

“Analysis Of Fault Detection Using Artificial Neural Networks In HVDC Transmission Systems”

¹Vipin Dubey,²Raghunandan Singh Baghel

¹MTech Scholar,²Assistant Professor

¹School of Engineering & Technology

¹Vikram University, Ujjain, India

Abstract: The increasing demand for reliable electrical energy necessitates fault-free operation of power systems. Power transformer protective relays play a crucial role in mitigating unwanted outages. This paper proposes the application of artificial neural networks (ANNs) for detecting and classifying faults in power transformers, leveraging their ability to mimic human knowledge and automate complex tasks. A comprehensive survey of soft computing approaches for transformer fault location is presented, highlighting the limitations of conventional techniques and the potential benefits of intelligent solutions.

Index Terms -Transformer Fault Location, Artificial Neural Networks, Soft computing, Artificial Intelligence, Gradient, KNN, Feature extraction and Accuracy

I. INTRODUCTION

The power system infrastructure requires robust protection against faults, anomalies, and undesirable conditions. To achieve this, protective relays and systems are employed. With the growing demand for reliable electrical energy in various sectors, power systems must operate with minimal faults. Power transformers, being critical and expensive components, necessitate advanced protection mechanisms. The primary goal is to reduce unwanted outages, which demands high-performance protective relays that operate with precision, speed, and dependability. This includes ensuring no false tripping and rapid fault detection and clearance.

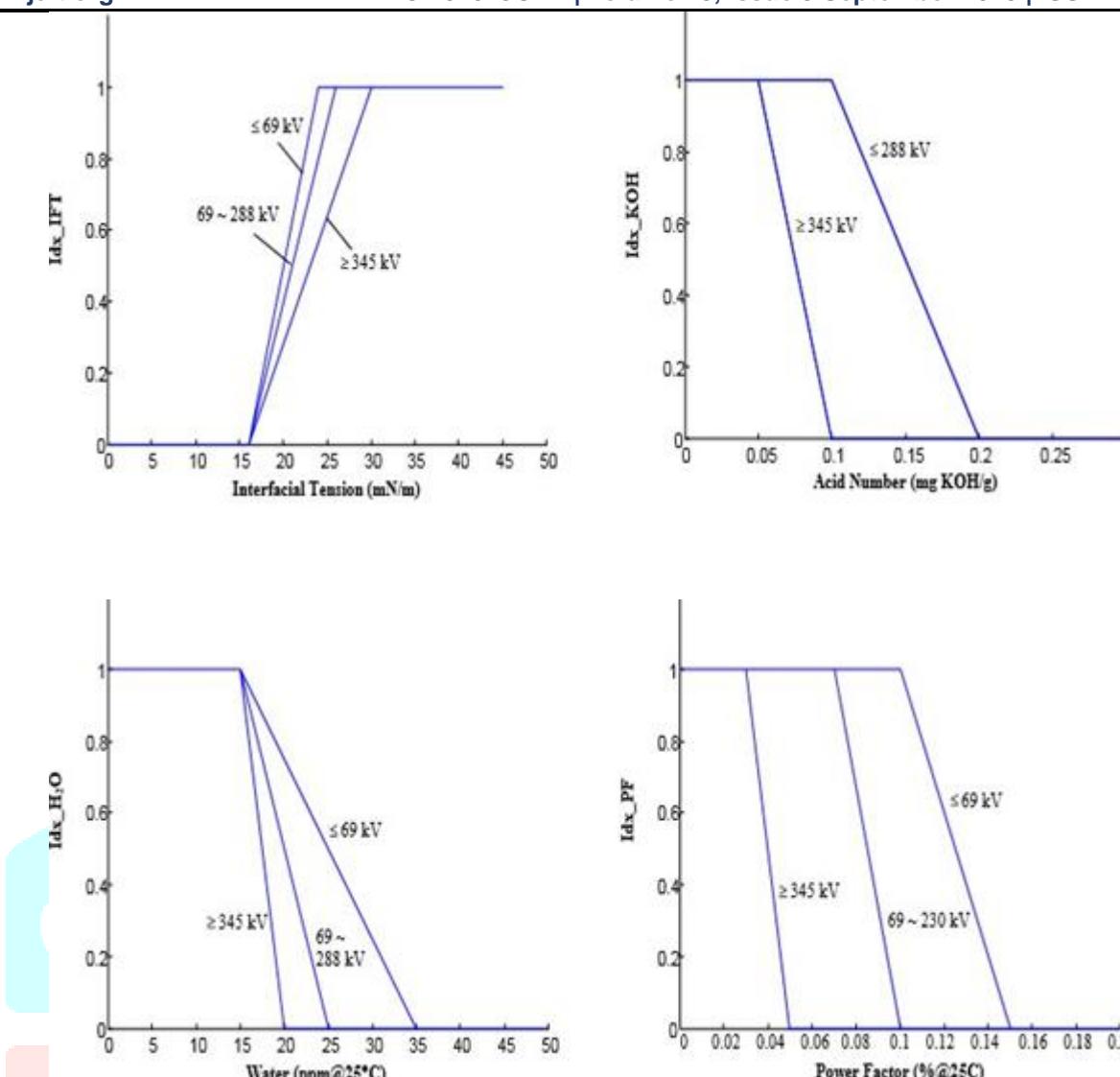


Fig.1.1 Transformer Oil Condition Assessment Indices

The solubility of water in transformer oil increases with temperature. However, the formation of free water, which can significantly compromise the oil's dielectric strength, only occurs when the oil becomes saturated with water and the temperature drops. Thus, while high water content at elevated temperatures may be acceptable, it is crucial to ensure that the oil does not reach saturation. When measuring the power factor (PF) of transformer oil at temperatures other than 25°C, a correction factor must be applied due to the strong temperature dependence of PF.

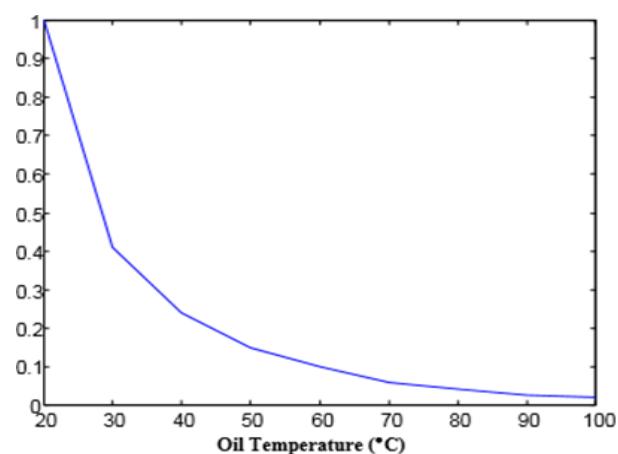


Fig.1.2 Transformer Oil Power Factor Correction Factor

II. LITERATURE SURVEY

The significant previous work in the domain has been summarized here with the salient features. Previous work in the domain helps in formulating the problem domain and renders an idea into the basic mechanisms that have been already used for the purpose of transformer fault location. The different contemporary work of authors has been cited here with their merits and approaches.

Jessika Fonseca discussed that currently, the differential function has been widely used in transformer protection relay. However, the main issue of this technique is assigned to the relay mis-operation during the presence of inrush currents and current transformer (CT) saturation. In the literature, these limitations have been overcome with the use of tools based on artificial intelligence and signal processing, such as the methods based on artificial neural networks and wavelet transform. This paper proposes a method based on the ANNs and wavelet transform to detect and classify disturbance in the power transformer accurately. The algorithm uses wavelet-based disturbance detector in order to detect any disturbance related to a power transformer, whereas a neural network-based routine is used to classify the disturbance type (internal fault, external fault and transformer energization) appropriately, as well as to classify the internal faults [1].

Pretty discussed that the demand for a reliable supply of electrical energy for the need of modern world in each and every field has increased considerably requiring nearly a no-fault operation of power systems. The crucial objective is to mitigate the frequency and duration of unwanted outages related to power transformer puts a high pointed demand that includes the requirements of dependability associated with no false tripping, and operating speed with short fault detection and clearing time. The second harmonic restraint principle is widely used in industrial application for many years, which uses discrete Fourier transform (DFT) often encounters some problems such as long restraint time and inability to discriminate internal fault from magnetizing inrush condition. Hence, artificial neural network (ANN), a powerful tool for artificial intelligence (AI), which has the ability to mimic and automate the knowledge, has been proposed for detection and classification of faults from normal and inrush condition [2].

III. PROBLEM DOMAIN

Introduction of Transformer Faults

Transformer Fundamentals- A power transformer is a static device that transfers electrical energy between two circuits through electromagnetic induction, without a direct electrical connection. It maintains the same frequency while potentially altering the voltage level. The transformer's operation is based on Faraday's law of electromagnetic induction, which states that the induced electromotive force (EMF) in a conductor or coil is directly proportional to the rate of change of flux linkage over time. This fundamental principle enables the efficient transfer of power between circuits.

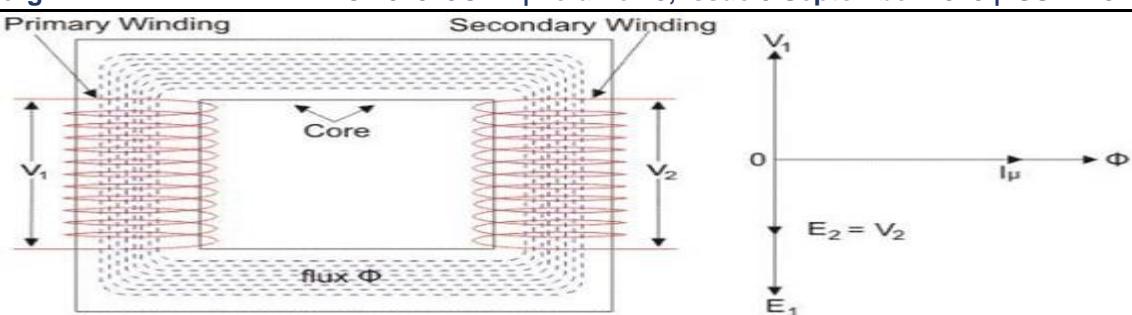


Fig. 1.3 Basic working of Transformer

The three main parts of a transformer are,

1. Primary Winding of Transformer - which produces magnetic flux when it is connected to an electrical source.
2. Magnetic Core of Transformer - the magnetic flux produced by the primary winding, that will pass through this low reluctance path linked with secondary winding and create a closed magnetic circuit.
3. Secondary Winding of Transformer - the flux, produced by primary winding, passes through the core, will link with the secondary winding. This winding also wound on the same core and gives the desired output of the transformer.

Magnetizing Inrush Current in Power Transformer

Inrush Current Phenomenon - Inrush current refers to the maximum instantaneous current drawn by an electrical device during startup or energization. When a power transformer is energized, a transient current surge, known as magnetic inrush, can occur, reaching up to 2-5 times the normal current for several cycles.

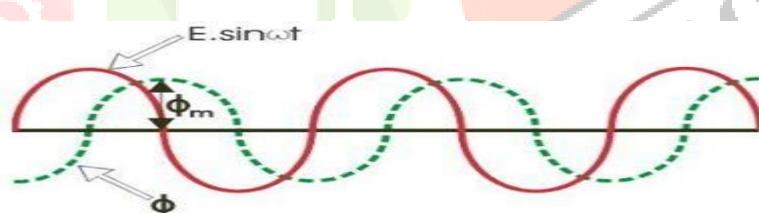


Fig. 1.4: Induced Voltage

IV. PROPOSED METHODOLOGY

Artificial Neural Networks

Artificial neural networks (ANNs) offer a practical approach to implementing artificial intelligence, tackling complex problems that require substantial effort due to large data sizes and intricate relationships. ANNs are designed to mimic human thought processes, leveraging a structure that simulates the brain's neural connections to learn, reason, and make decisions.

- Process data as a parallel stream independently
- Identifying patterns and correlating them.
- Evolving and updating the experiences (called weights) as per the changes in the data received. Neural networks work on training and testing mechanism.

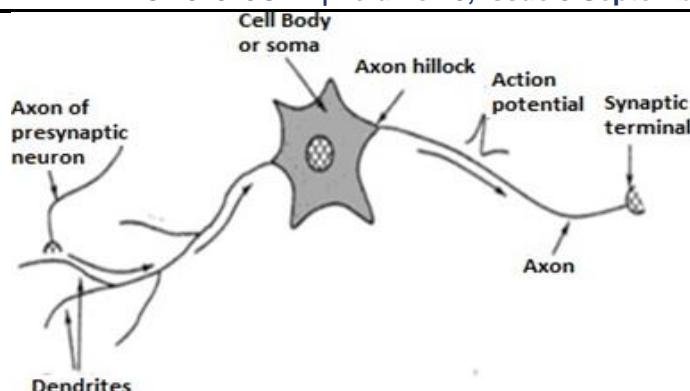


Fig. 1.5-Biological Model of Neuron

IV. RESULTS AND DISCUSSION

The results have been presented in terms of the following parameters for 2 different datasets

- 1) The neural network designed has been deliberately kept devoid of multiple hidden layers so as to reduce the space and time complexity of the system.
- 2) The above-mentioned point is particularly useful for real-time critical applications.
- 3) The evaluation parameters are:
 - a) Classification accuracy
 - b) Confusion matrix
 - c) Neural network training parameters

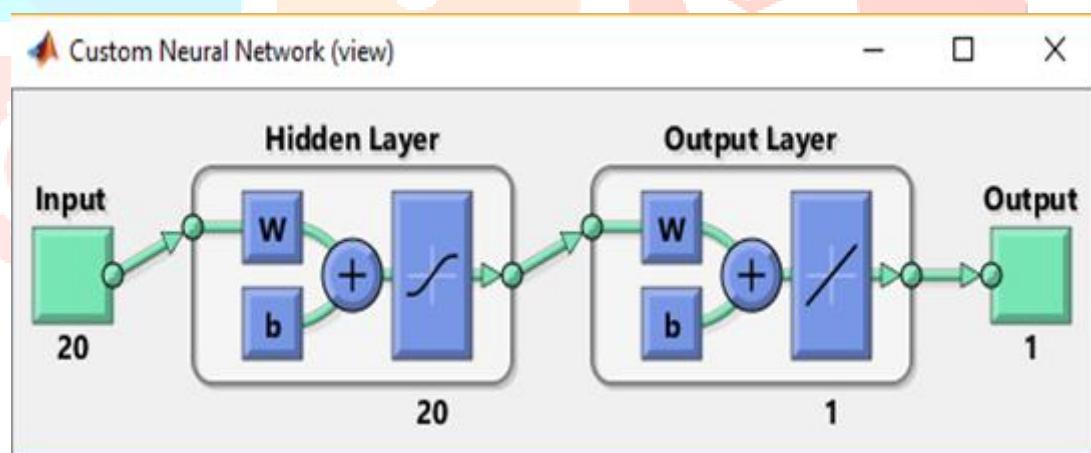


Fig. 1.6 –Neural Network For Classification

DataSet1.

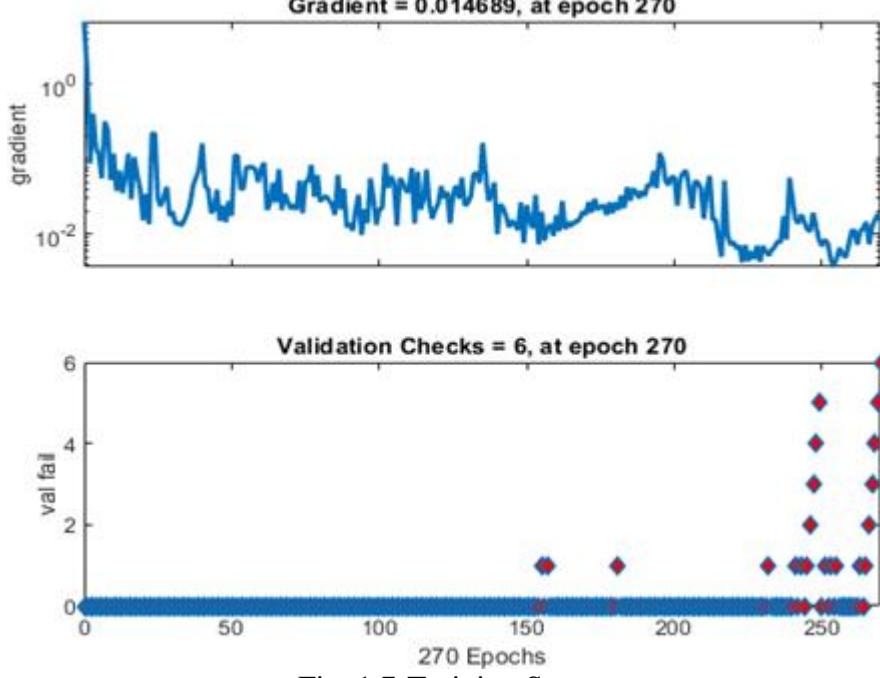


Fig. 1.7-Training States

V. CONCLUSION & FUTURE SCOPE

This study highlights the critical need for reliable power systems with minimal faults, particularly in power transformers. The primary objective is to ensure protective relays operate flawlessly, with high dependability, speed, and accuracy. Timely maintenance is essential but not sufficient for absolute reliability. Incipient faults can compromise insulation integrity, leading to catastrophic failures. Predicting fault probabilities heuristically is crucial. Wavelet transform and neural networks offer a promising solution. Wavelet transform extracts features from non-stationary signals, while neural networks classify and discriminate various conditions. The proposed system achieves a worst-case accuracy of 98%, surpassing conventional methods. This approach eliminates the need for expensive equipment and expert operators, making it a viable solution for power transformer protection.

Further improvement in existing systems can be made by:

- 1) Use of data pre-processing tools such as principal component analysis (PCA) which removes redundant training data and trains the neural networks more effectively.
- 2) The classification of faults can also be done

VI. REFERENCES

[1] Kavya Venugopal, Phalgun Madhusudan, Amrutha A, "Artificial Neural Network based Fault Prediction Framework for Transformers in Power Systems", IEEE, 2022

[2] Preeti, Mrs. Sweety Sharma "Review on Transformer Protection through Artificial Neural Network", International Journal of All Research Education and Scientific Methods (IJARESM), Volume 4, Issue 9, September- 2020

[3] AAP Biscaro, RAF Pereira, M Kezunovic, "Integrated fault location and power-quality analysis in electric power distribution systems", IEEE 2022

[4] E. Abdallah A. Helal "Review of Protection Approaches for Discrimination between Internal Fault and Inrush Current in Electric Power Transformers" Journal of Electrical Engineering, 2021.

[5] Santosh Kumar Nanda "Virtual Instrument based Fault Classification in Power Transformers using Artificial Neural Networks" 1st International Conference on Condition Assessment Techniques in Electrical Systems, IEEE, 2020.

[6] Ms. A. Pavithra "Artificial Neural Network Approach for Discriminating Various faults in Transformer Protection" International Journal of Research and Engineering, 2018.

[7] Manoj Tripathy, "Power transformer differential protection using neural network/ Principal Component Analysis and Radial Basis Function Neural Network", Simulation Modelling Practice and Theory, Elsevier, 2018.

[8] Sendilkumar Subramanian "Wavelet Packet Transform and Support Vector Machine Based Discrimination of Power Transformer Inrush Current from Internal Fault Currents" Modern Applied Science, Vol. 4, No. 5, May 2020.

[9] S. N. Deepa, S.S. Sumathi, S.N. Sivanandam. "Neural Network using MATLAB", 1st ed. TataMcgraw Hill, 2019.

[10] P. Arboleya, G. Diaz, J.G. Aleixandre, "A solution to the dilemma inrush/fault in transformer relaying using MRA and wavelets", Electric Power Compo. Syst. 34, 2020.

[11] M. Tripathy, R.P. Maheshwari, H.K. Verma, "Advances in transformer protection: a review", Electric Power Compo. Syst. 33 (11) 1203–1209 2022.

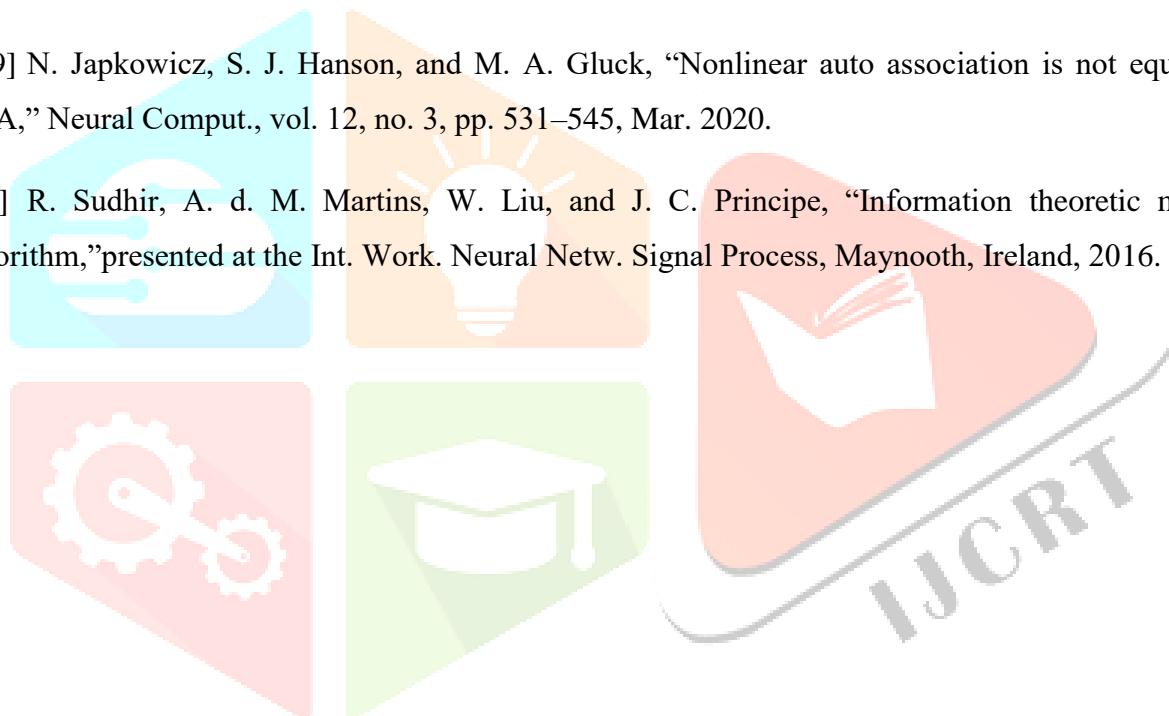
[12] S.A. Saleh, M.A. Rahman, "Modeling and protection of a three-phase transformer using wavelet packet transform", IEEE Transactions on Power Delivery. 20 (2), 1273–1282, 2021.

[13] M.C. Shin, C.W. Park, J.H. Kim, "Fuzzy logic based relaying for large power transformer protection", IEEE Transactions on Power Delivery. 18 (3), 718–724, 2023.

[14] P.L. Mao and R.K. Aggarwal. "A wavelet transform based decision making logic method for

discrimination between internal faults and inrush currents in power transformers" International journal of Electric power and Energy systems, Vol.22, Oct2022.

[15] H.K. Verma, G.C. Kakoti, "Algorithm for harmonic restraint differential relaying based on the discrete Hartley transform", *Electric Power Syst. Res.* 18 (2) , 125–129, 2022.


[16] B.GolombandT.Sejnowski, "Sex recognition from faces using neural networks," in *Applications of Neural Networks*, A. Murray, Ed. Norwell, MA: Kluwer, 2022, pp. 71–92.

[17] B. B. Thompson, R. J. Marks, II, J. J. Choi, M. A. El-Sharkawi, M. Y. Huang, and C. Bunje, "Implicit learning in autoencoder novelty assessment," in *Proc. IEEE Int. Joint Conf. Neural Netw. World Congr. Comput. Intell.*, Honolulu, HI, May 12–17, 2021, pp. 2878– 2883.

[18] T. D. Sanger, "Optimal unsupervised learning in a single-layer linear feed forward neural network," *Neural Netw.*, vol.2, pp.459–473,2021.

[19] N. Japkowicz, S. J. Hanson, and M. A. Gluck, "Nonlinear auto association is not equivalent to PCA," *Neural Comput.*, vol. 12, no. 3, pp. 531–545, Mar. 2020.

[20] R. Sudhir, A. d. M. Martins, W. Liu, and J. C. Principe, "Information theoretic mean shift algorithm," presented at the Int. Work. Neural Netw. Signal Process, Maynooth, Ireland, 2016.

