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Abstract:  Early and accurate diagnosis of Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) 

is vital for effective patient care and timely intervention. Magnetic Resonance Imaging (MRI) serves as a 

powerful modality for detecting structural brain changes, but traditional manual analysis is time-consuming 

and subjective. This study presents a novel hybrid framework that integrates the deep Convolutional Neural 

Network VGG16 with the local feature extraction capability of the Scale-Invariant Feature Transform (SIFT) 

algorithm to classify AD and MCI from MRI scans. The approach employs a feature fusion strategy that 

combines global high-level features from VGG16 with fine-grained local features from SIFT, eliminating the 

need for complex preprocessing steps like manual segmentation. Performance evaluation using confusion 

matrix–derived metrics demonstrates the framework’s strong discriminative power. The model achieved an 

accuracy of 97.60%, sensitivity of 98.00% and specificity of 97.20%, highlighting its efficiency. These results 

confirm the model’s high accuracy, robustness, and practicality, making it a promising tool for integration 

into clinical decision-support systems to facilitate early and reliable diagnosis of Alzheimer’s Disease. 

 

Index Terms - Learning, Alzheimer's Disease (AD), Mild Cognitive Impairment (MCI), Feature Fusion, 

Scale-Invariant Feature Transform (SIFT) 

I. INTRODUCTION 

Alzheimer's Disease (AD) is a debilitating neurodegenerative disorder characterized by progressive cognitive 

decline and memory loss. Timely and accurate diagnosis is critical for managing the disease and improving 

patient outcomes. Magnetic Resonance Imaging (MRI) provides a non-invasive way to visualize the brain's 

structure, revealing changes like cortical thinning and hippocampal atrophy that are indicative of AD and 

Mild Cognitive Impairment (MCI) [1]. While traditional MRI analysis requires manual, expert-driven 

interpretation, recent advancements in deep learning (DL) and machine learning (ML), particularly with 

Convolutional Neural Networks (CNNs), have shown great promise in automating this process. Networks like 

VGG16 have demonstrated remarkable performance in learning hierarchical feature representations for 

complex image classification tasks. 

Despite this progress, many existing deep learning models for AD diagnosis often treat the entire MRI image 

as input, which can introduce irrelevant noise and diminish the model's focus on crucial regions of interest 

(ROIs) like the hippocampus and entorhinal cortex. Additionally, they often require extensive, expert-driven 

preprocessing. To address these limitations, we propose a hybrid framework that synergistically combines 

global features from VGG16 with local, handcrafted features from SIFT. This fusion approach allows the 

model to learn from both high-level structural patterns and subtle, localized abnormalities, resulting in a more 

comprehensive and accurate diagnostic tool. 
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The use of machine learning for automated AD diagnosis from MRI data has been a focal point of recent 

research. These studies aim to improve diagnostic accuracy and reduce the reliance on manual analysis. 

Various deep learning architectures and strategies have been explored to distinguish AD from MCI and 

healthy controls. 

Many researchers have recognized the benefits of combining information from multiple sources. While some 

studies focus on multimodal fusion (e.g., combining MRI and PET scans), others have explored hybrid feature 

fusion, which is more closely related to our proposed work. For instance, a study by Liu et al. (2021) [2] 

introduced a method that combined Local Binary Patterns (LBP) for texture feature extraction with a deep 

learning model for AD classification, highlighting the value of leveraging both handcrafted and learned 

features. This approach, similar to ours, aimed to improve model reliability by incorporating different types 

of image information. A variety of CNN architectures have been investigated for AD diagnosis. VGG16, 

ResNet, and DenseNet are among the most frequently cited. A study published by Eqtidar et al. (2024) [3] 

compared the performance of VGG16 and ResNet50 for AD detection, noting that while both models showed 

high accuracy, the choice of a pre-trained model and transfer learning was crucial for achieving strong results, 

especially with limited datasets. Another work by Alsubai et al. (2025) [4] used a multi-stage CNN framework 

to achieve very high accuracy in both dementia detection and sub-classification, demonstrating the power of 

tailored architectures for this specific problem. Zaabi et al. (2020) [5] demonstrated this by focusing on the 

hippocampal region and using transfer learning with AlexNet, achieving a high classification accuracy. This 

work reinforces our hypothesis that focusing on key features, whether through segmentation or advanced 

feature extraction, is a vital step toward more accurate diagnoses. 

These studies underscore the promise of deep learning in AD diagnosis but also reveal key challenges: the 

need for better feature selection, improved robustness to data variations, and a way to integrate both global 

and local information effectively. Our proposed method addresses these issues by fusing deep learning and 

handcrafted features to create a more robust and comprehensive diagnostic system. 

 

II. PROPOSED WORK 

 

The proposed methodology integrates two distinct feature extraction techniques to create a more robust 

diagnostic system. We hypothesize that a fusion of global features, captured by a powerful CNN like VGG16, 

and local, fine-grained features, extracted using a traditional computer vision algorithm like SIFT, will 

produce a more discriminative and accurate model for classifying AD and MCI. This hybrid approach 

leverages the strengths of both methods, with SIFT identifying subtle, localized changes and VGG16 

capturing broader, high-level structural patterns. 
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The methodology consists of the following steps, as shown in the block diagram in Figure 1. 

 
 

Figure 1: Proposed Methodology for AD vs. MCI Classification 

 

III. METHODOLOGY 

 

1. Dataset Preparation 

A dataset of 2000 T1-weighted MRI scans from the ADNI database, divided into two classes: Alzheimer's 

Disease (AD) and Mild Cognitive Impairment (MCI). The dataset was organized into separate folders for each 

class to facilitate labeling and processing. 

 

2. Preprocessing 

Before feature extraction, the MRI images undergo a series of preprocessing steps: 

 Grayscale Conversion: All images are converted to grayscale to reduce dimensionality and focus on 

structural information [6]. 

 Resizing: Images are resized to 224x224 pixels to meet the input requirements of the VGG16 network. 

 Intensity Normalization: Min-max scaling is applied to normalize pixel values to the range [0, 1]. This 

ensures consistent input to both feature extractors and prevents any single feature from dominating the 

fusion process due to scale differences [7]. 

3. Feature Extraction – SIFT 

Scale-Invariant Feature Transform (SIFT) is a robust algorithm for detecting and describing local features in 

images. It's particularly effective because it's invariant to scale, rotation, and illumination changes, which is 

crucial for handling the variability in MRI scans [8,9]. 

 Keypoint Detection: SIFT identifies distinctive keypoints at different scales, which in MRI scans could 

correspond to regions of atrophy or other structural abnormalities. 
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 Descriptor Computation: For each keypoint, a 128-dimensional descriptor vector is computed, 

encoding the local image gradient information around the point. 

 Feature Aggregation: The Bag-of-Visual-Words (BoVW) model is used to aggregate the numerous 

SIFT descriptors from each image into a single, fixed-size feature vector. 

4. Feature Extraction – VGG16 

VGG16 is a deep CNN renowned for its simple yet powerful architecture, consisting of 13 convolutional 

layers and three fully connected layers [10,11]. It excels at learning hierarchical, high-level features from 

images. 

 Input: The preprocessed 224x224 grayscale MRI images are fed into the VGG16 network, which has 

been pre-trained on the ImageNet dataset. 

 Transfer Learning: We use VGG16 as a feature extractor. The final fully connected layers of the 

network are removed, and the output of a penultimate layer (e.g., the fc2 layer) is used as our feature 

vector. This layer produces a 4096-dimensional vector that captures abstract, global patterns of brain 

structure. 

5. Normalization and Feature Fusion 

To ensure that neither SIFT nor VGG16 features dominate the classification process, we normalize both 

feature vectors using Z-score normalization (mean=0, std=1) [11].  This standardizes the scale of each feature 

type. The normalized feature vectors are then concatenated to create a single, comprehensive feature vector 

of approximately 4596 dimensions (500 from SIFT + 4096 from VGG16). 

 

6. Classification 

The fused feature vectors are used to train a Random Forest classifier. Random Forest is an ensemble learning 

method known for its robustness, resistance to overfitting, and high performance on high-dimensional data. 

It's an excellent choice for this task because it can effectively handle the complex, fused feature space. 

 

IV. PERFORMANCE EVALUATION 

 

The model's performance was evaluated using a comprehensive suite of metrics derived from the confusion 

matrix [12], which provides a detailed breakdown of the model’s classification outcomes. Specifically, the 

confusion matrix in Figure 2 illustrates the number of correctly and incorrectly classified instances across the 

two diagnostic categories: Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI). By analyzing 

the true positives (correctly identified AD cases) and true negatives (correctly identified MCI cases), as well 

as the false positives (MCI cases incorrectly labeled as AD) and false negatives (AD cases incorrectly labeled 

as MCI), a range of key performance metrics was computed. These included accuracy, precision, recall 

(sensitivity), specificity, and the F1-score, each offering unique insights into the model’s diagnostic 

capabilities. 

 

The high number of true positives and true negatives observed in the confusion matrix underscores the model’s 

strong discriminative power and low misclassification rate between the two conditions. Moreover, the 

balanced performance across sensitivity and specificity suggests that the model does not exhibit a bias towards 

either class, which is particularly important in medical diagnostic tasks where both false negatives and false 

positives can have significant clinical implications. Overall, the confusion matrix not only confirms the 

model’s ability to correctly distinguish between AD and MCI cases but also serves as a foundation for 

calculating robust performance metrics that validate its clinical applicability. 
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Figure 2: Confusion Matrix of AD vs. MCI Classification 

 

The Figure 2 represents the confusion matrix of AD vs. MCI classification. The model correctly classified 

980 out of 1000 actual AD cases (True Positives) and 972 out of 1000 actual MCI cases (True Negatives). 

With only 28 false positives and 20 false negatives, the model demonstrated a low misclassification rate. The 

quantitative results of our evaluation are presented in Table 1. 

 

Table 1: Performance Metrics of AD vs. MCI Classification 

 

Metric 
Value 

(%) 

Accuracy 97.60 

Sensitivity (Recall) 98.00 

Specificity 97.20 

Precision (PPV) 97.22 

Negative Predictive 

Value (NPV) 
97.98 

False Positive Rate (FPR) 2.80 

False Negative Rate 

(FNR) 
2.00 

False Discovery Rate 

(FDR) 
2.78 

False Omission Rate 

(FOR) 
2.02 

Misclassification Rate 

(MCR) 
2.40 

Balanced Accuracy (BA) 97.60 

Time Consumption (s) 
3.15 

minutes 
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The high accuracy (97.60%) and balanced accuracy (97.60%) confirm the model's overall effectiveness and 

its ability to perform equally well across both classes, which is crucial for imbalanced medical datasets. The 

sensitivity (98.00%) highlights the model's excellent ability to correctly identify true AD cases, a critical 

factor for early diagnosis. A high specificity (97.20%) ensures that MCI patients are not wrongly diagnosed 

with AD. The low false positive rate (2.80%) and false negative rate (2.00%) are particularly impressive, 

indicating minimal instances of misdiagnosis. These results, combined with a Misclassification Rate (MCR) 

of 2.40%, demonstrate the model's robustness and reliability for clinical use. 

V. ROC CURVE FOR AD VS MCI CLASSIFICATION 

 

The ROC curve (Receiver Operating Characteristic) further validates the model's performance, plotting the 

True Positive Rate (Sensitivity) against the False Positive Rate at various classification thresholds. It provide 

a robust measure of a model's diagnostic accuracy, which is crucial for distinguishing between AD and MCI. 

The steep rise of the ROC curve indicates that the model's true positive rate (sensitivity) increases rapidly as 

the false positive rate (1-specificity) rises. This means the model can correctly identify a large proportion of 

AD patients while incorrectly labeling very few non-AD individuals [13-16]. 

 
Figure 3: ROC Curve for AD vs. MCI Classification 

 

The ROC curve showed in Figure 3 a steep rise, indicating that the model achieves high sensitivity without a 

substantial increase in false positives. A high Area Under the Curve (AUC) of 98.15% further quantifies this 

performance. The AUC score ranges from 0 to 1, with a score of 1.0 representing a perfect classifier and 0.5 

representing a random guess. An AUC of 0.9815 means there is a 98.15% probability that the model will rank 

a randomly chosen positive instance (an AD patient) higher than a randomly chosen negative instance (an 

MCI patient or a healthy individual). This high score is a strong indicator of the model's ability to discriminate 

between the two classes across all possible classification thresholds, making it highly reliable for clinical use. 
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VI. ADVANTAGES OF THE PROPOSED APPROACH 

 

The proposed framework offers several key advantages over traditional and single-modality approaches: 

 

Aspect Benefit 

Combined Feature 

Spaces 

The fusion of local SIFT features and global VGG16 features provides a richer, 

more comprehensive representation of brain pathology, leading to improved 

classification accuracy. 

High Accuracy and 

Interpretability 

The hybrid model is not only highly accurate but also more interpretable than a 

standalone deep learning model, as the SIFT features provide insights into the 

specific local changes driving the classification. 

Reduced Overfitting 

By leveraging pre-trained VGG16 features and handcrafted SIFT features, the 

model is better equipped to generalize from limited medical datasets, reducing the 

risk of overfitting. 

Efficiency 

The proposed framework is more efficient than approaches requiring extensive 

manual segmentation or complex pre-processing, making it more practical for 

real-time clinical applications. 

 

VII. CONCLUSION 

The core innovation of this work lies in its ability to leverage both local and global features. SIFT a classic 

computer vision algorithm, is a master at detecting subtle, granular details. It can pinpoint tiny changes in the 

brain's texture or structure like the very first signs of a neuron's degradation that are often too small for a 

human to notice or for a deep learning model to focus on. On the other hand, the VGG16 model, a powerful 

deep neural network, excels at recognizing global high-level features.  The new approach, which fuses local 

features from SIFT with global, high-level features from VGG16, demonstrates exceptional performance with 

an accuracy of 97.60% and an AUC of 98.15%. By combining the strengths of traditional computer vision 

with the power of deep learning, our model provides a robust, reliable, and efficient solution that can serve as 

a valuable diagnostic aid for healthcare professionals. This method represents a significant step forward in 

developing automated systems for the early detection and management of neurodegenerative diseases. 
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