www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882

IJCRT.ORG ISSN : 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE
9 RESEARCH THOUGHTS (1JCRT)
«*" An International Dpen Access. Peer-reviewed, Refereed Journal

dh
D’

MAHABHARAT MEETING PYTHON:

A Narrative-Based Approach to Teaching Programming Basics

IMr. Neelotpal Dey, 2Er. Shakshi Verma, 3Mr. Ashutosh Kumar Dubey, *“Ms. Akarshika Pandey

'Head Of Department CS & TnP, Assistant Professor, 2Assistant Professor, “Student
!Computer Science,
IMicrotek Group of Institution, Varanasi, India

Abstract: Programming, in a nutshell, represents a systematic form of reasoning that aligns human thought
processes with machine execution. This paper proposes an innovative way of teaching Python programming
through analogies and stories borrowed from the Mahabharata, India's great epic. Due to its simplicity, clarity,
and object-oriented architecture, Python is an ideal medium for conceptual knowledge when combined with
culture-friendly teaching methods. The study utilizes a constructivist and experience-based learning paradigm
to design a four-stage instructional framework consisting of the identification of concepts, mythological
mapping, narration of exemplars, and reflective abstraction. In such an instructional design, students make
connections between programming constructs—conditionals, loops, functions, etc. and the logical narration
of events in epics, such as Arjuna's moral dilemmas or the repetitive pattern of dharmic actions in the
Kurukshetra war. This design encourages learners' cognitive internalization of coding principles through
analogical reasoning in their cultural background, thus boosting their engagement, conceptual knowledge, and
information retention. The methodology also simultaneously facilitates the integration of Indian Knowledge
Systems (IKS) with STEM education by reframing programming as a humanistic, moral, and intellectual
endeavor rather than an exclusive mechanical duty. The study concludes that contextual and narration-based
instruction greatly enhances computational thinking along with cultural relevance, thus integrating ancient
wisdom with modern pedagogy.

Keywords: Python Programming, Mahabharata, Constructivist Pedagogy, Narrative-Based Learning,
Culturally Responsive Education, Computational Thinking, Analogy-Oriented Instruction, Indian Knowledge
Systems (IKS), Algorithmic Reasoning, Experiential Learning.

I. INTRODUCTION

Programming is the science of directing computers to perform tasks with precision, efficiency, and purpose. It
serves as the bridge between human reasoning and machine processing, transforming abstract ideas into
concrete results through algorithmic thinking (Sebesta, 2018). Among modern programming languages, Python
stands out for its simplicity, readability, and object-oriented design—qualities envisioned by its creator, Guido
van Rossum, in the late 1980s (Van Rossum & Drake, 2009). Its adaptability—from data analysis and Al to
automation and web development—has made it a preferred tool for both students and professionals.
Interestingly, the timeless wisdom of the Mahabharata offers an engaging cultural lens to comprehend these
same logical principles. Far from being only a tale of gods and warriors, the epic reflects systematic reasoning,
structured order, and strategic decision-making that parallel the architecture of programming. Its accounts of
divine communication networks, sophisticated cosmic weapons (Astra-Shastra), and precise battle strategies
reveal a clear sense of algorithmic thinking (Rao, 2012; Subbarayappa, 2014).

Through a modern lens, the warriors and sages of the Mahabharata can be seen as applying the fundamentals
of computational thinking: sequences, conditional decisions, iterative processes, and modular problem-solving.
Every event followed a logical flow of cause and effect—much like a well-structured program. Python, with

IJCRT2510220] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | b811

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882
its clarity and human-centred design, encapsulates the same harmony of logic and intuition that ancient Indian
philosophy upheld. In this way, programming becomes more than a technical skill—it continues humanity’s
age-old pursuit to bring order, meaning, and structure to life’s complexity.

Il. LITERATURE REVIEW

Effective programming education goes beyond teaching syntax; it focuses on helping learners form accurate
mental models of computational processes. Constructivist learning theory supports this approach, emphasizing
that students build new knowledge by connecting it to prior understanding and through social interaction.
Piaget’s work highlights the role of experiential learning in

while Vygotsky stresses the social and dialogic nature of learning, especially guided interaction within the
Zone of Proximal Development . Together, these perspectives point toward embedding new technical ideas
within learners’ existing cognitive and cultural frameworks. Narratives and stories have long been valued as
effective teaching tools. In technical subjects, stories give abstract concepts concrete meaning, boost
motivation, and enhance memory through emotional engagement. Research in computing education shows that
story-driven, contextualized activities—such as media computation or domain-specific projects—improve
student motivation and retention by providing visible, meaningful outcomes for abstract tasks. Storytelling also
promotes transfer of learning, as students can apply familiar narrative logic to new problem contexts. Within
Computer Science education, culturally grounded analogies and metaphors help bridge everyday experience
and technical content. These analogies, when clearly bounded and explained, assist learners in building
“notional machines”—mental representations of how programs execute—and can reduce misconceptions.
Embedding analogies in familiar cultural contexts increases both cognitive accessibility and emotional
engagement. Indian education policies, notably the National Education Policy (2020) and AICTE guidelines,
advocate the inclusion of Indigenous Knowledge Systems (IKS) to make learning culturally relevant, holistic,
and deeply connected to the learner’s identity.

Together, the strands—constructivist learning theory, narrative-based pedagogy, and culturally situated
analogy—form an intertwined theoretical basis for design of Python instruction invoking Mahabharata
references. The constructivist account makes acceptable the connection of new programming ideas to learned
schemas; narrative pedagogy explains why contexts for stories make abstract things intelligible; and work on
metaphors explains how to design mappings that set up correct mental models but not incorrect
correspondences. The following three design rules are prompted by the literatures for this study:

(1) Choose stories that are culturally familiar but intrinsically illustrate the programming layout.
(2) Explicitly map story elements onto program constructs and discuss the limitations of analogy.
(3) Interleaving narrative explanation with code practice so that the students test and practice comprehension.

I1l. METHODOLOGY / FRAMEWORK

The methodological underpinning of this investigation is grounded in analogy-oriented, culturally situated
pedagogy, which exists within the frameworks of constructivist and experiential learning theories. The aim is
to illustrate how the incorporation of well-known cultural and narrative allusions—particularly those derived
from the Mahabharata—can improve students' understanding of the fundamental concepts in Python
programming. This framework integrates narrative cognition, cultural relevance, and conceptual mapping to
foster a significant educational experience.

3.1. Educational Philosophy
The pedagogy is premised on three main pedagogic principles:

1. Constructivism suggests that students actively build understanding by synthesizing new information with
their pre-existing cognitive structures. The Mahabharata, with its cultural importance and emotional
appeal, presents a deep list of metaphors that help students match abstract coding principles with tangible
story structures.

2. Contextual and Experiential Learning: Abstract programming ideas lay their foundation on human
experience. Through the integration of technical concepts in narratives, moral dilemmas, and strategic
decisions from the epic, students learn coding as narration rather than mechanical syntax.

IJCRT2510220] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org] b812

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882

3. Dual Coding and Analogy: It utilizes both verbal description and symbolic correspondence. Mythological
events (e.g., cycles of Kurukshetra war, interventions of gods, moral conditionals) form cognitive
scaffolding that externalizes Python's logical structures.

3.2 Instructional Design
The instructional design pertinent here is of the four-phase implementation cycle type:

1. Concept Identification: Every Python construct is examined for basic purpose and logic.

2. Mythological Cart: The relevant event, conversation, or character from the Mahabharata is chosen that
illustrates the same logical or philosophical structure.

3. Narrative-Based Example: The teacher explains the mythological scene side by side with a live or on-
paper demonstration of the Python code, mapping each element of the story with corresponding code
elements.

4. Reflection and Abstraction: The students are directed to explain, based on the mythological analogy, the
programming concept. Then they generalize the acquired knowledge into python formal syntax and
definitions, thus consolidating their conceptual knowledge.

3.3 Foreseen Educational Outcomes
This research design attempts to achieve the following outcomes:

e Advanced Conceptual Understanding: Learners connect coding constructions with moral and logical
models of reasoning from mythology.

e Improved Retention and Focus: Storytelling stays interesting and offers emotional nuance.

e Cultural Relevance: Encourages pride and identity in Indian knowledge systems while learning world
technical knowledge. Interdisciplinary thinking combines analytical programming with philosophical and
moral contemplation.

The framework thus proposed bridges the ancient with the modern, combining rationality with myth, and
positions the Mahabharata as simultaneously a text of dharma and a lasting fount of structured, algorithmic
thought.

1VV. MAPPING PYTHON CONCEPTS WITH MAHABHARATA ANALOGIES

The Mahabharata, India’s timeless epic, is more than a story of war and dharma—it is a guide to logic, ethics,
and intelligent decision-making. Its lessons connect strikingly with the principles of Python programming,
where clarity, structure, and purpose define success. Krishna acts as the divine interpreter, translating cosmic
wisdom into human understanding, much like the Python interpreter converts human-readable code into
machine language. Arjuna’s journey from confusion to insight mirrors the debugging process, where a
programmer patiently identifies and resolves hidden errors. The Pandavas represents modular programming,
each brother a unique module contributing to a shared goal—while the hundred Kauravas signify redundancy,
repetition, and the need for controlled iteration. Draupadi’s Vastra Haran symbolizes exception handling,
where disaster is averted through moral strength and quick recovery. Yudhishthira, with his devotion to
dharma, embodies coding best practices—ethical, readable, and reliable. The battlefield of Kurukshetra itself
becomes an IDE, a space for testing strategies and refining understanding under pressure. Blending mythology
with coding makes learning both technical and imaginative. For Indian learners, this approach transforms
programming into a story of creativity and wisdom—where ancient insight meets modern logic, and coding
becomes a way not just to build systems, but to understand the deeper order of knowledge itself.

4.1 Variables and Data Types — Roles and Attributes of Characters

In any program, the variable is an information holder. They are assigned values that will vary as the plot of the
program is revealed. Using the great epic Mahabharata, we may consider each character as variable - each
assigned certain characteristics, emotions, and roles that will vary as the story unfolds. Arjuna, for instance, is
the variable for bravery, but the value itself will vary under the barrage of fight by way of ethical doubt. Now
the assigned value is the fixed value Krishna - a const value for wisdom that informs all metamorphosis. The
point for student is that variables are not abstract but are tangible within the text. They evolve, modify, and

IJCRT2510220] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org] b813

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882

reload, if you will, much like Mahabharata's characters. If translated into the code of Python program, this
becomes something like:

Bhima could be seen as a variable representing strength. At the start of the epic, his might is absolute and
unwavering:
bhima strength = 100

But as the story unfolds, that same variable might take on new meanings-his strength is not always physical
but sometimes emotional or strategic. This change in value reflects how variables in programming can be
redefined to hold new data as the situation demands:

bhima strength = "strategic power"

Similarly, Draupadi can be imagined as a variable representing honor:
draupadi honor = "intact"

When events challenge her dignity, this variable temporarily changes state:
draupadi honor = "questioned"

Eventually, as the story reaches its resolution, her value is restored:
draupadi honor = "redeemed"

These evolving variables remind us that in both programming and storytelling, meaning is rarely static. Just
as each Mahabharata character transforms through experience, variables in Python carry the power of
transformation—Dbridging logic and life through dynamic representation.

Arjun Bhim Yudhisthir

[emotion J [strength } { truth]

Ilustration 1: different Mahabharata characters can be mapped as variables and their attributes as data
types- Arjuna (string: emotion), Bhima (integer: strength), and Yudhishthira (boolean: truth).

4.2 Conditional Statements — Arjuna’s Moral Decision Guided by Krishna

Conditional statements in Python are the decision-makers of a program. They control the flow of execution
based on logical tests, determining which path the program should take under particular circumstances. Just as
life presents us with moral and strategic choices, programming, too, demands that the computer “choose”
between alternatives. In the Mahabharata, the most striking example of such decision-making appears on the
battlefield of Kurukshetra, when Arjuna—the skilled archer and hero—faces a moral crisis. His heart is torn
between two forces: his duty (dharma) as a warrior and his emotional attachment to family and teachers
standing on the opposite side. This hesitation mirrors a program encountering a branching point—an if-else
structure—where the next step depends upon the evaluation of a logical condition. Krishna, acting as both
divine guide and spiritual debugger, steps in to restore clarity. His counsel in the Bhagavad Gita can be viewed
as the guiding logic of an algorithm that resolves internal conflicts.

IJCRT2510220] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | b814

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882

 if (arjuna_choice ==
“follow_dharma")
action = "fight”
else action
= “refrain”,

Illustration 2: Concept of conditional statement

If we were to express Arjuna’s moral logic in Python-like pseudocode, it might appear as follows:

if adherence to dharma > emotional attachment:
act in battle()
else:

withdraw ()

Here, adherence_to_dharma and emotional_attachment represent variables in Arjuna’s mind, their
comparison determining his final decision. The condition evaluates to “True” only when duty outweighs
emotion. Krishna’s teaching, therefore, represents the logical operator that clarifies and executes the correct
branch of the code—transforming indecision into purposeful action.

This moral logic aligns with the constructivist notion that human decision-making is shaped by internalized
cognitive schemas [3]. In pedagogical terms, students understand branching statements more intuitively when
these decisions are framed as part of familiar ethical or emotional narratives. Just as Arjuna evaluates his
circumstances through inner dialogue, a program evaluates its conditions through Boolean expressions (True
or False).

Simple if: if-else
Arjuna’s Target Yudhishthira's Path Choice

if-elif-else Nested if:

if<lif-¢lse ladder: Bhima's Obstacle Evaluation Nested if: Krishna's Advice to Arjuna

4.3. Types of Conditional Statements (lllustration 3)

Python provides several forms of conditionals, each reflecting a different depth of reasoning—just as Arjuna’s
moral reflections evolved through layers of dialogue with Krishna.

4.3.1. Simple if Statement

The simplest form of decision-making involves a single condition. If the condition is true, the code block
executes; otherwise, the program moves on.

In Mahabharata terms, this is akin to Bhishma’s vow of lifelong celibacy—an unconditional statement that
executes once the condition of “father’s happiness” is true.

IJCRT2510220] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | b815

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882
if vow to father == True:

remain unmarried = True

4.3.2. if-else Statement
The if-else construct allows for binary choice—executing one path when the condition holds, and another
when it doesn’t. Arjuna’s moral debate embodies this type perfectly.

1f adherence to dharma > emotional attachment:
act in battle()

else:
renounce war ()

Just as Arjuna ultimately chose the if branch—duty over despair—students learn that every condition in
code demands clarity and consequence.

4.3.3. if-elif-else Statement

When multiple conditions exist, Python allows a chain of tests using elif (else if). This structure captures
more complex decision hierarchies, much like Yudhishthira’s rational deliberations. As the eldest Pandava,
Yudhishthira often weighed several moral truths before acting.

if dharma == "personal":
meditate ()

elif dharma == "social":
perform rituals()

elif dharma == "warrior":
fight for justice()

else:
seek guidance from krishna ()

Each branch represents a distinct layer of moral evaluation, showing students how conditionals help
computers handle multifaceted logic just as humans handle moral complexity.

4.3.4. Nested if Statements

Nested conditionals, where one if statement lies inside another, mirror strategic depth—decisions within
decisions. Consider Krishna’s battle strategy for the Pandavas: he often advised them to make one decision
only after evaluating another, creating layered logic similar to nested conditions.

if war == True:
if arjuna confidence < 50:
motivate (arjuna)
else:

commence battle ()

Here, the inner if refines the decision based on Arjuna’s emotional state, illustrating how nested
conditionals allow nuanced control over a program’s flow.

4.4. Loops and Iterations — The Eighteen-Day Kurukshetra War Cycle

The loop as used in programming is an efficient construct that does something over and over till something is
achieved or something doesn't hold. The loop gets the program to repeat doing something, refining the
outcome by repeated trial. Loops are fundamentally the spirit of sticking to things, adapting to things, and
changing values well imbibed by the spirit of the Mahabharata. The Kurukshetra war lasting for eighteen days
is the best example of iteration. Each subsequent day's battle presented new formations (vyuhas), novel
strategies, and teachable morals. The Pandavas and the Kauravas fought with discriminative sharpness; far
from acting out of whim, they analysed the results of each subsequent day's battles, took stock of their errors,
and perfected their strategies. The cycle repeats itself over and over like the execution cycles of the programme
on the computer—successive iterations toward the end or toward illumination.

IJCRT2510220] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org] b816

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882

Illustration 4: For loop representation

This iteratively unfolding extract is the process the warriors went through by iterative learning. One loop is
one war day, with development by repeated cycles. The condition range (1, 19) sets the limit of the loop - the
eighteen cycles - just as the destiny had dictated the length to the Mahabharata's war.

4.5. Types of Loops in Python and Their Mythological Parallels

For Loop Whileop

d)Loops

3. \‘*. i.’**ﬁ £/

M K

Illustration 6: Types of loop
4.5.1. The for Loop — A Recurrent Obligation

The for loop is predictable and orderly, performing a defined number of iterations, as orderly as the well-
disciplined army of the Pandavas. Each day of the surroundings under attack was equivalent to one specific
iteration during the loop cycle, each general and soldier executing predetermined tactics under the direction
given by Yudhishthira. In this case, each soldier's function in the iteration reflects how repetitive order leads
to development. The for loop is the orderly quest for meaning, reflecting the pace and predictability of daily
campaigns.

4.5.2. The while Loop — Perseverance Through Uncertainty

In contrast to the for loop, the while loop operates continuously until a specified condition is rendered false.
It embodies the essence of perseverance and the readiness to persist in the face of uncertainty—attributes
prominently exemplified by Karna and Bhishma, whose unwavering dedication and determination persisted
throughout their lives. This paradigm is an analogy for the mental resilience shown by the Pandavas, as they
IJCRT2510220 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | b817

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882

persevered until the success of their mission. Just as the condition is tested for any while loop during each
cycle, the fighters continually tested their strength, convictions, and ethical judgment daily. The while loop
also instils the lesson that resolve must be tempered by awareness; where the condition is not permitted to re-
evaluate itself nor even permitted to change, the result is an infinite loop, much as stubborn resolve without
reflection generates dead ends.

4.5.3. Nested Loops — Strategies Within Strategies

Every so often, even one loop is nested inside another—these are nested loops, degrees of sophistication. In
the Mahabharata, the planning by Krishna often had multiple phases of thought. A military plan would have
a general strategy level (outer loop) and one-on-one duels or missions (inner loop). This nested order is an
extension of the process where each daily interaction had multiple secondary battles, each leader experiencing
varied obstacles within the general conflict. Nested loops, as complex as they are, are systematic processes
where one can manage complex, multi-level actions like the way Krishna orchestrated each level from
universal foresight to worldly activity.

4.5.4. Endless Cycles — The Process of Samsara

A loop never to cease—unless intentionally terminated—is an infinite loop. Although by all means
programmers are cautioned against infinite loops, there is the philosophical analogy from the Mahabharata,
the cycle of death, birth, and rebirth (Samsara). Unless by way of self-realization (break), the soul will end up
repeating patterns ad infinitum.

4.6. Lists and Dictionaries — Representation of Armies, Alliances, and Genealogies

Lists and dictionaries are fundamental data structures in Python that allow programmers to organize and
retrieve information efficiently. In the vast and intricate world of the Mahabharata, such organization is
indispensable. Thousands of characters, clans, and subplots interact dynamically - mirroring the structured
storage and quick access of information that Python offers through lists and dictionaries. In essence, a list
represents a sequence — an ordered collection of related elements. It is perfect for storing entities that share a
similar nature or belong to the same group.

The five Pandava brothers, for instance, form a list—united in purpose yet distinct in identity:
pandavas = ['Yudhishthira', 'Bhima', 'Arjuna', 'Nakula', 'Sa-
hadeva']
Each element can be accessed using an index, much like recalling any one brother’s qualities or role in the war.
For example:
print (pandavas([2])

Here, Python retrieves Arjuna—the third element of the Pandava list—just as a storyteller might highlight him
in the narrative.

A dictionary, on the other hand, stores data in key-value pairs, much like genealogical records that map names
to attributes, qualities, or relationships. The Mahabharata’s complex web of kinship and virtue lends itself
beautifully to this structure:

kurus = {

'Yudhishthira': 'Truthful and Wise',
'Bhima': 'Strong and Impulsive',
'"Arjuna': 'Disciplined and Focused',
'"Nakula': 'Graceful and Skilled',
'Sahadeva': 'Insightful and Loyal',
'Duryodhana': 'Ambitious and Proud',
'Karna': 'Generous yet Misunderstood'

}

Here, each key (the name) points to a value (the defining quality). Just as Krishna could recall the strengths
and weaknesses of every warrior, Python instantly retrieves the value associated with any key:

print (kurus['Karna'])

IJCRT2510220] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org] b818

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882
Output: Generous yet Misunderstood

Now, imagine expanding this idea. The Mahabharata is not just a tale of two families—it is a vast database of
relationships, alliances, and moral codes. We can represent alliances and opposing forces using nested data
structures:

mahabharata = {
'Pandavas': ['Yudhishthira', 'Bhima', 'Arjuna', 'Nakula', 'Sa-
hadeva'l],
'Kauravas': ['Duryodhana', 'Dushasana'] + ['Brother' + str (i)
for i in range (3, 101)],
'Allies': {
'Pandavas': ['Krishna', 'Drupada', 'Shikhandi'],
'Kauravas': ['Karna', 'Shakuni', 'Ashwatthama']

}

This structure beautifully represents the scale of the epic: multiple levels of organization, like armies within
alliances, each holding information about warriors and their attributes. For a student learning Python, such
mapping provides a story-driven way to grasp the concept of data nesting — how one structure (dictionary)
can hold another (list or even another dictionary) within it. Just as Vyasa organized the Mahabharata into
structured parvas (sections), a programmer uses data structures to maintain order in complexity. Both seek
clarity through categorization.

4.7 Exception Handling — Resolution of Crises and Divine Correction
o o

Illustration 5: Depicting Draupadi and Abhimanyu Exception -

All software have exceptions and Every program faces errors - unexpected events that need to be managed to
prevent program failure. In the Mahabharata, episodes of ethical or existential distress serve this role. When
humiliation befell Draupadi within the Kaurava court, the gods intervened; when Abhimanyu found himself
trapped within the Chakravyuha, the chips were down. These episodes demonstrate the way the epic teaches
lessons on resilience and response strategies both factors very analogous to what exception handling does in
software.

Using the try-except block analogy, one might say:

try:
execute dharma ()
except adharmaError:
krishna intervenes ()

4.8 Modules and Packages — The Mahabharata’s Parvas as Structured Code Organization

With the capability to work with packages and modules in Python, one is able to break up big programs into
bite-sized pieces. Similarly, the Mahabharata is broken into eighteen Parvas (books), each discussing varied

IJCRT2510220 | International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | b819

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882

events but collectively constituting one single epic. This structured organization is equivalent to how the
programmer separates an immense system into minuscule, independent, and reusable modules [3]

Python modules encourage clarity, cohesion, and maintainability—principles that align closely with the
Indian philosophical ideals of rta (cosmic order) and dharma (right structure) that guide the Mahabharata’s
narrative design (AICTE, 2022). Each Parva functions like a dedicated Python module: it can stand alone, yet
when imported into the larger story, contributes meaningfully to the unified epic [4]

For instance, the Bhishma Parva—where Krishna delivers the Bhagavad Gita—operates like a spiritual sub-
module, containing moral algorithms and logical structures that can be “invoked” whenever cthical dilemmas
arise. The Sabha Parva, dealing with courtly governance, mirrors an administrative logic module, where
rules, policies, and exceptions are processed systematically [6].

This conceptual parallel helps learners appreciate modular programming not as a mechanical act but as a
philosophical design process that reflects human cognition and culture [1,2]. Just as Krishna’s counsel can be
reused across contexts, a Python module can be imported repeatedly to serve different parts of a program [5].

Example

If we imagine each Parva as a distinct Python file, the entire Mahabharata could be visualized like this:

import adi parva
import sabha parva
import bhishma parva
import shanti parva

def mahabharata() :
adi parva.introduction ()
sabha parva.governance logic()
bhishma parva.ethical discourse ()
shanti parva.reflection and resolution ()

if name == " main ":
mahabharata ()

Each Parva here acts like a module, performing a specific role yet working together harmoniously toward one
outcome—just as modular code does within a program. The structure represents the principle of separation of
concerns, which simplifies debugging and comprehension [3]. Similarly, the narrative separation of war,
diplomacy, and wisdom across the Parvas enhances clarity and accessibility for readers and learners alike [4].

V. REINFORCEMENT THROUGH DUAL ANALOGIES

Programming education via the Mahabharata does not just concern exploiting myth to entertain—it concerns
bridging the gap between logic and life. When narrative and syntax converge, the student thinks in patterns,
feelings, and fundamentals simultaneously. This we refer to as dual analogies—whereby cultural metaphors
and technical rationale reinforce each other[3].

5.1 Stories as Logical Scaffolding ADM

Constructivist theorists such as Piaget (1952) and Vygotsky (1978) pointed out that learners establish new
meanings when they relate them to prior knowing. When we make the Pandavas' choices or Krishna's advice
analogous to logical programming, the abstract gets actual. Moral and strategic levels of Mahabharata are just
a reflection of code's decision structure. Then, myth emerges as a dynamic diagram of logic, and logic clarifies
the storyline's architecture [7].

5.2 Narrative Flow as Program Flow

The human mind tends to perceive stories naturally with each occurrence having a consequence. Programming,
fundamentally, does the same. Episodes of the Mahabharata run like a good sequence design: initialization in
the Adi Parva, branching disagreements in the Sabha Parva, and resolution via introspective conversation in
the Shanti Parva. By virtue of being so similar, students are able to intuitively understand flow control - loops,
decisions, and outcomes not as a mechanical activity but as a storyline progression [4].

IJCRT2510220] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org] b820

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882

5.3 Recursion of Wisdom

Indian thought tends to depict understanding as circular, looping back to its origin in spiraling deeper and
deeper. In the Mahabharata, we see it in nested storytelling: Vyasa speaking to Ganesha, Ganesha transcribing
the very text being spoken. This recursive style repeats how learning itself proceeds: each step looping back to
a prior one, deeper and more sophisticated [9]. In this, learners come to understand that repetition as not
redundancy but refinement.

Emotion Meets Logic Cognitive and emotional engagement are essential for fostering effective learning. The
exchanges between Krishna and Arjuna, the entreaties of Draupadi, and the contemplations of Bhishma
collectively represent a spirit akin to debugging—entailing inquiry, scrutiny, and the pursuit of clarity. These
similarities reconceptualize the educational environment as a space for reflection, wherein programming is
intimately connected to cultural contexts rather than being isolated from human experiences [2,4].

5.4 The Timelessness of Modular Thought

Just as modular programming emphasizes reuse and adaptability, the Mahabharata’s knowledge system was
designed for iterative reinterpretation—students, monks, and philosophers re-engaged with each Parva
across generations (Rao, 2012). Each reading “imported” fresh understanding, updating values and contexts
much like how Python dynamically reloads modules during execution.

This cyclical and modular mode of thought aligns perfectly with contextual and experiential learning models
(Guzdial, 2003), where students grasp abstract logic by relating it to real—or in this case, mythological—
contexts. It also aligns with India’s National Education Policy (2020), which encourages integrating Indian
Knowledge Systems (IKS) into STEM pedagogy to promote relevance and identity (Ministry of Education,
2020).

V1. Discussion

The fusion of cultural storytelling with programming education, as seen in the Mahabharata—Python analogy,
marks a refreshing and profound shift in the way programming can be taught. It moves instruction from abstract
technical explanation toward a style of learning grounded in culture, story, and personal experience. This kind
of approach aligns closely with constructivist principles, where learners actively build their own understanding
by connecting new information to familiar contexts. When students relate Python concepts—such as variables,
loops, and conditionals—to characters and events from the Mahabharata, they create deep, memorable links
that make learning both intuitive and meaningful. Programming, once viewed as an impersonal or symbolic
practice, becomes an engaging exercise in reasoning and imagination.

This method also demonstrates the power of dual coding and narrative thinking in computer science education.
Stories act as scaffolds that help students visualize computational logic through emotional and moral parallels.
Arjuna’s conflict between duty and doubt can mirror conditional branching—choosing between alternative
paths—while the cyclical rhythm of the Kurukshetra war reflects loop iteration. These correspondences allow
challenging ideas such as algorithmic flow or recursion to be learned through the comfort of familiar
symbolism, bridging logic with emotion.

Moreover, this culturally rooted method supports the goals of Indian Knowledge Systems (IKS) and the
National Education Policy (2020), which emphasize contextual and culturally responsive education. By
drawing connections between programming logic and Indian philosophical principles—dharma (right order),
artha (structured pursuit), and samsara (cyclic recurrence)—students not only understand how code works but
also why structure and balance are essential. Programming ceases to be a mechanical act and becomes a
meditation on order and consequence—mirroring life’s own systems of cause and effect.

Such integration also breaks down psychological barriers to learning STEM subjects. Many beginners fear
programming because of its precision and seeming abstraction. Cultural narratives lower this anxiety by
creating an emotional and intellectual bridge. Learning feels natural, even playful, when logic is framed through
storytelling. Still, teachers must guide the process with care—clarifying where analogies hold and where they
don’t. Comparing exception handling to divine intervention, for example, must emphasize pattern rather than
literal faith. With reflection and careful framing, the Mahabharata—Python approach can transform the
classroom into a space where cultural familiarity fuels curiosity, deep understanding, and moral insight
alongside computational skill.

IJCRT2510220] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org] b821

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882
VII. Conclusion

This research finds that intermingling narrative-oriented pedagogy and culture-mapped analogies yields an
effective and sustainable approach to instructing programming fundamentals. By correlating Python constructs
to the ethical and logical structure of the Mahabharata, instructors can span the chasm between humanistic
thought and computational logic. By implementing the four-stage educational framework—concept
identification, mythological mapping, narrative exemplification, and reflective abstraction—learning gains
significance when technical content has a deeper resonance that speaks to learners' cultural awareness [1][3].
The paper bears out that coding, when taught narratively, emerges as a multidisciplinary activity that instills
analytical rigor, ethical sensibility, and emotional intelligence. This convergence of storytelling and syntax
gives birth to deep understanding and continuation of India's larger educational agenda to syncretize Indian
Knowledge Systems (IKS) and modern STEM fields [6][7].

Future studies ought to include empirical comparisons between narrative and traditional syntax-based methods
in the classroom to measure increases in comprehension, interest, and retention [4]. Expanding this process to
other epics and global texts could give it confidence to be used trans disciplinarily and internationally [8]. In
short, Mahabharat Meeting Python demonstrates how ancient writings can illuminate new learning, blending
myth and machine, culture and code, in a discourse of mutual reliance that reorders the very essence of learning
to code.

REFRENCES:

[1] Piaget, J. (1952). The Origins of Intelligence in Children. International Universities Press.

[2] Vygotsky, L. S. (1978). Mind in Society: The Development of Higher Psychological Processes. Harvard
University Press.

[3] Ben-Ari, M. (2001). Constructivism in Computer Science Education. Journal of Computers in
Mathematics and Science Teaching, 20 (1), 45-73.

[4] Guzdial, M. (2003). A Media Computation Course for Non-Majors. SIGCSE Bulletin, 35 (3), 104-108.
[5] Sorva, J. (2013). Notional Machines and Introductory Programming Edu. ACM Transactions on
Computing Education, 13 (2).

[6] Ministry of Education, Government of India. (2020). National Education Policy 2020. New Delhi: MoE.
[7] AICTE (2022). Integrating Indian Knowledge Systems in Higher Education. New Delhi: IKS Division,
AICTE.

[8] Subbarayappa, B. V. (2014). Science in the Vedic and Epic Ages. Indian Journal of History of Science,
49(3), 289-310.

IJCRT2510220] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org] b822

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 10 October 2025 | ISSN: 2320-2882

AUTHOR DETAILS:

Author 1 (Corresponding Author)

Name: Mr. Neelotpal Dey

Post: Head of Department, Computer Science

Affiliation: Computer Science, Microtek Groups of Institution, Varanasi, Uttar Pradesh, India
Email: dr.neelotpaldey@gmail.com

ORCID ID: 0009-0008-4759-7664

Contact Number: +91-9451123331

Corresponding Author: Yes

Author 2

Name: Er. Shakshi Verma

Post: Assistant Professor

Affiliation: Computer Science, Microtek Groups of Institution, Varanasi, Uttar Pradesh, India
Email: shaksshiverma@gmail.com

Corresponding Author: No

Author 3

Name: Mr. Ashutosh Kumar Dubey

Post: Assistant Professor

Affiliation: Computer Science, Microtek Groups of Institution, Varanasi, Uttar Pradesh, India
Email: memt.ashutosh@gmail.com

ORCID ID: 0009-0002-1549-7366

Corresponding Author: No

Author 4

Name: Ms. Akarshika Pandey

Post: Student

Affiliation: Commerce, Sunbeam College for Women, Varanasi, Uttar Pradesh, India
Email: akarshikap47@gmail.com

ORCID ID: 0009-0002-1727-0026

Corresponding Author: No

Point of Contact: All correspondence regarding this manuscript should be addressed to Mr. Neelotpal Dey,
Corresponding Author.

AUTHOR BIO:

Mr. Neelotpal Dey is an experienced Software Engineer, Educational Technology Specialist, and Research
Scholar with over ten years of teaching experience and six years in industry training. He holds an MCA, an
MSc in Counselling and Family Therapy, and is pursuing a PhD in Computer Science. His expertise spans
programming, data science, artificial intelligence, and educational technology. He is also a counselor and
mentor for children and adolescents and actively engages in motivational speaking, podcasting, and creative
arts.

IJCRT2510220] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org] b823

http://www.ijcrt.org/

