

Prevalence Of Anemia In Lactating Mothers In Guntur District, Andhra Pradesh A Case Study.

K.SUNEETHA*, P.KIRANMAYI and M.SUDEEPTHI

Department of Biochemistry, Acharya nagarjuna university.

Abstract

Prevalence of anemia in India is among the highest in the world. Prevalence of anemia is higher among Lactating mothers, pregnant women and preschool children. Inadequate dietary iron, folate intake due to low vegetable consumption, perhaps low B₁₂ intake and poor bioavailability of dietary iron from the fibre, phytate rich Indian diets are the major factors responsible for high prevalence of anemia. In India Iron deficiency is the most common single cause of anemia, the lactating mothers are suffers with maternal anemia this may impact the growth of infants. Major insight of the study is that anemia level of lactating mothers largely differs with the changes in lifestyle variables like food habits and work.

Key words: Anemia, Lactating mothers and Iron.

INTRODUCTION

Anemia is a serious nutrition problem affecting millions in developing countries and remains a major challenge for human health and social and economic development(1). Anemia is a late indicator of iron deficiency, so it is estimated that the prevalence of iron deficiency is 2.5 times that of anemia(2). The estimated prevalence of anemia in developing countries is 39% in children <5 years, 48% in children 5–14 years, 42% in women 15–59 years, 30% in men 15–59 years, and 45% in adults >60 years(3).

In India, anemia affects an estimated 50 percent of the population(4). In women, anemia may become the underlying cause of maternal mortality and perinatal mortality(5). Anemia also results in an increased risk of premature delivery and low birth weights. Iron deficiency in late pregnancy results in poor foetal iron stores(6). Latent iron deficiency is known to alter brain iron content and neurotransmitters irreversibly in fetal life and postnatal babies(7,8).

Lactating mothers are vulnerable to anemia. During the period of lactation, mothers are susceptible to anemia because of maternal iron depletion and blood loss during childbirth(9). Studies have shown that, although breast milk is not a good source of iron, the concentration of iron in breast milk is

independent of maternal iron status. This indicates that the quality of breast milk is maintained at the expense of maternal stores(10).Postpartum anemia is highest in mothers who are anemic during pregnancy(11). Furthermore, lactating mothers are highly susceptible to iron depletion if the energy and nutrient intake in their diets is inadequate. Lactating mothers begin the postnatal period after having iron depleted through the continuum from pregnancy to childbearing(12). A study from South Africa showed that iron status was associated with depression, stress and cognitive functioning in poor African mothers during the postpartum period(13).

Material and Methods

A descriptive study was carried out at Government general Hospital in Guntur district, Andhra Pradesh. Guntur, Government General Hospital, a tertiary care hospital with 1170 beds, catering to the needs of people coming from rural villages who are very poor. Study was carried out during the period extending from August to February,2017, collected data from 200 Lactating mothers divided into two groups. Group-I Lactating mothers who fed their babies(0-6months),Group-II Lactating mothers who fed their babies(6-12months).Information related to socio-demographic factors, maternal factors and obstetric history (including status of anemia by Hb levels) was obtained by personal interview and from antenatal records and was recorded in standardized and pre-tested schedule.

Socio-demographic factors included in the study were maternal age, parity, birth interval, maternal education, husband's education, socioeconomic status, consanguinity of marriage and work during lactation.

Table -1: Socio demographic characteristics

N-100		
Age	20-25yrs	65
	25-30yrs	35
Education	Primary	55
	Secondary	37
	higher	8
Delivery	Normal	38
	Cessaraen	62
Husbands education	Primary	45
	Secondary	35
	higher	20

Financial status	Poor	45
	Middle	55

Results and Discussion

Table -2: Lactating mothers (0-6months) Total Hemoglobin percentage

GROUP-I (0-6months)	N=100	Total Hb(g/dl)	Condition (WHO/UNICEF/UNO.ID A, 1998) ¹⁴
Lactating And sedentary	32	10.8 ± 0.08-0.3	Normal >10.1
Lactating And house keeping work	28	9.76 ± 0.05-0.5	Mild 8.1-10
Lactating And Agricultural works	40	7.8 ± 0.3-0.5	Moderate 6.5-8.0

values are significant at $P > 0.5$

Table -3: Lactating mothers (6-12months) Total Hemoglobin percentage

GROUP-II (6-12months)	N=100	Total Hb(g/dl)	Condition (WHO/UNICEF/UNO.IDA , 1998) ¹⁴
Lactating And sedentary	40	9.8 ± 0.8-1	Mild 8.1-10
Lactating And house keeping work	52	7.8 ± 0.5-1	Moderate 6.5-8.0
Lactating And agriculture values are significant at $P > 0.5$	8	6 ± 0.5-1.5	Severe (4.0-6.4)

Lactating mothers who fed breast milk for 0-6months and doing normal works had lower odds of having anemia than those who fed breast milk for 1 year and doing agricultural work(Tables-2-3). This may be due to growing child requires more milk. Lactating mothers who had been doing hard work had higher odds of having anemia than the others. This may be because of food taken by them is not sufficient.

Nutrition is the most important factor in child health promotion, growth and development; especially during the first 2 years of life, when the speed of neuropsychomotor growth and developments more(15). Nutrition of mothers and their children are intimately related. The effects of nutrition begin even before conception, promoting intrauterine growth and development, physical growth and mental development, with repercussions for adulthood(16). 66.0% of lactating mothers have been reported as having anemia in India(17). A study also found that breastfeeding increases the risk of anemia significantly(18). Poor eating habits play a major role in the development of iron deficiency anemia that is an important indicator of poor health status(19).

CONCLUSION

Anemia in women is considered as a serious health problem for them, for their families, society and for the economic development of the states as well as for the country. Iron supplementation programs have not been effective in reducing anemia prevalence(20,21). Government of India has started many intervention programmes to eradicate the problem of anemia in the country but most of the efforts are towards the supplementation of iron tablets to the women(22).

Anemia is a public health problem in lactating mothers. Screening for anemia, treatment of anemic women, and availability of food fortification (wheat flour with iron and folic acid), milk sugar and salt with iron to build long term iron stores remains the key to reduce anemia. Even cooking in cast iron utensils improves iron content in diet. The anemia control program needs to be implemented more efficiently in these regions.

DECLARATIONS

Funding: No funding Agency

Conflict of interest: There are no conflicts

References

1. WHO. The world health report. Reducing risks, promoting healthy life. Geneva: World Health Organization, 2002.
2. Zimmermann and R. F. Hurrell, "Nutritional iron deficiency," *The Lancet*, 2007, 370, 511–520.
3. WHO, UNICEF, and UNU, Iron Deficiency Anaemia: Assessment, Prevention and Control, A Guide for Programme Managers, WHO, UNICEF, UNU, Geneva, Switzerland, 2001, http://www.who.int/nutrition/publications/micronutrients/anaemia_iron_deficiency/WHO_NHD_01.3/en/index.html
4. Florentino RF. The burden of iron deficiency and anaemia in Asia: Challenges in prevention and control. Nutrition goals for Asia - vision 2020; *Proceedings IX Asian Congress of Nutrition*; 2003, 313-318.
5. Ezzati M, Lopez AD, Dogers A, Vander HS, Murray CJ. Selected major risk factors and global and regional burden of disease. *Lancet*, 2002, 360, 1347-60.
6. Agarwal KN. The effects of maternal iron deficiency on placenta and fetus. In: Jelliffe DB, Jelliffe FEP, editors. *Advances in international maternal child health*. Oxford: Clarendon Press; 1984, 4, 26-35.
7. Agarwal KN. Iron and brain: neurotransmitter receptors and magnetic response spectroscopy. *Br J Nutr*, 2001, 85 (2), 147-50.
8. Kapur D, Agarwal KN, Agarwal DK. Nutritional anemia and its control. *Indian J Pediatr*, 2002; 69, 607-16.
9. Whitney E, Rolfes SR. Understanding Nutrition. In: Adams P, ed. 11th edn. USA: Thomson Learning Academic Resource Center, 2008, 533–9.
10. Domell V, Lonnerdal B, Dewey K, et al. Iron zinc and copper concentrations in breast milk are independent of maternal status. *Am J Clin Nutr* 2004; 79, 111–15.
11. Bodnar L, Scanlon K, Freedman D, et al. High prevalence of postpartum anaemia among low income women in the United States. *J Obstet Gynecol* 2001; 185: 4348–53.
12. Sserunjogi L, Scheut F, Whyte SR. Postnatal anaemia: neglected problems and missed opportunities in Uganda. *Health Policy Plan*. 2003; 18, 225–31.

13. Beard JL, Hendricks MK, Perez EM, et al. Maternal iron deficiency anemia affects postpartum emotions and cognition. *J Nutr*, 2005, 135, 267–72
14. WHO/UNICEF/UNO. IDA: Prevention, assessment and control. Report of a WHO/UNICEF/UNO Consultation. Geneva: 1998.
15. World Health Organization (WHO), UNICEF. Planning guide for national implementation of the global strategy for infant and young child feeding. Geneva: WHO; 2006
16. United Nations, Sub-Committee on Nutrition (ACC/SCN); International Food Policy Research InstituteInternational Food Policy Research Institute. Nutrition throughout the life cycle. 4th report on the world nutrition situation: Geneva:United Nations, Sub-Committee on Nutrition (ACC/SCN); 2000.
17. Singh AB, Kandpal SD, Chandra R, et al. Anemia amongst pregnant and lactating women in district Dehradun. *Indian J Prev Soc Med*, 2009, 40, 20–1.
18. Gebremedhin S, Enquoselassie F. Correlates of anemia among women of reproductive age in Ethiopia: evidence from Ethiopian DHS 2005. *Ethiop J Health Dev*, 2011, 25, 22–30.
19. Agarwal, K.N., Agarwal, D.K., Sharma, A., Sharma, K., Prasad, K., Kalita, M. C., Khetarpaul, N., Kapoor, A.C., Vijayalekshmi, L., Govilla, A.K., Panda, S.M. and Kumari, P. (2006). Prevalence of anemia in pregnant & lactating women in India, *Indian J Med Res*, 124, 173-184.
20. Vijayaraghavan, K., Brahmam, G.N.V., Nair, K.M., Akbar, D. and Praalhad, R. N. (1990). Evaluation of National Nutritional Anemia Prophylaxis Programme *Ind. J. Pediatr.* 57, 183–190.
21. Bentley, M.E., and Griffith, P. L. The burden of anemia among women in India, *European Journal of Clinical Nutrition*, 2003, 57, 52–60.
22. Upadhyay, S., Kumar, A. R., Singh, R., Raghuvanshi and Singh, B. B. Nutritional Status and Knowledge of Hill Women on Anemia: Effect of Various Socio-demographic Factors, *J Hum Ecol*, 2011, 33(1): 29-34.