed Journal

Jwt And Its Impact On The User And Application
Interaction

Manali R. Patil, 2Krrish M. Galicha, ®Pranali P. Jadhav, “Bhargav V. Kandalkar, °Sagar V. Chavan

IStudent, 2 Student, ® Student, 4 Student, *Head Of Department

1Computer Science and Engineering,
1Sanjay Ghodawat Institute, Kolhapur, India

Abstract: Today in our digitally driven world, maintaining reliable and swift interactions among individuals
and software programs has become increasingly crucial. The JSON Web Token (JWT) has become an
extensively utilized technique for managing authentication and access control within contemporary internet
applications [1][3]. This document investigates the role that JWT plays in shaping interactions between users
and software programs, focusing on aspects such as session handling, data protection, and overall usability.
Analyzing practical scenarios reveals how JSON Web Tokens improve system efficiency via lightweight
authentication methods while impacting scalability and shaping app architecture effectively [4]. Furthermore,
our discussion encompasses typical issues like token expiry, data management, and security threats, seeking
insights into their advantages alongside possible disadvantages. This study underscores how JWT
significantly influences creating robust and smooth interactions for users within contemporary software
environments.

Index Terms - JSON Web Token, Authentication, Access Control, Security, Session Management

I.INTRODUCTION

In today’s digital world, people interact daily with countless online applications—whether signing into social
networks, managing finances, or using cloud-based services. Ensuring user identity and protecting sensitive
information have become crucial responsibilities for developers [1].

JSON Web Tokens (JWTs) have emerged as a reliable solution for secure user authentication and permission
management. Unlike traditional methods that rely on storing session data on servers, JWTs use encrypted,
self-contained tokens to verify user identities [6]. This approach is especially effective for distributed or cloud-
based applications where scalability and efficiency are key.

While JWT offers benefits like faster login processes and simplified scalability, it also brings new challenges.
Developers must carefully manage token storage, validity duration, and protection against unauthorized
access. These factors directly influence user experiences such as login stability, session continuity, and access
control.

This paper explores how JWT impacts both users and modern applications. It examines how the technology
works, why it has become widely adopted, and its overall effect on cybersecurity, system performance, and
user interaction. The goal is to understand not only the strengths of JWT but also its practical limitations

IJCRT2510293] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | c460

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882
Il. LITERATURE REVIEW

In the traditional session-based authentication system, a user’s credentials are verified once, and the server
stores a unique session ID. Every time the user sends a request, the server checks this ID to confirm identity.
While this method works, it puts extra load on the server because it must keep track of active sessions [7].
Managing these sessions also becomes complicated when the application runs on multiple servers or cloud-
based platforms.

A JSON Web Token (JWT) works differently. It is divided into three sections — the Header, Payload, and
Signature — joined with dots [1][3]. The header specifies the type of token and the algorithm used, the payload
carries user details or access rights, and the signature ensures that the data has not been altered [6].

HEADER PAYLOAD SIGNATURE

VA W

{
{ e ;i Base64URLSafe(
"alg":"HS246", el S Ao HMACSHA256(<header>.
"typ":JWT" HRa " SBeiIge Whitey <payload>, <secret key>
}yp ’ "admin"; true,))p Y ’ y
"jat": 1516239022

}

Fig. 1 Structure of A JSON Web Token (JWT).

Unlike traditional systems, the JWT-based approach used in this paper is completely stateless [1][4]. After a
user logs in successfully, the server creates a signed token containing the user’s verified details and
permissions. This token is then sent to the client, which includes it with every future request. The server
simply verifies the token’s signature instead of searching stored session data, which makes the process faster
and more scalable [4][8].

The implementation in this study focuses on improving both security and performance by:

e Using short-lived tokens with strong signing algorithms such as HS256 or RS256,
e Adding token refresh and revocation features for better control [5], and

e Storing tokens in secure HTTP-only cookies to reduce risks like cross-site scripting (XSS).

This model minimizes server dependency, supports easy scaling, and enhances both user experience and data
protection — offering a more efficient and reliable alternative to traditional session-based methods.

I11. OBJECTIVES

° Learn about the fundamental composition and operation of JWTs within both web and mobile
platforms [1][3].

° Explore methods of utilizing JSON Web Tokens for facilitating secure access control within
contemporary software engineering projects.

° In order to evaluate how JSON Web Tokens impact the comprehensive user interaction across various
interfaces such as logins and sessions, this study focuses specifically on these areas.

° In order to assess how JWT affects application efficiency across metrics such as responsiveness,
expandability, and resource utilization by servers.

° Dive into examining how JWTs differ from conventional session cookies in securing access points.

[JCRT2510293] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org] c461

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882
° Identifying prevalent security flaws in JSON Web Tokens related issues like token theft or forgery is
crucial [5][7].

IV. ARCHITECTURE AND IMPLEMENTATION

4.1. Architecture
The design of a JWT-based authentication system focuses on secure and stateless communication between
the client (web or mobile application) and the backend server [1][3]. Once a user logs in successfully, the
server issues a digitally signed token that carries the user’s identity and access privileges.
The overall token flow can be summarized as follows:

1. User Authentication:

The client sends login credentials to the authentication server securely through HTTPS.

2. Token Generation:
After verification, the server creates a JWT containing essential claims such as user ID and role,
signing it with a secret or private key to ensure authenticity.

3. Token Storage:
The client receives and safely stores the token in local storage or an HTTP-only cookie for future

use.

[JCRT2510293] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | c462

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882
4. Accessing Resources:
For each API request, the client attaches the token in the Authorization header as Bearer <token>,
indicating that the request is from an authenticated user.

2y Auth Server [oy lEELEe J

o — User submits login credentials =

Verify
credentials

~f credentials valid

Generate and
sign JWT

PR |

- — — — Send JJWT - — — — -

Store JWT
securely

~ credentials invalid

< - Return authentication error — - @

Request resource
{Authorization:

⁢token>:)
(E
Validate JWT
signature
~ ftoken valid
=)
] Check user
ralesf/permissio
ns

— sufficient permissions

€ - — — — — — —Grant access o resourge — — — — — — — = @

™ Tnsufficient permissions .~ T T T T T T T

- Deny access (insufficient [e

permissions)
= Token invalid/expired |~ T~ -~ -~ -~ T~ - T T T-To|TT T T T T T T T
Deny access (invalid or expired
=== - tokeny T T — T — —— D
£ token expired
® _ Request new JWT (refresh
token)

Validate refresh
oken

~~ refresh valid

> refresh invalid
. Deny refresh, require re- ~ .

authentication °
S [C’ ENE J

Fig.2 Sequence Diagram of JSON Web Token (JWT) authentication.

5. Token Validation:
The server verifies the token’s signature, checks its expiration time, and confirms the user’s role or
permissions before granting access.

6. Token Expiration and Renewal:
Each token has a limited validity period to reduce misuse risks. Once expired, users must log in
again or use a refresh token to obtain a new one.

7. Logout and Invalidation:
When users log out, the client deletes the token. In advanced systems, the server may also blacklist
tokens suspected of compromise.

IJCRT2510293 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | c463

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882

This design provides security, scalability, and session independence, ensuring efficient handling of
authentication in modern distributed systems while maintaining a seamless user experience.

4.2. Implementation
The implementation of JWT varies across platforms but follows the same logic of issuing, validating, and
managing tokens. Its practical applications enhance both user interaction and system security across multiple
domains.
Key use cases include:

1. User Authentication and Authorization:

JWTs verify users and define their access levels — for example, assigning roles like Admin, HOD,
Teacher, or Student in an academic platform.

2. Single Sign-On (SSO):
JWTs enable users to log in once and access multiple interconnected applications, such as
attendance, library, and exam systems, without repeated authentication.

3. Secure APl Communication:
APIs use JWTs to confirm user identity without resending credentials, improving security and
performance.

4. Cross-Platform Integration:
JWT works effectively in both web and mobile applications, allowing a consistent authentication
mechanism across devices.

5. Session Management:
Since JWTs are self-contained, they eliminate the need for server-side session storage, making the
system lightweight and scalable.

6. Enhanced Security with MFA:
JWTs can support Multi-Factor Authentication by including additional claims once secondary
verification (like OTP) is completed.

7. Temporary Access Control:
Time-bound JWTs allow temporary access to resources, automatically expiring after the defined
duration.

8. Audit and Monitoring:
JWT metadata such as issue time and expiry assist in tracking user activity and identifying abnormal
access behavior.

V. PERFORMANCE

Performance plays a vital role in determining the effectiveness of any authentication mechanism. In systems
that handle numerous simultaneous users, the speed of authentication and the efficiency of data exchange
directly impact the overall user experience.

5.1. Response Time

In traditional session-based authentication, user session data is stored on the server and validated with every
request. While this ensures reliability, it also adds processing overhead, as the server must continuously
retrieve and verify session information. As the number of users grows, this leads to higher memory usage and
slower response times, especially under heavy traffic conditions.

JWT-based authentication, on the other hand, operates without maintaining session data on the server. Once
atoken is issued, it carries all the essential user details, enabling the server to simply verify its signature during
subsequent requests. This stateless nature eliminates the need for database lookups, resulting in faster response

[JCRT2510293] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org] c464

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882

times and improved scalability, particularly in cloud or distributed systems where multiple servers handle
requests.

Performance comparisons show that JWT systems generally experience lower latency during authentication
because validation depends only on cryptographic verification instead of accessing stored session data.
However, token size and the complexity of encryption algorithms can slightly impact processing speed,
though the effect is minimal compared to the overall efficiency and responsiveness gained through JWT [4].

5.2. Session vs JWT

Aspect

Session

JWT

Response Time

Slightly slower due to session
retrieval and validation on each
request.

Faster as no session lookup is
required; only token verification.

Server Load

High — server stores and
manages all session data.

Low — stateless; no session
storage needed.

Scalability

Limited, as scaling requires
session replication across
servers.

Highly scalable due to stateless
design; easily distributed.

Authentication Speed

Dependent on database or in-
memory session lookups.

Relies on cryptographic
verification, typically faster.

Best Suited For

Small-scale or single-server
applications.

Large-scale, distributed, or cloud-
based systems.

VI. THREAT MODEL AND ASSUMPTIONS

6.1. Threat Model
In systems using JSON Web Tokens (JWTSs), identifying potential threats is essential to maintain user privacy
and application security. The following are the main risks considered in this research:

e Token Theft and Replay Attacks

If a valid JWT is exposed through insecure storage (like browser local storage or cookies), attackers
can reuse it to impersonate users until it expires, leading to unauthorized data access.

e Token Tampering and Forgery
Weak signing algorithms or poor verification methods can allow attackers to alter token contents. If
the server fails to validate the signature properly, it may unknowingly accept modified tokens.

e Cross-Site Scripting (XSS)
Unsafe input handling can let attackers inject malicious scripts that steal JWTs stored in the browser,
compromising user sessions and data privacy.

e Insufficient Token Expiry
Long-lived tokens increase the risk of misuse. If stolen, such tokens grant attackers prolonged access
even after the legitimate user logs out.

e No Revocation Mechanism
Since JWTs are stateless, they remain valid until expiration. Without a proper revocation or refresh
system, compromised tokens cannot be quickly invalidated.

[JCRT2510293] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org] c465

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882

Man-in-the-Middle (MITM) Attacks
Transmitting JWTs over unencrypted connections (without HTTPS) allows attackers to intercept and
misuse tokens during data transfer.

Excessive Token Information
Storing sensitive user details like roles or emails inside JWT payloads is risky, as JWTs are only
encoded, not encrypted, and can be easily decoded.

Third-Party Dependency Risks
Relying on external authentication libraries or APIs can introduce vulnerabilities if those
dependencies are not securely managed or updated.

Token Theft and
Replay Attacks

No Revocation
Mechanism

> Man-in-the-Middle

(MITM) Attacks

Token Tampering
and Forgery 5

Excessive Token
Information

Cross-Site J WT

Scripting (XSS)

Insufficient
Token Expiry

Third-Party
Dependency Risks

No Revocation
Mechanism

Fig.3 Threat Model of JSON Web Token (JWT)

6.2. Assumptions
To define the boundaries of this research, several assumptions are made:

Secure Communication
All data exchanges between the client and server use HTTPS to protect tokens in transit.

Strong Key Management
JWTs are signed using securely stored and regularly rotated secret or public/private keys (e.g.,
HS256 or RS256).

Trusted User Devices
User systems are assumed to be free from malware or malicious extensions capable of stealing
tokens.

Valid Token Issuance
Tokens are generated only after successful user authentication through verified credentials.

Limited Token Lifespan
Each JWT has a defined expiration time, supported by a secure refresh token mechanism for
extended sessions.

Proper Signature Verification
Servers always verify the signature, expiration, and claims of every JWT before granting access.

Non-sensitive Payload Data
JWT payloads contain only essential authorization information, avoiding personal or confidential
data.

IJCRT2510293 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | c466

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882
e Revocation and Blacklisting
Systems maintain a method to revoke or blacklist tokens immediately if misuse or suspicious
activity is detected.

VIl. USER EXPERIENCE

JWT significantly enhances user experience by enabling smoother and faster authentication processes. Since
tokens are self-contained and do not rely on server-stored sessions, users experience quicker logins and
minimal delays when accessing protected resources. The stateless nature of JWT also allows seamless
navigation across multiple platforms or devices without repeated sign-ins, improving convenience and
consistency [4].

Additionally, features like token expiry and refresh mechanisms ensure that users stay logged in securely
without frequent interruptions. This balance between usability and security makes JWT-based systems more
responsive, reliable, and user-friendly compared to traditional session-based authentication.

VIIl. BENEFITS AND LIMITATIONS
8.1. Benefits

JSON Web Tokens (JWT) have become one of the most widely adopted mechanisms for authentication and
authorization in modern systems due to their efficiency, integration, and scalability. Unlike traditional session-
based authentication, JWT operates in a stateless manner — the server does not need to maintain session data
for each user. This eliminates the server-side overhead for storage and makes scaling simpler.

Furthermore, JWTs are platform-agnostic and lightweight, allowing seamless use across web browsers,
mobile devices, and APIs. Since the token itself contains the necessary claims, authentication can be
performed quickly without repeated database queries, thereby improving response time and overall
throughput.

The inclusion of a signature also ensures that data integrity is preserved. Modification to the token payload
can be easily detected by verifying the signature on the server side. Additionally, the ability to define custom
claims within the payload allows for customized and flexible user authorization based on roles or access
levels.

Overall, JWT enables faster, scalable, and cross-platform authentication mechanisms suited for cloud-based
and API-driven ecosystems.

8.2. Limitations

Despite its advantages, JWT is not devoid of challenges. One major drawback is the difficulty of token
revocation. Once issued, a JWT remains valid until its defined expiry time, lacking a central session store to
invalidate it. This creates security concerns when tokens are compromised, this requires developers to
implement additional revocation or blacklist mechanisms.

Token size is another concern. Because JWTs contain multiple fields encoded in Base64, they are significantly
larger than traditional session identifiers. This can slightly impact bandwidth and performance when tokens
need to be transmitted frequently, such as in high-traffic API systems.

Security risks also arise if tokens are stored improperly. Many developers use browser local Storage, which
can be accessed via malicious scripts (XSS attacks). Additionally, JWTs are only signed, not encrypted —
the payload data is fairly easily viewable if intercepted. Sensitive information therefore should never be stored
directly inside a token.

Finally, implementing secure refresh mechanisms and managing token lifecycles can add complexity to the
system.

[JCRT2510293] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org] c467

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882

In summary, JWT provides excellent scalability and performance benefits but demands careful handling and
implementation to maintain confidentiality and revocation control.

IX. FUTURE SCOPE

With the growing adoption of JWT in web and mobile ecosystems, future research and development are likely
to focus on improving its security, revocation, and lifecycle management [5][8]. A promising direction
involves creating hybrid authentication models that combine the scalability of JWT with the control of
traditional session systems. This could allow servers to retain selective revocation capabilities without
reintroducing heavy state management.

Emerging standards such as PASETO (Platform-Agnostic Security Tokens) are designed to address some of
JWT’s cryptographic weaknesses by enforcing more secure encryption algorithms and simplifying
implementation [5]. As organizations transition toward zero-trust security architectures, JWT could evolve to
include enhanced claim verification, revocation methods, and context-aware validation.

Another area of potential advancement is automated anomaly detection using machine learning, enabling real-
time detection of token misuse or abnormal authentication patterns. Furthermore, blockchain-based identity
systems and decentralized authentication models may leverage JWT-like tokens for trustless identity
verification in distributed environments.

In essence, the future of JWT lies in increasing its security adaptability and interoperability, ensuring it
continues to serve as a robust standard for secure, stateless communication between users and applications.

X. CONCLUSION

This research examined the role of JSON Web Tokens (JWT) in modern authentication systems and evaluated
their effect on both user experience and application architecture. Through analysis of design, performance,
and threat models, it becomes evident that JWT introduces a powerful approach to secure communication
between clients and servers. By encapsulating claims within a signed token, JWT reduces dependency on
centralized session storage and enhances scalability, making it well suited for distributed web systems and
API-based services [5][7].

However, this advancement comes with certain challenges. The lack of built-in revocation mechanisms, the
risk of token theft, and the visibility of unencrypted payload data highlight the importance of careful
implementation. JWT is not a one-size-fits-all solution as its effectiveness depends largely on how it is
integrated into the broader authentication system.

In conclusion, JWT represents a significant step forward in user—application interactions by enabling stateless,
efficient, and flexible authentication. Its future success will depend on ongoing improvements in token
management and security frameworks, as well as continued research into safer, more adaptive alternatives
that balance convenience and protection.

[JCRT2510293] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org] c468

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882
XI. REFERENCES

[1]D. Hardt, RFC 7519: JSON Web Token (JWT), Internet Engineering Task Force (IETF), 2015.

[2] Massachusetts Institute of Technology: https://courses.csail.mit.edu/6.857/2022/projects/Fu-Liu-
Liu-Wong.pdf

[3]JRFC 7519 - JSON Web Token (JWT): https://datatracker.ietf.org/doc/html/rfc7519

[4]A. Osinowo, M. T. Ayo, and L. O. Kehinde, “Performance Analysis of JWT Authentication in Web
Applications,” |IEEE Access, vol. 9, pp. 120342-120351, 2021.

[5]J. Bradley and N. Sakimura, “JSON Web Token Best Current Practices,” IETF Draft, 2023.

[6] Jones, M. B., Bradley, J., & Sakimura, N. (2015). JSON Web Token (JWT). RFC. https://www.rfc-
editor.org/info/rfc7519

[7] Ahmed, S. and Mahmood, Q. (2019) An authentication based scheme for applications using JSON web
token’, 2019 22nd International Multitopic Conference (INMIC) [Preprint].
d0i:10.1109/inmic48123.2019.9022766.

[8] Dalimunthe, Syabdan, et al. ‘Restful API Security Using JSON Web Token (JWT) With HMAC-Sha512
Algorithm in Session Management’. IT Journal Research and Development, vol. 8, no. 1, Dec. 2023, pp. 81—
94. DOIl.org (Crossref), https://doi.org/10.25299/itjrd.2023.12029.

[9] Ahmed, Salman, and Qamar Mahmood. ‘An Authentication Based Scheme for Applications Using JSON
Web Token’. 2019 22nd International Multitopic Conference (INMIC) [Islamabad, Pakistan], 2019, pp. 1-6.
DOl.org (Crossref), https://doi.org/10.1109/INMIC48123.2019.9022766.

IJCRT2510293] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | c469

http://www.ijcrt.org/
https://courses.csail.mit.edu/6.857/2022/projects/Fu-Liu-Liu-Wong.pdf
https://courses.csail.mit.edu/6.857/2022/projects/Fu-Liu-Liu-Wong.pdf
https://datatracker.ietf.org/doc/html/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://doi.org/10.25299/itjrd.2023.12029

