IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

"Personalized Medicine In Pharmaceutical Technology: Transforming Drug Development And Individualized Therapies"

Ali zuhair Baldawi*1, Munjurul Islam*2, Osayd Abdulsamad Radhi*3

1*A.U College of Pharmaceutical Sciences Andhra University, Visakhapatnam 530003, Andhra Pradesh, India

2* A.U College of Pharmaceutical Sciences Andhra University, Visakhapatnam 530003, Andhra Pradesh, India

3*A.U College of Pharmaceutical Sciences Andhra University, Visakhapatnam 530003, Andhra Pradesh, India

Abstract:

Personalized medicine is causing a paradigm shift in pharmaceutical technology by moving drug development away from the traditional "one-size-fits-all" approach and toward therapies tailored to each patient's specific needs. Advances in genomics, molecular diagnostics, and digital health have enabled the identification of genetic variants, biomarkers, and disease pathways that impact the safety and effectiveness of medications. By applying these insights to pharmaceutical technology, researchers can develop new biopharmaceuticals, companion diagnostics, and targeted drug delivery systems that maximize therapeutic efficacy while minimizing side effects. To make customized medicine a reality, pharmaceutical innovation is crucial. Site-specific release is made possible by nanotechnology-based delivery systems, and RNA-based therapies and monoclonal antibodies are excellent illustrations of the precision that can be attained with modern drug development. Artificial intelligence and machine learning enhance predictive modeling, enable adaptive clinical trial designs, and expedite drug repurposing to reduce expenses and development delays. Therapy paradigms in neurology, cardiology, cancer, and rare diseases are already being altered by personalized approaches.

Despite its potential, personalized medicine faces challenges. Expensive costs, intricate regulations, and unequal access limit adoption. The use of genetic data still raises ethical and privacy concerns. Additionally, healthcare systems need to adapt to incorporate advanced diagnostics, personalized treatment plans, and real-time patient monitoring into clinical procedures. The convergence of digital health, genetics, bioinformatics, and pharmaceutical technology will create unprecedented opportunities in the future. The management of diseases could be drastically changed by gene editing technologies like CRISPR, immunotherapies, and personalized vaccinations. Collaboration between academic institutions, industry, and regulatory agencies will be necessary to fully realize the transformative potential of personalized medicine and ensure equitable access and improved outcomes for a range of patient populations.

Keywords: Personalized medicine, pharmaceutical technology, drug development, pharmacogenomics, nanomedicine, individualized therapy, biomarkers.

1. Introduction:

The field of modern medicine is undergoing significant change, shifting from population-based approaches to methods that recognize and take advantage of individual variations in biology, environment, and lifestyle. Treatments for diverse, large populations were prioritized by the "one-size-fits-all" paradigm that dominated drug research for a significant portion of the 20th century. Even though this approach resulted in several ground-breaking medications, it also revealed serious disadvantages, such as ineffective healthcare delivery, a high rate of negative drug reactions, and inter-patient variability in therapeutic response. These shortcomings have led to the emergence of personalized medicine, a technique that seeks to give the right drug to the right patient at the right time and dosage.

The integration of molecular diagnostics, pharmacogenomics, genomics, and advanced data analytics to guide customized treatment decisions forms the basis of personalized medicine, also referred to as precision medicine. By identifying genetic and molecular factors of disease susceptibility, progression, and therapeutic response, this paradigm offers opportunities to increase efficacy, reduce toxicity, and reduce reliance on empirical prescribing. Most importantly, it recasts the patient as an active participant in healthcare, with treatments tailored to both disease classifications and the molecular markers that define each individual's state. The development of customized treatment is greatly aided by pharmaceutical technology. Advances in monoclonal antibodies, RNA-based treatments, companion diagnostics, targeted delivery systems, and nanomedicine have expanded the capacity to create and deliver precision therapies. Meanwhile, the combination of AI, machine learning, and big data analytics has revolutionized drug discovery pipelines, clinical trial design, and patient monitoring. By facilitating a more predictive, efficient, and cost-effective drug development process, these technologies expedite the application of customized medicine in clinical settings.

The integration of personalized medicine into conventional healthcare is still constrained, though, by issues with infrastructure, ethics, regulations, and the economy. Due to high development costs, concerns about data privacy, and unequal access to new diagnostics, disparities in healthcare delivery could worsen. To overcome these obstacles, government organizations, businesses, academic institutions, and healthcare facilities will need to work together.

This paper examines the complementary relationship between pharmaceutical technology and personalized medicine, with a focus on how scientific and technological developments are transforming drug development and customized therapy. Examined are the theoretical foundations of customized medicine, notable technological developments, their implications for therapeutic fields like neurology and oncology, and the challenges facing broad adoption. Finally, it examines future directions like gene-editing technologies, personalized vaccines, and digital health integration that may transform clinical practice and pharmaceutical sciences.

2. Foundations of Personalized Medicine:

Personalized medicine, also known as precision or stratified medicine, is founded on the knowledge and application of individual biological variation, including genetic, molecular, phenotypic, and environmental factors, to optimize disease prevention, diagnosis, and treatment.(1) The background knowledge required to understand how pharmaceutical technology develops from significant definitions, turning points, and conceptual and historical foundations is provided.

2.1 Definitions and Terminology:

The term "personalized medicine," which has been used in many different contexts, often overlaps with the terms "precision medicine" and "stratified medicine".(2) Customizing medical treatment for each patient based on knowledge of genetic or molecular markers, the disease prognosis, or the expected response to treatment is its primary definition.(3) The definition could be more general, such as integrating diagnostics, lifestyle, and environment, or more specific, such as using a biomarker to predict drug efficacy.(4)

A useful framework distinguishes customized medicine along three axes: the clinical problem (what diagnosis or outcome), the investigative methods (e.g., proteomic, metabolomic, or genomic testing), and the subsequent actions (treatment choices, preventative measures).(5)This framing helps clarify debates about what falls under personalized medicine versus conventional approaches.

2.2 Historical Development and Milestones:

Although the concept of personalized healthcare has been around for thousands of years in traditional systems, its scientific foundations became clearer in the 20th century.(5)The development of pharmacogenetics, which included discoveries like differences in drug-metabolizing enzymes like cytochrome P450, offered early evidence that genetic variations could have a substantial impact on medication response and toxicity.(6)The development of high-throughput "omics" technologies (genomics, transcriptomics, proteomics, and metabolomics), the sequencing of the human genome, and genome-wide association studies (GWAS) are notable turning points.(7) These provided data and tools for mapping genetic variations associated with disease risk, medication response, and phenotypic variation across populations.(8)

Another important turning point that allowed for the identification and public release of many human genetic variants was the establishment of the Single Nucleotide Polymorphism (SNP) Consortium in the late 1990s.(9) This made it much easier to find biomarkers and identify pharmacological targets.

2.3 Core Scientific Pillars:

Numerous scientific disciplines form the foundation of personalized medicine. Genetics and genomics explain SNPs, structural variations, and functional gene regulation.(8)The primary objective of molecular diagnostics and biomarker discovery is to identify measurable markers that are suggestive of disease or treatment outcome.(10) Among the omics fields that offer diverse viewpoints on biological status are proteomics, metabolomics, transcriptomics, and epigenomics.(11)Bioinformatics, computational biology, and data analytics are essential for modeling disease risk, developing tailored treatments, and combining disparate datasets.(12)

2.4 Promise and Early Demonstrations:

These scientific foundations have led to early clinical successes. Pharmacogenetic testing for enzyme variations has improved drug metabolism and dosage estimations. (8) The HER2 status of breast cancer has led to the use of trastuzumab in oncology, emphasizing the significance of targeted therapy. (13) Furthermore, polygenic risk scores have shown promise in risk stratification for complex illnesses like heart disease and diabetes.(14) These examples show that customized approaches can improve efficacy, reduce adverse effects, and even reduce health care costs when implemented appropriately.(6)

3. Pharmaceutical Technologies Driving Personalization:

Pharmaceutical technology has emerged as a crucial element in the development of personalized medicine because it enables the creation, manufacturing, and delivery of treatments tailored to the unique profile of each patient.(15)

3.1 Nanomedicine and Advanced Drug Delivery Systems:

Nanotechnology has revolutionized drug delivery by enabling site-specific targeting, controlled release, and enhanced bioavailability.(16) (17)Liposomes, polymeric nanoparticles, and lipid–polymer hybrids are being developed to reduce systemic toxicity and deliver chemotherapeutics directly to tumor cells.(18) Furthermore, nanoscale drug carriers can be functionalized with ligands or antibodies to enable precise delivery to molecular targets identified by tailored diagnostics.(15)

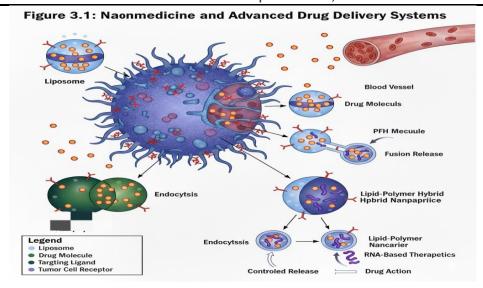


Figure 1: Nanomedicine and Advanced Drug Delivery Systems

3.2 Biopharmaceuticals and Monoclonal Antibodies:

Examples of biopharmaceutical advancements that show how pharmaceutical technology can be applied to provide individualized treatments include RNA-based drugs, recombinant proteins, and monoclonal antibodies.(6)Monoclonal antibodies are designed to bind specific cellular receptors or proteins, such as trastuzumab, which targets HER2-positive breast cancer, as an illustration of how molecular profiling affects treatment selection.(19) Similarly, RNA-based therapies such as messenger RNA (mRNA) and small interfering RNA (siRNA) are enabling targeted interventions by directly altering gene expression.(9)

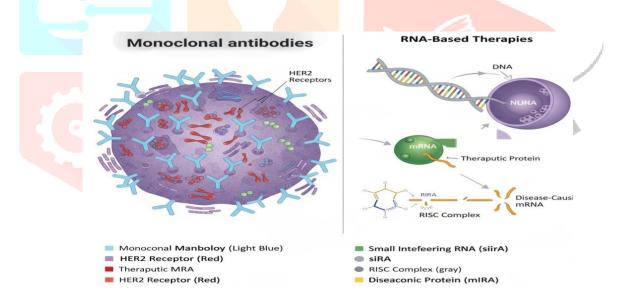


Figure 2: Biopharmaceuticals and Monoclonal Antibodies

3.3 Companion Diagnostics and Biomarker-Driven Therapies:

Companion diagnostics provide a crucial connection between clinical practice and pharmaceutical technology by ensuring that treatments are only given to patients who are most likely to benefit.(3) As an illustration of how therapies and diagnostic tools co-evolve, the use of tyrosine kinase inhibitors in non-small-cell lung cancer is directed by testing for epidermal growth factor receptor (EGFR) mutations.(20)Biomarker-driven decision-making has reduced trial-and-error prescribing and improved patient outcomes.

Figure 3: Companion Diagnostics and Biomarker-Driven Therapies

3.4 Digital Health, Artificial Intelligence, and Data Integration:

The rapid advancement of digital health technology, such as wearables, implanted sensors, and smartphonebased health platforms, enables continuous real-time physiological and behavioral data collection. The ability to remotely monitor parameters such as heart rate, sleep patterns, physical activity, glucose levels, and stress signs has given clinicians a dynamic picture of a patient's health status. This continuous data stream allows for the development of customized and adaptable treatment plans that evolve with a patient's health, going beyond static, one-size-fits-all methods (20).

At the same time, machine learning (ML) and artificial intelligence (AI) have become vital parts of drug discovery and development. To predict drug-drug interactions, identify novel molecular targets, and improve drug candidate selection, these technologies can rapidly search large and complex biomedical data, which costs time and money in preclinical and clinical studies (21). Also, AI can enable the development of adaptive clinical trials, which enhance efficiency and success rates by applying interim data to drive real-time adjustments to dosage, patient stratification, or study goals. These computational methods enable the rapid analysis of multi-omics datasets, facilitating the development of highly customized treatment regimens. (21)

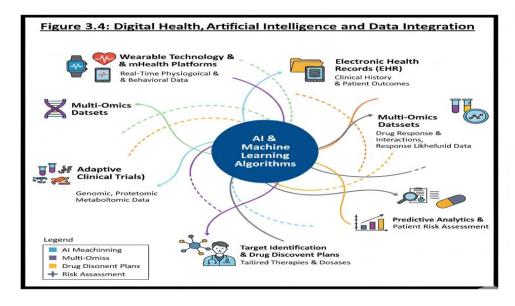


Figure 4: Digital Health, Artificial Intelligence, and Data Integration

3.5 Emerging Technologies: Gene Editing and Personalized Vaccines:

Gene-editing technologies such as CRISPR-Cas9, the ultimate form of individualized intervention, have the potential to directly correct harmful mutations at the DNA level.(22) Furthermore, developments in customized vaccines, particularly in the domains of infectious diseases and oncology, demonstrate the potential to develop immunotherapies based on patient-specific antigenic profiles.(23) With treatments increasingly being based on the individual molecular blueprint of each patient, these technologies demonstrate how pharmaceutical sciences will advance in the future.

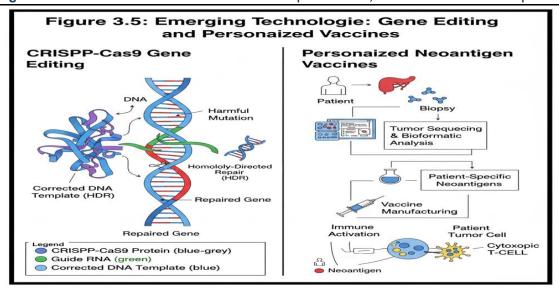


Figure 5: Emerging Technologies: Gene Editing and Personalized Vaccines.

4. Impact on Drug Development:

Artificial intelligence (AI) is transforming the pharmaceutical industry by increasing the efficiency, speed, and cost-effectiveness of drug discovery and development processes. (24)

4.1 Accelerating Drug Discovery:

By analyzing large biological and chemical datasets, AI accelerates drug discovery by more efficiently finding new therapeutic targets than traditional methods. (25)

4.2 Optimizing Drug Design:

By predicting target interactions and optimizing efficacy while minimizing toxicity, AI-driven techniques like deep generative models and machine learning facilitate the logical design of therapeutic compounds. (26)

4.3 Enhancing Clinical Trials:

Artificial intelligence (AI) improves clinical trial design by predicting drug responses, identifying suitable patient populations, and optimizing dosing regimens, which may shorten trial costs and durations. (21)

4.4 Personalizing Medicine:

By integrating environmental, phenotypic, and multi-omics data, AI enables personalized medicine by tailoring treatments to each patient's particular profile for greater efficacy and fewer side effects. (25)

4.5 Post-Market Surveillance and Regulatory Support:

AI keeps an eye on actual patient data to spot negative events early, which aids in post-market surveillance. It also makes regulatory submissions easier by employing automated data analysis and pattern recognition.(27)

4.6 Challenges and Ethical Considerations:

AI has potential, but it also has drawbacks that need to be addressed for safe use, including algorithmic bias, interpretability of complicated models, data quality issues, and ethical and regulatory issues. (28)

5. Individualized Therapies: Case Studies:

Personalized medicine has revolutionized therapeutic approaches by enabling the development of interventions tailored to an individual's genetic, biochemical, and environmental profile. This approach has had a particularly big impact in areas like immunology, neurology, oncology, and rare diseases where conventional "one-size-fits-all" treatments usually don't produce the best results.(29)

5.1 Oncology: Targeted Cancer Therapies:

It is now simpler to develop targeted therapies that specifically target oncogenic factors thanks to the combination of molecular and genomic profiling in oncology. Personalized vaccinations combined with immunotherapy, such as pembrolizumab (Keytruda), have demonstrated significant tumor regression in

tumor with advanced hepatocellular carcinoma by targeting mutations patients everyone.(23)Additionally, multi-gene panels for molecular profiling have enabled doctors to pinpoint the tissue of origin in metastatic cancers of unknown primary (CUP), guiding targeted immunotherapy and achieving effective disease management.(29) These advancements demonstrate how precision oncology can improve efficacy while reducing systemic toxicity.(30)

5.2 Neurology: Alzheimer's and Parkinson's Diseases:

The pathophysiology and clinical trajectory of neurodegenerative diseases, including Parkinson's and Alzheimer's, vary greatly. Personalized medicine uses genetic biomarkers and artificial intelligence (AI) models to predict the course of disease and improve treatment strategies.(14)The identification of specific genetic and molecular biomarkers for Alzheimer's disease has facilitated patient stratification and customized treatment development, potentially delayed the progression of the disease and improving clinical outcomes.(31) These strategies show the promise of customized care for complex neurological disorders.

5.3 Rare Diseases and Orphan Drugs:

Rare diseases are excellent candidates for tailored therapy because they frequently exhibit distinct genetic abnormalities. In a landmark case, a newborn with CPS1 insufficiency who received CRISPR-based geneediting therapy aimed at a liver-specific mutation experienced a significant improvement in clinical outcomes.(32) By permitting the approval of new medications that greatly improve patient outcomes, legislative incentives like the Orphan Drug Act have further accelerated the development of medications for rare diseases.(33)

5.4 Immunology and Autoimmune Conditions:

In immunology, tailored approaches enable precise diagnosis of autoimmune diseases and targeted therapy. Facilities such as Australia's Centre for Personalized Immunology provide tailored treatment plans based on a combination of molecular and genetic profiling.(3) AI-driven frameworks like Immunome improve diagnostic accuracy and optimize treatment strategies by combining genetic, genomic, and clinical data, offering a more effective and individualized approach to immune-mediated diseases. (34)

6. Challenges and Limitations:

Personalized medicine faces a complex mix of technical, ethical, economic, and societal barriers that must be addressed for wide, equitable clinical adoption.(25)

6.1 Technical challenges:

Because of their low reproducibility, lack of strong prospective validation cohorts, and limited assay standardization, only a small percentage of candidate biomarkers obtain the analytical and clinical validation required for routine use. Finding and validating biomarkers remains a significant bottleneck.(35) Combining data modalities such as genomics, transcriptomics, proteomics, metabolomics, imaging, and electronic health records can result in high-dimensional, heterogeneous datasets that require careful method selection, preprocessing, and harmonization. Biased models and findings that are impossible to replicate can improper integration these of Missing data, batch effects, and differences in sample handling between centers further reduce the statistical ability to detect true biological signals, making multi-omics integration more challenging. (36)

6.2 Ethical and privacy concerns:

Genomic and multi-omics data present serious privacy risks beyond those of standard clinical data because they can be uniquely identified and can contain information about blood relatives and personal risk.(37) Cross-border data sharing, secondary usage for commercial or research purposes, and re-identification threats require updated governance models and stronger sociotechnical safeguards. Although they have flaws, the legal and regulatory frameworks in place today—such as HIPAA, GINA, and GDPR—offer some protections.(38)

Informed consent is challenging in precision medicine because future uses of genomic data are usually unknown at the time of collection. Although dynamic consent models and transparent data management are frequently recommended, they have not yet gained widespread acceptance. (39)

6.3 Economic barriers:

Because personalized medicines—like targeted drugs, gene and cell therapies, and customized vaccines usually involve high upfront R&D and per-patient delivery costs, payers and health systems struggle with pricing and reimbursement.(2)

The environment has a significant impact on cost-effectiveness. Certain precision interventions increase lifetime costs because of the expensive long-term therapy and monitoring needs, while others reduce downstream costs by preventing side effects and ineffective treatments. Improved health-economic models that are tailored to precision techniques are required because the results of systematic economic evaluations are inconsistent.(40)

6.4 Accessibility and healthcare disparities:

The implementation of precision medicine, which limits the accuracy and equity of risk prediction and treatment recommendations for underrepresented groups, has the potential to exacerbate pre-existing health inequities because most genomic databases and clinical trials are populated by individuals with European ancestry.(41)

Without focused capacity-building and policy support, it is challenging to implement personalized approaches on a large scale in low- and middle-income countries (LMICs). These challenges include limited laboratory infrastructure, a shortage of trained personnel, limited health budgets, and competing public health priorities.(13)

Addressing these gaps will require concerted efforts, such as diversifying genetic databases and trials, developing accessible diagnostic tools, launching regional genomic services, and modifying payment and policy frameworks to prioritize equitable access.(13,41)

7. Future Directions:

Although personalized medicine is rapidly evolving from pilot studies to clinically integrated systems, its future impact is dependent on shifts in global conditions, laws, and technology. The next decade will be shaped by personalized vaccines, gene-editing technologies, artificial intelligence (AI), and fair implementation strategies.(2)

7.1 Role of AI and Machine Learning:

AI and machine learning enable clinical trial design optimization, drug response prediction, and the discovery of clinically relevant biomarkers. (42) They make it possible to integrate genomes, imaging, and electronic real-time records support decision-making.(43) health to One major problem is that many models have limited generalizability across different populations because they are trained on limited cohorts. (44) Interpretability is another barrier; physicians often protest "black box" predictions that don't have explicit explanations. (24) While maintaining patient privacy, new strategies like federated learning and ancestry-aware models may improve equity.(10)

7.2 CRISPR and Gene-Editing in Personalized Medicine:

CRISPR has already reached the clinical stage, with therapies such as exa-cel (Casgevy) showing promise in the treatment of sickle cell disease.(45) Advances in base editing and prime editing have expanded the correcting patient-specific mutations beyond potential rare, hematology.(15) The largest obstacles are delivery and safety. Off-target modifications remain a concern, and current delivery methods often cause immunological reactions or have poor tissue selectivity. (46) Adaptive regulatory pathways and long-term follow-up registries are necessary to ensure the safe translation of customized changes.(26)

7.3 Personalized Vaccines and Immunotherapies:

Checkpoint inhibitors, particularly neoantigen-based platforms, are being studied in combination with personalized vaccinations for cancers such as hepatocellular carcinoma.(47) These strategies rely on fast sequencing, epitope prediction, and GMP manufacturing to produce vaccines in clinically relevant

It is necessary to enhance antigen-prediction algorithms in order to increase clinical efficacy. (49) Outside of oncology, similar customized immunotherapy strategies are being researched for infectious diseases and autoimmune disorders.(46)

7.4 Global Perspectives and Equitable Implementation:

The overrepresentation of European ancestry in most genetic datasets limits the accuracy of predictive methods for many populations.(2) Inadequate laboratory infrastructure and costly sequencing and biologics barriers for lowand middle-income countries.(42) are Some solutions include regional manufacturing hubs, tiered pricing, and global consortia that require diverse enrollment in clinical trials.(2) Community-driven research paradigms, in which populations are active participants rather than passive subjects, are also essential for sustainability and trust. (42)

8. Conclusion:

Pharmaceutical technology has played a significant role in the development of personalized medicine from a theoretical idea to practical, clinically viable solutions. Improvements in drug formulation, targeted delivery, nanotechnology, and high-throughput screening have enabled the development of more efficient therapies that are also tailored to the distinct genetic, molecular, and phenotypic traits of every patient. Drug release, stability, and bioavailability can now be precisely controlled thanks to technologies like lipid nanoparticles, polymeric carriers, and 3D-printed dosage forms. This ensures that personalized treatments yield the best possible therapeutic outcomes.

Artificial intelligence, machine learning, and big data analytics have accelerated the development of predictive biomarkers, patient stratification, and clinical trial optimization. This has effectively bridged the gap between patient-specific therapy and laboratory research. Examples of how pharmaceutical developments are directly leading to customized treatments that have the potential to cure include gene-editing platforms like CRISPR and personalized vaccine technologies.

The future of drug development depends on interdisciplinary collaboration between pharmaceutical scientists, bioinformaticians, physicians, regulatory agencies, and lawmakers. This collaborative approach will be essential to overcoming financial, ethical, and technical barriers, ensuring equitable access to tailored treatments, and adhering to stringent safety and efficacy standards. By embracing innovation and placing a strong emphasis on patient-centered care and global inclusivity, pharmaceutical technology has the potential to completely transform healthcare. This will set the stage for the eventual replacement of "one-size-fits-all" plans with truly customized treatment Since personalized medicine represents a revolution in the creation, administration, and monitoring of pharmaceuticals in addition to a shift in treatment approach, pharmaceutical technology is essential to realizing the full potential of personalized healthcare.

Reference:

- 1. Hamburg MA, Collins FS. The Path to Personalized Medicine. N Engl J Med. 2010 July 22;363(4):301–4.
- 2. Johnson KB, Wei W, Weeraratne D, Frisse ME, Misulis K, Rhee K, et al. Precision Medicine, AI, and the Future of Personalized Health Care. Clin Transl Sci. 2021 Jan;14(1):86–93.
- 3. Delhalle S, Bode SFN, Balling R, Ollert M, HeFeng FQ. A roadmap towards personalized immunology. Npj Syst Biol Appl. 2018 Feb 6;4(1):9.
- 4. Ginsburg GS, Phillips KA. Precision Medicine: From Science To Value. Health Aff (Millwood). 2018 May;37(5):694–701.
- 5. Visvikis-Siest S, Theodoridou D, Kontoe MS, Kumar S, Marschler M. Milestones in Personalized Medicine: From the Ancient Time to Nowadays—the Provocation of COVID-19. Front Genet. 2020 Nov 30;11:569175.
- 6. Jørgensen JT. Twenty Years with Personalized Medicine: Past, Present, and Future of Individualized Pharmacotherapy. The Oncologist. 2019 July 1;24(7):e432–40.
- 7. Collins FS, Morgan M, Patrinos A. The Human Genome Project: Lessons from Large-Scale Biology. Science. 2003 Apr 11;300(5617):286-90.
- 8. Manolio TA, Chisholm RL, Ozenberger B, Roden DM, Williams MS, Wilson R, et al. Implementing genomic medicine in the clinic: the future is here. Genet Med. 2013 Apr;15(4):258–67.
- 9. The International SNP Map Working Group, Cold Spring Harbor Laboratories:, Sachidanandam R, Weissman D, Schmidt SC, Kakol JM, et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature. 2001 Feb 15;409(6822):928–33.
- 10. Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev Genet. 2015 Feb;16(2):85-97.
- 11. Misra S, Aguilar-Salinas CA, Chikowore T, Konradsen F,

- 12. Alum EU. AI-driven biomarker discovery: enhancing precision in cancer diagnosis and prognosis. Discov Oncol. 2025 Mar 13;16(1):313.
- 13. Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017 Dec;18(1):83.
- Ma RCW, Mbau L, et al. The case for precision medicine in the prevention, diagnosis, and treatment of cardiometabolic diseases in low-income and middle-income countries. Lancet Diabetes Endocrinol. 2023 Nov;11(11):836-47.
- 14. Khera AV, Chaffin M, Aragam KG, Haas ME, Roselli C, Choi SH, et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet. 2018 Sept;50(9):1219–24.
- 15. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J Controlled Release. 2015 Feb;200:138–57.
- 16. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015 Sept;33(9):941–51.
- 17. Pashikanti DS, Tulimelli NR. Advanced Nanocarrier System The Emergence of Nanoflowers.
- 18. Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med. 2016 Mar;1(1):10–29.
- 19. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of Chemotherapy plus a Monoclonal Antibody against HER2 for Metastatic Breast Cancer That Overexpresses HER2. N Engl J Med. 2001 Mar 15;344(11):783–92.
- 20. Rosell R, Moran T, Queralt C, Porta R, Cardenal F, Camps C, et al. Screening for Epidermal Growth Factor Receptor Mutations in Lung Cancer. N Engl J Med. 2009 Sept 3;361(10):958–67.
- 21. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019 Jan;25(1):44-56.
- 22. Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014 Nov 28;346(6213):1258096.
- 23. Yarchoan M, Gane EJ, Marron TU, Perales-Linares R, Yan J, Cooch N, et al. Personalized neoantigen vaccine and pembrolizumab in advanced hepatocellular carcinoma: a phase 1/2 trial. Nat Med. 2024 Apr;30(4):1044-53.
- 24. Bhuyan SS, Sateesh V, Mukul N, Galvankar A, Mahmood A, Nauman M, et al. Generative Artificial Intelligence Use in Healthcare: Opportunities for Clinical Excellence and Administrative Efficiency. J Med Syst. 2025 Jan 16;49(1):10.
- 25. Nam Y, Kim J, Jung SH, Woerner J, Suh EH, Lee D gi, et al. Harnessing Artificial Intelligence in Multimodal Omics Data Integration: Paving the Path for the Next Frontier in Precision Medicine. Annu Rev Biomed Data Sci. 2024 Aug 23;7(1):225–50.
- 26. Rehman AU, Li M, Wu B, Ali Y, Rasheed S, Shaheen S, et al. Role of artificial intelligence in revolutionizing drug discovery. Fundam Res. 2025 May;5(3):1273–87.
- 27. Ocana A, Pandiella A, Privat C, Bravo I, Luengo-Oroz M, Amir E, et al. Integrating artificial intelligence in drug discovery and early drug development: a transformative approach. Biomark Res. 2025 Mar 14;13(1):45.
- 28. Mohr AE, Ortega-Santos CP, Whisner CM, Klein-Seetharaman J, Jasbi P. Navigating Challenges and Opportunities in Multi-Omics Integration for Personalized Healthcare. Biomedicines. 2024 July 5;12(7):1496.
- 29. Yu B, Wang Q, Liu X, Hu S, Zhou L, Xu Q, et al. Case Report: Molecular Profiling Assists in the Diagnosis and Treatment of Cancer of Unknown Primary. Front Oncol. 2022 Mar 30;12:723140.
- 30. Kumar PA, Shailaja P, Chandana MS, Rajeswari A. Empowering Hope: Advances in Breast Cancer Detection and Treatment. 2024;9(5).
- 31. Zeng R, Yang B, Wu F, Liu H, Wu X, Tang L, et al. Early prediction of Alzheimer's disease using artificial intelligence and cortical features on T1WI sequences. Front Neurol. 2025 Mar 12;16:1552940.
- 32. Nitzahn M, Truong B, Khoja S, Vega-Crespo A, Le C, Makris G, et al. CRISPR-Mediated Genomic Addition to.
- 33. Gabay M. The Orphan Drug Act: An Appropriate Approval Pathway for Treatments of Rare Diseases? Hosp Pharm. 2019 Oct;54(5):283-4.
- 34. Ullah R, Sarwar N, Alatawi MN, Alsadhan AA, Salamah Alwageed H, Khan M, et al. Advancing personalized diagnosis and treatment using deep learning architecture. Front Med. 2025 Mar 27;12:1545528.
- 35. Emmerich CH, Gamboa LM, Hofmann MCJ, Bonin-Andresen M, Arbach O, Schendel P, et al. Improving target assessment in biomedical research: the GOT-IT recommendations. Nat Rev Drug Discov. 2021 Jan;20(1):64-81.
- 36. Martínez-García M, Hernández-Lemus E. Data Integration Challenges for Machine Learning in Precision Medicine. Front Med. 2022 Jan 25;8:784455.

IJCR

- 37. Wan Z, Hazel JW, Clayton EW, Vorobeychik Y, Kantarcioglu M, Malin BA. Sociotechnical safeguards for genomic data privacy. Nat Rev Genet. 2022 July;23(7):429-45.
- 38. Bonomi L, Huang Y, Ohno-Machado L. Privacy challenges and research opportunities for genomic data sharing. Nat Genet. 2020 July;52(7):646-54.
- 39. Kasztura M, Richard A, Bempong NE, Loncar D, Flahault A. Cost-effectiveness of precision medicine: a scoping review. Int J Public Health. 2019 Dec;64(9):1261–71.
- 40. Moretti P. Economic Implications of Personallized Medicine: A Review of Cost-Effectiveness Studies.
- 41. Khoury MJ, Bowen S, Dotson WD, Drzymalla E, Green RF, Goldstein R, et al. Health equity in the implementation of genomics and precision medicine: A public health imperative. Genet Med. 2022 Aug;24(8):1630-9.
- 42. Alsaedi S, Ogasawara M, Alarawi M, Gao X, Gojobori T. AI-powered precision medicine: utilizing genetic risk factor optimization to revolutionize healthcare. NAR Genomics Bioinforma. 2025 Mar 29;7(2):lqaf038.
- 43. Schork NJ. Artificial Intelligence and Personalized Medicine. In: Von Hoff DD, Han H, editors. Precision Medicine in Cancer Therapy [Internet]. Cham: Springer International Publishing; 2019 [cited 2025 Oct 3]. p. 265-83. (Cancer Treatment and Research; vol. 178). Available from: http://link.springer.com/10.1007/978-3-030-16391-4_11
- 44. Ghebrehiwet I, Zaki N, Damseh R, Mohamad MS. Revolutionizing personalized medicine with generative AI: a systematic review. Artif Intell Rev. 2024 Apr 25;57(5):128.
- 45. Azeez SS, Hamad RS, Hamad BK, Shekha MS, Bergsten P. Advances in CRISPR-Cas technology and its applications: revolutionising precision medicine. Front Genome Ed. 2024 Dec 12;6:1509924.
- 46. Wu DW, Jia SP, Xing SJ, Ma H lan, Wang X, Tang QY, et al. Personalized neoantigen cancer vaccines: current progression, challenges and a bright future. Clin Exp Med. 2024 Sept 26;24(1):229.
- 47. Radich JP, Briercheck E, Chiu DT, Menon MP, Sala Torra O, Yeung CCS, et al. Precision Medicine in Low- and Middle-Income Countries. Annu Rev Pathol Mech Dis. 2022 Jan 24;17(1):387–402.
- 48. Morsi MH, Elawfi B, ALsaad SA, Nazar A, Mostafa HA, Awwad SA, et al. Unveiling the Disparities in the Field of Precision Medicine: A Perspective. Health Sci Rep. 2025 Aug;8(8):e71102.
- 49. Misra S, Florez JC. Extending precision medicine tools to populations at high risk of type 2 diabetes. PLOS Med. 2022 May 19;19(5):e1003989.