www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 9 September 2025 | ISSN: 2320-2882

IJCRT.ORG ISSN : 2320-2882

APy, 'NTERNATIONAL JOURNAL OF CREATIVE
@ap RESEARCH THOUGHTS (IJCRT)

& An International Open Access, Peer-reviewed, Refereed Journal

Cloud Computing For Healthcare

Big Data Analytics and Patient Care

Vaibhav Rajaram Khambe Dnyaneshwar Tukaram Shigawan
Department of IT Department of IT
GMVCS Tala GMVCS Tala
University of Mumbai University of Mumbai

Prof. Manaswi Manoj Wadhwal

Assistant professor
GMVCS Tala
University of Mumbai

Abstract: Cloud computing combined with big data analytics offers transformative opportunities for
healthcare—enabling scalable storage, multimodal data fusion, and advanced machine learning for clinical
and operational decision support. This paper presents a comprehensive framework and experimental plan for
deploying cloud-based analytics to improve patient care. We describe architectures (centralized Lakehouse,
hybrid edge-cloud, and federated setups), data engineering pipelines for electronic health records (EHR),
imaging, and device telemetry, and privacy-preserving machine learning strategies (federated learning,
differential privacy). We propose a set of experiments using public and partner datasets to evaluate predictive
performance, latency, cost, and privacy-utility tradeoffs. We also outline deployment considerations,
regulatory compliance, and ethical safeguards for real-world adoption. Our work aims to provide a
reproducible blueprint for researchers and healthcare IT teams to build cloud-centered analytics that improve
clinical outcomes while minimizing privacy risks.

I. INTRODUCTION

Healthcare systems produce massive volumes of structured and unstructured data—EHRs, diagnostic
imaging, continuous device telemetry, and administrative records. Transforming these data into actionable
insights requires scalable storage, compute, and advanced analytics. Cloud computing addresses
scalability and cost concerns while enabling collaboration and rapid iteration of machine learning models.
However, healthcare introduces unique challenges: patient privacy and regulatory constraints
(HIPAA/GDPR), heterogeneous data formats, clinical validation requirements, and the need for low-
latency inference in critical-care settings.

This paper proposes a practical architecture and experimental program to evaluate cloud-based big data
analytics solutions across clinical and operational healthcare use-cases. We focus on three goals: (1)
demonstrate how cloud architectures can host multimodal healthcare analytics pipelines; (2) evaluate
clinical utility of ML models for key use-cases (e.g., sepsis early-warning, readmission prediction); and
(3) compare privacy-preserving approaches (centralized vs. federated vs. hybrid) in terms of utility,
latency, and operational cost.
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Il. RELATED WORK

Cloud computing and big data analytics in healthcare have been widely explored in surveys and applied
studies that highlight benefits and challenges of cloud-based deployments. Reviews discuss
storage/processing strategies and the promise of cloud-driven analytics for clinical decision support and
population health management.

Federated learning and privacy-preserving ML have become prominent strategies for cross-institutional
model training without sharing raw PHI; several surveys and domain studies discuss architectures,
communication-efficient algorithms, and healthcare-specific challenges.

Applied cloud solutions illustrate real-world deployments — for example, Health Data Lab demonstrates
how a cloud-hosted environment can enable multi-center predictive analytics for pediatric readmissions,
describing architecture, tools, and governance choices.

Public clinical datasets like MIMIC-1V provide rich EHR data for methodological development and
reproducible research in critical care and are central to many cloud-enabled analytic studies.

I11. PROBLEM STATEMENT & USE-CASES

We define the general problem as building and evaluating cloud-enabled analytics systems that improve
patient outcomes and operational efficiency. We focus on three concrete use-cases (one primary + two
secondary):

1. Primary use-case — Early detection of sepsis in ICU patients.
Obijective: Predict sepsis onset 6-12 hours before clinical recognition using multimodal ICU data (vitals,
labs, notes). Rationale: early intervention reduces mortality and length-of-stay.
2. Secondary use-case — 30-day hospital readmission prediction.
Objective: Identify patients at high readmission risk prior to discharge to target transitional care
interventions.
3. Secondary use-case — Remote chronic disease monitoring (wearable telemetry).
Objective: Detect anomalous events (arrhythmias, exacerbations) in near-real-time using cloud + edge-
assisted analytics.

IV. DATA SOURCES

We propose using a mix of publicly available data sets for reproducible development and partner/hospital

data for external validation.

Public datasets (for development & reproducibility):

MIMIC-IV — de-identified ICU EHR data (structured records + clinical notes) suitable for sepsis and
mortality modeling.

PhysioNet

+1

PhysioNet challenge datasets (for waveform/signal tasks).

Synthea synthetic EHRs for data engineering and pipeline testing without PHI.

Partner datasets (if available):

Hospital EHR extracts, imaging repositories (DICOM), device/wearable telemetry feeds. (Acquisition
requires IRB & DUASs.)

Case study data:

Health Data Lab’s architecture and readmission study provide a reference implementation and evaluation

approach for multi-center readmission analytics.
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V. CLOUD ARCHITECTURES & SYSTEM DESIGN

We outline three architectures, with pros/cons:

5.1 Centralized Lakehouse (Cloud-First)

Components: Object storage (S3/Blob), lakehouse layer (Delta Lake/Hudi), batch & stream compute (Spark,
Dataproc), model training on managed ML (SageMaker/Vertex/AML).

Pros: Easier model training at scale, centralized governance, lower coordination overhead.

Cons: Data movement increases PHI exposure risk, latency for near-patient decisions.

5.2 Hybrid Edge-Cloud

Components: On-prem edge nodes (for low-latency inference and de-identification), cloud for aggregated
storage/analytics.

Pros: Low-latency decisions at bedside, PHI minimization sent to cloud (features/aggregates only).

Cons: Higher operational complexity.

5.3 Federated Multi-Site (Privacy-Preserving)

Components: Local model training at each institution, secure aggregation server in cloud, optional secure
enclaves / MPC for extra privacy.

Pros: Minimizes raw PHI sharing, supports cross-site model generalization.

Cons: Communication overhead; heterogeneity (non-11D) challenges.

We recommend implementing a modular pipeline with interchangeable components (ingest, transform,
store, train, serve) so different architectures can be evaluated with the same codebase.

V1. DATAENGINEERING & FEATURE DESIGN

Data preprocessing and feature engineering are crucial. Examples:

o Tabular EHR features: vitals (current value, trend, variability), lab time-series aggregates (last
value, slope), demographics, comorbidity indices (Charlson), medication exposure vectors.

e Text features: embeddings from clinical language models (Clinical BERT/BioBERT) applied to
notes; keyword/negation extraction for relevant concepts.

« Imaging features: transfer learning with pretrained CNN backbones; radiomics descriptors and
segmentation outputs where relevant.

o Telemetry features (wearables): sliding-window statistics (mean, variance), frequency-domain
features, event flags.

o Operational features: prior admissions, LOS history, discharge disposition, social determinants
(if available).
Feature stores and caching (Redis, Feast) are recommended to avoid repeated heavy computation
during real-time inference.

VIil. MODELING APPROACHES

We propose a tiered modeling approach — baseline classical models, deep learning, and privacy-aware
variants.
7.1 Baselines
o Logistic regression and gradient-boosted trees (XG Boost/Light GBM) on engineered features.
Serve as interpretable baselines.
7.2 Deep Learning
« Temporal models (LSTM/Transformer) for sequential EHR.
e Multimodal fusion (concatenate embeddings from structured + text + image pipelines) with
attention layers for interpretability.
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7.3 Privacy-Preserving Techniques
o Federated learning (Fed Avg) to train across hospitals without aggregation of raw data. Survey
and best practices exist in healthcare domains.
« Differential privacy (DP-SGD) during centralized training to bound information leakage.
e Secure aggregation / MPC / Trusted Execution Environments for additional guarantees.
7.4 Interpretability & Clinical Explainability
e Use SHAP or Integrated Gradients to generate per-prediction explanations; produce model cards
and decision summaries for clinician review.

VIill. EXPERIMENTAL DESIGN & EVALUATION PLAN

We designed experiments that measure predictive performance, latency/cost trade-offs, and privacy-utility
trade-offs.
8.1 Experiments (by use-case)
Sepsis early-warning (primary)
e Train baseline XGBoost on structured features (windowed vitals/labs).
e Train Transformer model on sequential EHR and clinical notes.
e Evaluate centralized training vs. federated training across simulated hospital splits.
Metrics: AUC-ROC, AUC-PR, sensitivity at fixed specificity (e.g., 0.90), time-to-detection (hours
before clinical recognition), calibration.
Readmission prediction (secondary)
e Evaluate multiple models (baseline, deep, multimodal) on MIMIC or partner datasets.
Metrics: AUC, precision@Kk, decision impact (e.g., number of interventions required per prevented
readmission when simulated intervention cost is modeled).
Remote monitoring (secondary)
e Implement edge-assisted inference for telemetry: baseline on-cloud model vs. edge model + cloud
aggregator for complex checks.
Metrics: latency (ms), bandwidth usage, false positive rate in real-time streams.
8.2 Privacy & Cost Experiments
e Privacy-utility curve: Train centralized models with DP noise addition of varying ¢ values;
measure decay in utility.
e Federated utility & communication cost: Simulate federated training across N sites with varying
data heterogeneity and measure convergence time, test performance, and bytes transferred.
e Cost analysis: Estimate cloud training and inference costs for centralized vs. hybrid vs. federated
setups (compute hours, storage, data transfer).

8.3 Robustness & Generalization
e Cross-site validation: train on subset of hospitals, test on held-out hospitals.
e Adversarial / distributional shifts: simulate missing data, label noise, and concept drift; measure
model robustness and recommend retraining cadences.

IX. IMPLEMENTATION & TOOLS

Proposed Stack:

o Data engineering: Apache Spark (PySpark), Delta Lake / cloud object storage (S3/Blab).

e Modeling: scikit-learn, XGBoost, PyTorch/TensorFlow, Hugging Face transformers (Clinical
models).

e Cloud: AWS (S3, SageMaker, Lambda) / GCP (Cloud Storage, Vertex Al) / Azure (Blob,
AzureML) — choose per institutional BAAs.

e Orchestration & MLOps: Airflow / Kubeflow, MLflow for model registry, DVC for data
versioning.

o Federated frameworks: TensorFlow Federated or PySyft (research), plus secure aggregation
layers.
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X. ETHICAL, LEGAL & SECURITY CONSIDERATIONS

« Regulatory compliance: Follow HIPAA, GDPR, local laws; ensure BAAs with cloud vendors and
DUAs with partner sites.

e IRB & governance: Obtain IRB approval before working on partner patient data; use de-
identification where feasible.

e Security: Encryption in transit and at rest, IAM, key management, and audit logging. Use secure
enclaves or MPC for high-risk operations.

e Bias & fairness: Monitor model performance across demographic subgroups and mitigate via
reweighting or fairness-aware learning.

XI. EXPECTED CONTRIBUTIONS

e A modular, reproducible cloud architecture for multimodal healthcare analytics.

« Comparative evaluation of centralized, hybrid, and federated strategies for clinical prediction tasks.

« Practical recommendations for balancing predictive utility, latency, cost, and privacy.

e Open-source codebase and reproducible notebooks (planned) demonstrating the pipeline on public
datasets (e.g., MIMIC-1V).

XIl. LIMITATIONS

e Reliance on public datasets (e.g., MIMIC-IV) may miss population-specific biases; external
validation on partner datasets is required.

o Federated setups above research scale require infrastructure and institutional coordination that may
be hard to secure.

e Clinical impact (reduced mortality/readmission) requires prospective trials and operational buy-in
— beyond retrospective modeling.

XI11. CONCLUSION

Cloud computing unlocks scalable big data analytics capabilities for healthcare, but realizing clinical
benefits requires careful architecture choices, privacy-preserving training, and rigorous clinical validation.
This paper proposes a blueprint for implementing and evaluating cloud-based analytics for sepsis prediction,
readmission risk, and remote monitoring. Our planned experiments will quantify predictive performance,
privacy-utility trade-offs, latency, and cost, and inform deployment strategies that balance patient safety
with innovation.
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