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Abstract  

Battery health monitoring is a critical aspect of ensuring the longevity and reliability of lithium-ion batteries 

used in electric vehicles (EVs) and energy storage systems. Accurately predicting the Remaining Useful Life 

(RUL) of batteries and diagnosing faults are key components of effective battery management systems 

(BMS). This paper explores various machine learning (ML) methods employed for battery health monitoring, 

focusing on RUL estimation and fault detection. Supervised and unsupervised learning techniques are 

discussed, highlighting their applications and challenges. The paper also reviews the importance of data 

preprocessing and feature extraction in enhancing the accuracy of ML models. Despite the progress made in 

ML applications, challenges like data quality, model generalization, and real-time monitoring persist. Future 

advancements in machine learning and battery management systems will continue to improve the efficiency, 

safety, and sustainability of battery-dependent technologies.  

Keywords: Battery Health Monitoring, Remaining Useful Life (RUL), Fault Diagnosis, Machine Learning, 

Battery Management Systems (BMS), Data Preprocessing  

 

1. Introduction  

Battery health monitoring is essential for ensuring the safety, reliability, and longevity of lithium-ion 

batteries, especially in applications like electric vehicles (EVs) and energy storage systems. Accurate 

estimation of Remaining Useful Life (RUL) and fault diagnosis are critical components of effective battery 

management systems (BMS). These processes help in predicting battery failures, optimizing maintenance 

schedules, and enhancing overall system performance (Ahwiadi & Wang, 2025).  

 

1.1. Importance of Battery Health Monitoring  

Monitoring battery health allows for early detection of potential issues, reducing the risk of unexpected 

failures and safety hazards. It enables the assessment of the State of Health (SOH) and RUL, providing 

insights into the battery's degradation over time. This information is vital for applications where battery 

reliability is paramount, such as EVs and grid energy storage systems. Effective health monitoring contributes 

to improved battery performance, extended lifespan, and optimized energy management (Ahwiadi & Wang, 

2025; Thelen et al., 2024).  
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1.2. Relevance of RUL Estimation and Fault Diagnosis  

RUL estimation predicts the remaining operational time of a battery before it reaches a critical failure point, 

allowing for proactive maintenance and replacement planning. Fault diagnosis identifies specific issues 

within the battery, such as overcharging, overheating, or internal short circuits. Together, these processes 

facilitate informed decision-making, enhance safety protocols, and ensure the efficient operation of battery-

dependent systems (Nazim et al., 2025; Li et al., 2024).  

 

1.3. Role of Data-Driven Approaches and Machine Learning  

Traditional methods of battery health monitoring often rely on empirical models and expert knowledge, 

which may not capture the complex, nonlinear behaviors of battery degradation. Data-driven approaches, 

particularly machine learning (ML) techniques, offer a more dynamic and adaptive solution. ML algorithms 

can analyze large datasets to identify patterns and predict battery health indicators with high accuracy. For 

instance, deep learning models like Long Short-Term Memory (LSTM) networks have been successfully 

applied to estimate RUL and diagnose faults in batteries (Schaeffer et al., 2024).  

Integrating ML into BMS enhances their capability to perform real-time health assessments, adapt to varying 

operating conditions, and improve predictive maintenance strategies. This integration is particularly 

beneficial in EVs, where battery performance directly impacts vehicle range and safety. Moreover, ML 

models can be trained on diverse datasets, allowing for the development of generalized models applicable 

across different battery types and usage scenarios (Samanta, Chowdhuri & Williamson, 2021).  

The adoption of data-driven approaches, especially ML techniques, in battery health monitoring represents a 

significant advancement in managing battery systems. These methods provide more accurate, timely, and 

scalable solutions for RUL estimation and fault diagnosis, leading to safer and more efficient battery-operated 

applications. As research progresses, the continuous improvement of these models will further enhance the 

reliability and performance of battery systems in various industries (Ahwiadi & Wang, 2025; Madani et al., 

2024).  

 

2. Fundamentals of Battery Health and Monitoring  

2.1. Battery Types and Their Health Indicators  

Batteries are essential components in modern electronics, vehicles, and renewable energy systems. Lithium-

ion (Li-ion) and lead-acid batteries are the most commonly used types in industries such as electric vehicles 

(EVs), grid storage, and portable electronics. Each battery type has distinct characteristics and degradation 

mechanisms, which influence their health indicators.  

i. Lithium-Ion Batteries:  

Li-ion batteries are widely used due to their high energy density, long cycle life, and efficient 

charge/discharge cycles. The primary health indicators for Li-ion batteries include:  

 State of Health (SOH): This measures the overall health of the battery, indicating its capacity relative 

to its original capacity (Thelen et al., 2024).  

 State of Charge (SOC): This represents the current charge level of the battery, typically expressed 

as a percentage (Nazim et al., 2025).  

 Internal Resistance: An increase in internal resistance due to aging leads to inefficiency and heat 

generation, reducing the battery's performance (Li et al., 2024).  

 Capacity Fade: A gradual reduction in the battery’s ability to hold charge as it ages (Ahwiadi & 

Wang, 2025).  

 Voltage Irregularities: Deviations from expected voltage ranges during charging and discharging 

may indicate internal issues (Schaeffer et al., 2024).  
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ii. Lead-Acid Batteries:  

Lead-acid batteries are typically used in applications like backup power systems, automotive starters, 

and solar power systems. Their key health indicators include:  

 Voltage Levels: Lead-acid batteries operate within a specific voltage range, and deviations may 

indicate damage or deterioration (Samanta, Chowdhuri & Williamson, 2021).  

 Specific Gravity of Electrolyte: Measured using a hydrometer, this indicates the charge level and 

health of the battery (Madani et al., 2024).  

 Charge Retention: Over time, lead-acid batteries lose the ability to retain charge, and sulfation (the 

buildup of lead sulfate crystals) can reduce capacity (Schaeffer et al., 2024).  

 Internal Short Circuiting: Caused by plate corrosion or buildup of material, leading to poor 

performance (Ahwiadi & Wang, 2025).  

 

2.2. Key Parameters Influencing Battery Health  

Several parameters directly impact battery health, affecting its performance, lifespan, and safety. Monitoring 

these factors is crucial to maintaining battery efficiency.  

i. Temperature:  Temperature has a significant influence on battery performance. High temperatures 

can accelerate chemical reactions inside the battery, leading to faster degradation, while low 

temperatures can reduce the battery's charge capacity and increase internal resistance.  

 Effect on Li-ion Batteries: At elevated temperatures (above 40°C), Li-ion batteries may 

experience accelerated aging, increased internal resistance, and decreased capacity (Thelen et 

al., 2024).  

 Effect on Lead-Acid Batteries: High temperatures cause increased water evaporation, 

electrolyte loss, and sulfation, reducing the battery's lifespan (Madani et al., 2024).  

ii. Voltage:  Voltage plays a crucial role in the charging and discharging processes. Operating a battery 

outside its optimal voltage range can cause irreversible damage.  

 Overcharging: This can lead to excessive heat generation, electrolyte breakdown, and 

capacity loss (Schaeffer et al., 2024).  

 Deep Discharge: Discharging a battery below its safe voltage limit can lead to permanent 

capacity loss and potential cell failure (Li et al., 2024).  

iii. Charge-Discharge Cycles:  A battery’s ability to hold and deliver energy diminishes over time with 

each chargedischarge cycle. The cycle life is determined by the number of charge-discharge cycles 

the battery can undergo before its capacity drops below 80% of its original value.  

 Effect on Li-ion Batteries: Each cycle slightly reduces the battery's overall capacity due to 

chemical reactions within the electrodes. This leads to capacity fade and a decrease in the 

effective range for applications like electric vehicles (Ahwiadi & Wang, 2025).  

 Effect on Lead-Acid Batteries: The depth of discharge (DoD) also influences the cycle life, 

with deeper discharges leading to a reduced lifespan (Schaeffer et al., 2024).  

iv. Electrolyte and Internal Resistance:  The electrolyte is vital for ion transport within the battery. In 

Li-ion batteries, the degradation of the electrolyte and formation of solid-electrolyte interphase (SEI) 

layers can increase internal resistance, leading to inefficiencies.  

 Internal Resistance: As batteries age, the internal resistance increases due to factors like 

electrolyte breakdown, electrode degradation, and formation of unwanted compounds. 

Increased resistance reduces charging and discharging efficiency, causing heat buildup (Li et 

al., 2024).  
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3. Traditional Methods of Battery Health Monitoring  

Historically, monitoring battery health has relied on empirical methods and simple indicators. These methods 

are typically used in less complex applications where advanced diagnostic systems are not available. 

Traditional methods include:  

 Voltage Monitoring:  One of the simplest methods involves regularly monitoring the battery’s 

voltage during charge and discharge cycles. Voltage readings provide a quick estimate of the battery’s 

state but do not provide a detailed analysis of internal health or degradation.  

 Drawback: Voltage alone cannot accurately predict long-term performance or capture subtle 

degradation processes, such as capacity fade or internal resistance growth (Samanta, 

Chowdhuri & Williamson, 2021).  

 Capacity Testing: Capacity testing involves discharging the battery at a constant rate and measuring 

how much energy it can deliver before reaching its cutoff voltage. This method gives a rough estimate 

of battery capacity, which can be compared to the battery’s original rating to gauge its health.  

 Drawback: Capacity tests are time-consuming and require the battery to be fully discharged, 

which can be damaging if performed too frequently (Madani et al., 2024).  

 Impedance Spectroscopy: This method involves applying a small alternating current (AC) signal to 

the battery and measuring its impedance. It is used to assess the internal resistance and provide 

insights into the battery's health.  

 Drawback: Impedance spectroscopy requires specialized equipment and is not typically 

used in everyday applications due to its complexity (Li et al., 2024).  

 Temperature Monitoring:  Monitoring the battery temperature during operation can provide insights 

into its performance and health. Abnormal temperature rise during charging or discharging is often a 

sign of internal issues, such as overcharging or excessive resistance.  

 Drawback: Temperature monitoring alone cannot provide a comprehensive view of battery 

health and must be combined with other indicators for accurate assessment (Thelen et al., 

2024).  

 Electrochemical Impedance Spectroscopy (EIS):  This advanced technique involves measuring the 

impedance of a battery across different frequencies to assess the battery's health and predict its future 

behavior. EIS is useful for detecting degradation in the battery’s internal components, such as 

electrodes or electrolyte.  

 Drawback: EIS requires sophisticated equipment and is typically used in research and 

development rather than consumer-level applications (Ahwiadi & Wang, 2025).  

 

3.1. Machine Learning in Battery Health Monitoring  

Machine learning (ML) has become an essential tool in battery health monitoring, providing a more accurate, 

adaptive, and dynamic approach to predicting battery performance, estimating the remaining useful life 

(RUL), and diagnosing faults. The use of ML in battery health monitoring involves a range of algorithms that 

can process complex, high-dimensional data, uncovering meaningful patterns and making predictions. 

Commonly used ML techniques include regression models like linear regression, which are used to predict 

continuous variables like battery capacity and RUL. Support vector regression (SVR) and random forest 

regression (RFR) are also used, with the latter providing enhanced accuracy by combining the results of 

multiple decision trees. In terms of classification, decision trees (DT) and support vector machines (SVM) 

are widely applied for fault detection, where SVM is particularly effective for classifying battery faults based 

on attributes such as voltage, temperature, and current. Deep learning models, including neural networks 

(NN), convolutional neural networks (CNN), and long short-term memory (LSTM) networks, are 

increasingly being used for fault diagnosis and RUL estimation due to their ability to learn complex patterns 

and temporal dependencies in the data (Li et al., 2024; Ahwiadi & Wang, 2025).  

Supervised and unsupervised learning are the two primary ML approaches used in battery fault detection. In 

supervised learning, the algorithm is trained using labeled data, which means each input is paired with the 

correct output. This method is highly effective for tasks like battery fault classification, where labeled 

instances of faulty and healthy batteries are provided. Common supervised models include decision trees, 

random forests, and SVMs, all of which can classify batteries into categories such as "healthy" or "faulty" 

based on features like voltage, temperature, and current. However, the main challenge with supervised 
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learning is the requirement for extensive labeled datasets, which can be expensive and timeconsuming to 

obtain, especially for real-time battery monitoring. In contrast, unsupervised learning does not require labeled 

data and is useful for detecting patterns or anomalies in the data that have not been explicitly labeled. 

Clustering algorithms, such as k-means and hierarchical clustering, can group battery health states based on 

observed features. Anomaly detection methods, such as autoencoders, can identify outliers or abnormal 

behaviors that might indicate a fault (Schaeffer et al., 2024; Samanta, Chowdhuri & Williamson, 2021).  

Data preprocessing and feature extraction are crucial steps in preparing battery data for machine learning. 

Feature extraction involves transforming raw battery data into meaningful inputs that ML models can use for 

training. Common features include the state of health (SOH), state of charge (SOC), voltage, current, and 

temperature profiles, which are crucial indicators of battery performance. Advanced techniques like principal 

component analysis (PCA) and independent component analysis (ICA) are used to reduce the dimensionality 

of the data, extracting the most informative features while eliminating noise. Data preprocessing techniques 

are equally important to ensure high-quality input for ML models. Methods like normalization and 

standardization are applied to scale the data to a uniform range, preventing certain features from dominating 

the model's learning process. Handling missing data through imputation, removing noise through signal 

processing, and identifying outliers using robust statistical methods are also essential steps to ensure the 

integrity of the data. For time-series data, data augmentation techniques, such as jittering, time warping, and 

random cropping, can help improve the generalization ability of the models by artificially expanding the 

dataset (Schaeffer et al., 2024; Li et al., 2024).  

Machine learning techniques play a critical role in battery health monitoring by enabling accurate RUL 

estimation, fault detection, and performance prediction. While supervised learning is effective for tasks 

where labeled data is available, unsupervised learning offers flexibility in exploring unknown fault patterns. 

With proper feature extraction and data preprocessing, these models can help optimize battery management 

systems, ensuring the longevity, safety, and efficiency of battery-operated systems, especially in electric 

vehicles and energy storage applications.  

 

4. Remaining Useful Life (RUL) Estimation in Batteries  

Remaining Useful Life (RUL) estimation is a crucial aspect of battery health monitoring. RUL refers to the 

amount of time a battery can continue to perform within its acceptable parameters before it fails or becomes 

inefficient. Accurately predicting RUL allows for proactive maintenance, avoiding unexpected failures, and 

optimizing battery replacement cycles, which is especially important in critical applications such as electric 

vehicles (EVs), renewable energy storage, and grid systems.  

 

4.1. Importance of RUL Estimation  

The ability to estimate the RUL of a battery plays a critical role in optimizing battery management systems 

(BMS). For instance, in electric vehicles, knowing the RUL of the battery helps optimize driving range 

predictions, schedule maintenance, and manage the overall cost of ownership. In renewable energy systems, 

accurate RUL estimation aids in efficient power management, reducing downtime and maximizing system 

reliability. Moreover, RUL predictions allow manufacturers and service providers to offer better warranties, 

improving customer satisfaction and reducing operational risks.  
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4.2. Machine Learning Models for RUL Estimation  

Various machine learning models have been developed and used for RUL estimation in batteries, ranging 

from simpler regression techniques to more complex deep learning models.  

i. Regression Models:  

 Linear Regression: A basic model used to predict RUL based on battery data, such as voltage, 

current, and temperature. However, this model may not capture the complex nonlinear 

relationships that govern battery degradation.  

 Support Vector Regression (SVR): An advanced regression technique that can handle 

higher-dimensional data and non-linearities. SVR is particularly effective when combined 

with other features like current-voltage profiles (Ahwiadi & Wang, 2025).  

 Random Forest Regression (RFR): An ensemble-based method that works well in 

estimating RUL by leveraging multiple decision trees. RFR is robust against overfitting and 

can handle noisy data (Li et al., 2024).  

ii. Deep Learning Models:  

 Long Short-Term Memory (LSTM) Networks: LSTM, a type of recurrent neural network 

(RNN), is highly effective for RUL estimation as it can capture temporal dependencies in 

time-series data. LSTM models are particularly well-suited for battery data, as they can track 

how the battery's health evolves over multiple charge/discharge cycles (Schaeffer et al., 2024).  

 Convolutional Neural Networks (CNNs): Although CNNs are generally used in image 

classification tasks, recent research has shown their effectiveness in predicting RUL from 

sensor data by identifying hidden patterns in the data (e.g., voltage, current, temperature) that 

correlate with battery degradation.  

 Hybrid Models (CNN-LSTM): A combination of CNN and LSTM models is gaining traction 

for RUL prediction, where CNN is used for feature extraction, and LSTM is employed to 

capture temporal dependencies in the data.  

iii. Ensemble Learning Models:  

 Gradient Boosting Machines (GBM) and XGBoost: These ensemble models combine 

multiple weak learners to create a stronger predictive model. These models are popular for 

RUL prediction due to their ability to handle large datasets and their high predictive accuracy. 

XGBoost, in particular, has been shown to provide superior performance in battery health 

monitoring (Samanta, Chowdhuri & Williamson, 2021).  

iv. Gaussian Processes (GP):  

 Gaussian Process Regression (GPR): This probabilistic model is used to predict RUL by 

generating a distribution of possible outcomes. GPR is particularly useful when there is 

uncertainty in the data, as it provides not only predictions but also a measure of the confidence 

in those predictions (Schaeffer et al., 2024).  

 

4.3. Challenges in RUL Estimation  

Although RUL estimation using machine learning models has shown great promise, there are several 

challenges that need to be addressed:  

 Data Scarcity: RUL estimation models require a large amount of historical data to train effectively. 

In many real-world applications, there may not be sufficient data available for training, especially for 

new battery models or applications.  

 Data Quality: The quality of the data, including noise, missing values, and sensor inaccuracies, can 

significantly affect the performance of RUL prediction models. Proper data preprocessing and 

cleaning are crucial for obtaining reliable results.  

 Model Generalization: A model trained on one battery type or use case may not generalize well to 

another. Ensuring that RUL estimation models can work across different battery chemistries and 

operating conditions is a key challenge.  

 Temporal Variability: Battery degradation does not follow a linear pattern, and the degradation 

process may vary depending on environmental factors, usage patterns, and charge/discharge cycles. 

Accurately capturing these temporal variations is essential for robust RUL estimation (Li et al., 2024).  
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5. Case Studies of RUL Estimation in Real-World Applications  

Several studies have demonstrated the practical application of machine learning models in RUL estimation 

for batteries. For example, researchers have applied LSTM-based models to estimate the RUL of EV batteries 

under various driving conditions, achieving high accuracy in predicting battery failures before they occurred. 

Additionally, machine learning models have been used to predict the RUL of batteries in grid energy storage 

systems, where knowing the exact time of failure is crucial for maintaining system stability and reliability.  

 

5.1. Fault Diagnosis in Battery Systems  

Battery fault diagnosis is an essential aspect of maintaining battery health, as it helps identify specific issues 

such as overcharging, overheating, or internal short circuits. Accurate fault detection ensures that battery 

systems remain efficient, safe, and reliable, particularly in applications like electric vehicles (EVs), energy 

storage systems, and other critical industries that rely on battery power.  

 

5.2. Common Battery Faults and Their Implications  

 Overcharging:  Overcharging occurs when a battery exceeds its maximum voltage limit, leading to 

excessive heat generation. This can cause electrolyte breakdown, internal gas formation, and the 

potential for thermal runaway, which poses significant safety risks, especially in lithium-ion batteries.  

 Symptoms: Overcharging may lead to rapid temperature increases, swelling of the battery, and a 

noticeable drop in capacity over time.  

 Overheating:  Heat is a major cause of battery degradation. Excessive temperature increases the rate 

of chemical reactions inside the battery, leading to faster degradation, higher internal resistance, and 

reduced capacity. Overheating may occur due to external factors, such as environmental conditions 

or internal factors like excessive charge/discharge cycles.  

 Symptoms: Overheating typically results in a battery that heats up during charging or discharging, 

even under normal operating conditions.  

 Internal Short Circuits:  An internal short circuit occurs when there is an unintended connection 

between the anode and cathode, often due to manufacturing defects or damage. This fault leads to a 

rapid discharge of energy, causing battery failure or, in extreme cases, fires.  

 Symptoms: A significant drop in battery voltage, sudden heating, or leakage of electrolyte can 

indicate an internal short circuit.  

 Sulfation (in Lead-Acid Batteries):  Sulfation occurs when lead sulfate crystals form on the battery 

plates, leading to a decrease in battery capacity and efficiency. This is a common issue in lead-acid 

batteries, particularly when they are left in a discharged state for extended periods.  

 Symptoms: Lead-acid batteries with sulfation often show poor charging behavior and reduced 

capacity.  

 Capacity Fade:  Capacity fade refers to the gradual loss of a battery's ability to hold a charge over 

time, which is common in all types of batteries as they age. In lithium-ion batteries, this is typically 

caused by the degradation of the anode material (e.g., graphite).  

 Symptoms: Reduced runtime, longer charging times, and significant drops in battery efficiency.  

 

5.3. Machine Learning Techniques for Fault Diagnosis  

Machine learning (ML) has shown great potential in improving battery fault diagnosis by enabling 

automated, accurate, and real-time detection of faults. Various ML techniques are applied to battery health 

data (e.g., voltage, temperature, current) to identify faulty behaviors and predict failure modes.  

i. Supervised Learning Approaches:  

In supervised learning, the model is trained on labeled datasets that contain instances of known faults. 

This enables the model to classify battery health states and detect specific faults.  

 Support Vector Machine (SVM): SVM is a widely used method for fault diagnosis in batteries. It 

works by finding the hyperplane that best separates different classes of data (e.g., healthy vs. faulty 

battery states) based on features like voltage, current, and temperature. SVMs have shown great 
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success in distinguishing between different fault conditions, such as overcharging and overheating 

(Schaeffer et al., 2024).  

 Decision Trees (DT): Decision trees classify battery health into different fault categories based on 

splitting criteria. Each node in the tree represents a test on one feature (e.g., voltage), and each branch 

represents an outcome (e.g., faulty or healthy state). Decision trees are interpretable and easy to 

implement for battery fault detection.  

 Random Forests (RF): Random forests combine multiple decision trees to improve fault diagnosis 

accuracy. The ensemble approach reduces overfitting and enhances the model's ability to handle noise 

in the data, making it ideal for detecting battery faults in complex and noisy environments (Samanta, 

Chowdhuri & Williamson, 2021).  

ii. Unsupervised Learning Approaches:  

Unsupervised learning methods are particularly useful when labeled fault data is scarce or 

unavailable. These models are trained on unlabeled data and are capable of detecting anomalies or 

outliers that could indicate faults.  

 K-Means Clustering: K-means clustering is an unsupervised learning algorithm that groups battery 

health data into clusters based on similarities. It can be used to identify patterns of healthy and faulty 

behavior without requiring labeled training data. By identifying outliers or abnormal clusters, 

Kmeans can detect emerging fault conditions in batteries.  

 Autoencoders: Autoencoders are neural networks designed for unsupervised learning, often used in 

anomaly detection. These networks are trained to reconstruct input data, and any significant deviation 

in reconstruction error indicates potential faults. Autoencoders are particularly useful in detecting 

subtle or emerging faults, such as early signs of capacity fade or minor short circuits (Schaeffer et al., 

2024).  

 Principal Component Analysis (PCA): PCA is another unsupervised technique used to reduce the 

dimensionality of battery data. By transforming the data into a smaller set of uncorrelated features, 

PCA helps to highlight anomalies that may indicate faults. PCA is effective in identifying multivariate 

relationships in complex battery data (Samanta, Chowdhuri & Williamson, 2021).  

 

5.4. Challenges in Fault Diagnosis Using Machine Learning  

While machine learning offers significant advantages for battery fault diagnosis, there are several challenges 

associated with its implementation:  

 Data Quality and Availability:  High-quality labeled data is crucial for training accurate machine 

learning models. However, obtaining labeled data for rare or emerging fault conditions can be 

difficult, especially in large-scale applications. In some cases, fault data may be sparse, requiring the 

use of unsupervised learning techniques.  

 Data Imbalance:  In many cases, the dataset may contain a disproportionate number of instances for 

healthy batteries compared to faulty ones. This class imbalance can lead to biased models that are 

more adept at identifying healthy batteries while underperforming in detecting faults. Techniques like 

oversampling, undersampling, and anomaly detection are used to address this issue.  

 Complexity and Interpretability:  While deep learning models such as neural networks can provide 

highly accurate fault diagnosis, they often lack interpretability. This makes it challenging to 

understand how the model makes predictions, which is critical for troubleshooting and improving 

battery systems. Research is ongoing to improve the transparency of machine learning models used 

in fault diagnosis.  

 Real-Time Monitoring:  Battery systems often require real-time fault detection to prevent potential 

failures. Deploying machine learning models in real-time monitoring environments requires models 

to be lightweight, efficient, and capable of processing streaming data with minimal latency. Achieving 

this while maintaining model accuracy can be challenging.  

Fault diagnosis in battery systems is vital for ensuring safety, reliability, and longevity. Machine learning 

techniques, both supervised and unsupervised, provide powerful tools for detecting faults early, which is 

crucial in critical applications like EVs and grid storage systems. By leveraging machine learning algorithms, 
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battery management systems can continuously monitor the health of batteries, predict failures, and optimize 

maintenance strategies, thereby improving overall system performance and safety.  

 

6. Conclusion  

Battery health monitoring is crucial for ensuring the longevity, efficiency, and safety of lithium-ion batteries, 

especially in mission-critical applications like electric vehicles (EVs) and energy storage systems. Accurate 

estimation of Remaining Useful Life (RUL) and fault diagnosis are vital components of effective battery 

management systems (BMS). Machine learning (ML) techniques have significantly advanced the ability to 

predict battery failures, optimize maintenance schedules, and enhance overall system performance. Through 

supervised and unsupervised learning approaches, ML can analyze vast amounts of battery data to detect 

faults and predict RUL with high accuracy. However, challenges such as data quality, model generalization, 

and real-time processing remain significant hurdles. The continuous advancement of ML models, coupled 

with better data collection and feature extraction techniques, promises to enhance the reliability and 

performance of battery systems in various industries. As battery technology evolves, these data-driven 

approaches will play an increasingly crucial role in maintaining battery efficiency and safety.  

 

References  

[1]. Ahwiadi, M., & Wang, W. (2025). Battery Health Monitoring and Remaining Useful Life Prediction 

Techniques: A Review of Technologies. Batteries, 11(1), 31. 

https://doi.org/10.3390/batteries11010031  

[2]. Ahwiadi, M., & Wang, W. (2025). Battery Health Monitoring and Remaining Useful Life Prediction 

Techniques: A Review of Technologies. Batteries, 11(1), 31.  

[3]. https://doi.org/10.3390/batteries11010031  

[4]. Li, J., et al. (2024). Efficient battery fault monitoring in electric vehicles. ScienceDirect. 

https://doi.org/10.1016/j.sciend.2024.04.028  

[5]. Madani, S. S., et al. (2024). Recent Progress of Deep Learning Methods for Health Prognostics of 

Lithium-Ion Batteries. Batteries, 10(2), 204. https://doi.org/10.3390/batteries100200204  

[6]. Nazim, M. S., et al. (2025). Artificial intelligence for estimating State of Health and Remaining Useful 

Life in lithium-ion batteries. ScienceDirect. https://doi.org/10.1016/j.scient.2025.04.013  

[7]. Samanta, A., Chowdhuri, S., & Williamson, S. S. (2021). Machine Learning-Based DataDriven Fault 

Detection/Diagnosis of Lithium-Ion Battery: A Critical Review. Electronics,  

[8]. 10(11), 1309. https://doi.org/10.3390/electronics10111309  

[9]. Samanta, A., Chowdhuri, S., & Williamson, S. S. (2021). Machine Learning-Based DataDriven Fault 

Detection/Diagnosis of Lithium-Ion Battery: A Critical Review. Electronics,  

[10]. 10(11), 1309. https://doi.org/10.3390/electronics10111309  

[11]. Sarmah, S. B., et al. (2019). A Review of State of Health Estimation of Energy Storage Batteries. 

ASME Journal of Electrochemical Energy Conversion and Storage, 16(4), 040801. 

https://doi.org/10.1115/1.4041161  

[12]. Schaeffer, J., et al. (2024). Gaussian process-based online health monitoring and fault analysis of 

lithium-ion battery systems from field data. arXiv. https://arxiv.org/abs/2406.19015  

[13]. Thelen, A., Huan, X., Paulson, N., Onori, S., Hu, Z., & Hu, C. (2024). Probabilistic machine learning 

for battery health diagnostics and prognostics—review and perspectives. npj Materials Sustainability, 

2, 14. https://doi.org/10.1038/s44296-024-00011-1  

[14]. Zhang, X., et al. (2021). Time-Series Regeneration with Convolutional Recurrent Generative 

Adversarial Network for Remaining Useful Life Estimation. arXiv. https://arxiv.org/abs/2101.03678  

  

http://www.ijcrt.org/

