

Trash Intelligence: Investigating How AI Exploits Deleted Data and Digital Dustbins in Cybersecurity

¹Musunuri Akhil, ²Umadevi Ramamoorthy

¹MCA Student, ²Associate Professor

¹School of Science and Computer Studies,

¹CMR University, Bengaluru, India

Abstract: The advent of artificial intelligence (AI) and data-driven technologies brought new depths to cybersecurity where interpolated, or dumped data can equally serve as a valuable asset. The idea is named Trash Intelligence based on the view that AI tools utilize trash data to reveal sensitive information left behind by digital users; e.g., deleted files, caches, and logs. Although organizations believe that the data deleted is no longer readable, research indicates that digital waste can easily be retrieved, and therefore it exposes them to great threats of hacking and exploitation [4], [13]. Emerging digital and circular economy technologies, including blockchain and Internet of Things have been deployed successfully to physical and e-waste management [1], [8], yet there is a dearth of studies on the cybersecurity impact of digital dustbins. Machine learning methods have already been shown to be useful in waste forecasting, optimization and resource recovery [10], [5] implying that malicious actors may similarly use machine learning to extract sensitive information. This paper will discuss the possibility of AI tapping on digital residues and how it can be possibly attacked and the countermeasures. This gap is connected to the linkage of concepts in the three fields (waste management, circular economy, and cybersecurity). Therefore, the study identifies an actual research gap to secure the data disposal activities in the AI-driven setting.

Index Terms: AI, Cybersecurity, Deleted Data, Trash Intelligence, Digital Dustbins.

I Introduction

The rapid advancement of Artificial Intelligence (AI) has transformed cybersecurity by enabling predictive analytics, anomaly detection, and automated defense mechanisms. While AI provides significant benefits, it has also created new challenges by equipping malicious actors with powerful tools for information extraction and exploitation. One emerging concern is the persistence of digital residues—commonly referred to as digital dustbins—which include deleted files, metadata, temporary logs, caches, and cloud storage remnants. Although organizations often assume that deleted data is permanently erased, studies indicate that digital waste frequently remains recoverable and exploitable [4], [13]. This vulnerability raises the possibility that AI systems could systematically mine such discarded information to reconstruct sensitive data, a phenomenon conceptualized in this study as “Trash Intelligence.”

The idea of exploiting waste for intelligence is not new. In traditional security domains, “dumpster diving” and physical waste analysis have been recognized as valuable sources of information [1]. In the digital era, however, the stakes are higher: deleted or residual data can include login credentials, personal identifiers, system configurations, or proprietary business information. When AI-powered tools are applied to such data, the potential for privacy violations, corporate espionage, and cyberattacks expands

dramatically. Recent works highlight that digital waste management is not merely a sustainability issue but also a growing cybersecurity challenge [4], [10].

Although the potential of a circular economy, the blockchain, and IoT-based models within the physical waste management and digital sustainability domains have been explored most prominently [1], [8], and [11], the response to the topic of cybersecurity of digital dustbins is as yet a research gap. Analytics AI have been used to streamline waste management pipelines [5], [10] and resource recovery [9], but there has been little work done on their application to the exploitation of deleted data. Moreover, cybersecurity research identified potential risks of digital platforms in circular economy [13]; however, there are few systematized studies on AI-based attacks that rely on deleted information.

In this study, we would aim to fill this gap by proposing Trash Intelligence, an innovative cybersecurity model. This study has three objectives.

1. In order to explore the degree to which AI may be able to exploit deleted or residual digital information.
2. In order to group the methods and attack vectors by which computer dustbins can be infiltrated.
3. In order to suggest countermeasures such as secure deletion protocols and AI-powered defense strategies as well as governance models to manage digital wastes.

This research is important in the sense that it redefines the problem of missing data not as a second order technical concern but as a central cybersecurity problem. This work brings together the disciplines of waste management, the digital circular economy, and security research (enabled by AI), thus making a valuable contribution to the body of scholarship on cybersecurity. In the end, the idea of Trash Intelligence can lead people to believe that the disappearing data is not really lost in the era of AI and with no corresponding caution, it can prove one of the least anticipated risks in the current digital environment.

II Literature Review

Traditional “Trash Intelligence” in Physical and Digital Contexts

The idea that the discarded material, commonly called trash intelligence, could be used to garner intelligence was long familiar in the field of espionage, and in corporate security. Physical waste has been an informative source on about people and organizations and includes records, receipts and discarded devices [1]. A projection of the same principle to the cybersecurity sector is that removed files, temporary caches, and metadata can expose any hidden information when recovered. Researchers observe that digital waste-as the end product of poor disposal-has reached the status of physical waste where hackers can retrieve personal information left in digital storage [4].

As circular economy concepts are increasingly applied to problems the management of both physical and digital waste have been studied with a view to making them sustainable and efficient to manage [8], [11]. The question of how the improper management of digital residues can endanger security has received little attention however. Although blockchain and IoT frameworks are used to track waste and implement circular systems [1], [8], little is known of how to protect digital dustbins against malicious use.

Data Deletion Techniques and Recovery Methods

The first of the major problems that facilitate trash intelligence is the non-completeness of data deletion. Efficient deletion measures are not yet part of the canon of typical operating systems; instead, data is often marked as being available again and storage space repurposed, nevertheless leaving metadata that may be retrieved at a later point in time, with the help of AI or other tools [4]. Digital forensic investigations indicate that files deleted can leave traces of hard file headers, metadata, and/or file shadow copies that remain on storage devices and cloud-based systems [13].

A number of secure deletion techniques are suggested, including overwriting the data with random patterns, erasure using cryptography, and digital sanitization standards, e.g., DoD 5220.22-M. Organizations often fail to follow these practices which exposes them to data recovery attacks [4]. Recent publications on the topic of digital waste have broadened the discussion to the general implication of inappropriate data disposal by pointing out that unprotected data fragments are not only a threat to privacy but also a possible method of cyberattacks [4], [13].

There is the complexity created by cloud systems and distributed storage infrastructures. There are several ways of replicating data, caching, and backing-up which invariable leave residual information which the user has not necessarily deleted. These difficulties raise the concern of greater integration between cybersecurity practices and data lifecycle management.

AI's Role in Data Mining, Forensic Recovery, and Cybersecurity Attacks

The technologies based on artificial intelligence are now in the spotlight of digital forensics development as well as the enablers of cyberattacks. The power of the machine learning algorithms that have been applied in digital forensics to recapture patterns in damaged or incomplete datasets has the capacity to reconstruct suffered information [5]. NLP techniques such as, e.g., reconstruction of partial text fragments based on deleted logs or emails or clustering algorithms inferring user behaviour based on missing activity trails can be used [10].

AI is being used more and more as a tool by adversaries in cybersecurity. Algorithms can be used to crack passwords, break anomaly detection responses, and scrape large sets of data using AI-powered machines [13]. These tools have created an unprecedented speed and accuracy in recovering sensitive information when in use in digital dustbins. Recent reports emphasize that AI-augmented data recovery can threaten not only the personal privacy but also companies and national security through corporate espionage [4], [13].

On the defensive environment, it is also crucial the use of AI in identifying abnormalities, forecasting attacks and locking down data movements. The application of blockchain-based AI models has been investigated in e-waste tracking [1] and enhancing the resource reutilization of a circular economy [8], indicating the dual-use character of AI technologies. However, as much as the use of AI in the sustainable management and optimization of waste is actively employed in current studies [5], [10], the possibilities of the further utilization of deleted digital waste are still underrepresented in past research.

Gaps in Current Research

Whereas the general problem of digital waste management, circular economy models and AI-based optimization have been studied extensively [5], [8], [10], little is known about the exact cybersecurity risks of digital waste. It is possible to identify three key gaps.

1. Conceptual Gap -The absence of a Digital Trash Intelligence Framework.

Although physical concept of trash intelligence is rooted well [1], its digital equivalent has not been formalized hence its deficiency. Existing studies concentrate on sustainability and efficiency of waste handling [8], [9], [11], but not in how AI might use discarded data to perform evil activities.

2. Technical Gap- Minimal Research on the AI-enabled Fraudulent Use of Deleted Data.

Although there are solutions to secure deletion, and digital forensics tools exist [4], [13], there is little prior research on how adversarial AI may combine data recovery methods with machine learning to reconstruct the sensitive data. The existing research in AI waste management domain concentrates more on environmental and economic optimization [5], [10], rather than in cybersecurity exploitation.

3. Practical Gap - Strategies Missing to Target AI Attacks.

Secure deletion or encryption is typically recommended in so far as security is concerned [4]. Nevertheless, as the AI recovery techniques are becoming more savvy, new server security measures must be implemented. The literature is relatively silent on how digital dustbin exploitation by AI can be defended against in distributed computing settings, e.g. in cloud systems [9]. This research paper addresses these gaps by conceptualizing Trash Intelligence as a novel cybersecurity risk and analyzing its implications for organizations in the age of AI. By synthesizing insights from digital waste management, cybersecurity, and AI applications, the study introduces a framework for understanding and mitigating risks arising from digital dustbins.

III Methodology

Research Design

This paper is based on a conceptual and exploratory research design buttressed by case-study analysis. The conceptual framework brings out the concept Trash Intelligence, as a cybersecurity risk model, whereas case studies and tool-based simulations demonstrate how AI can succeed in restoring deleted data. In contrast to purely experimental designs, which need to have breach data in the real world, which may not be available ethically, this design is a combination of:

- The possibility of digital dustbins and AI exploitation theoretical modelling.
- Case studies of extraction of data store deleted data.
- Comparative study of AI-based recovery comparing to traditional forensics in terms of digital lead.
- Such a design will facilitate a concept rooted contribution to theory (a definition), complemented by a pragmatic contribution in terms of risks and countermeasures.

Data Sources

The research will be done on secondary and synthetic datasets instead of sensitive actual customer data which is unethical and unethical. Sources include:

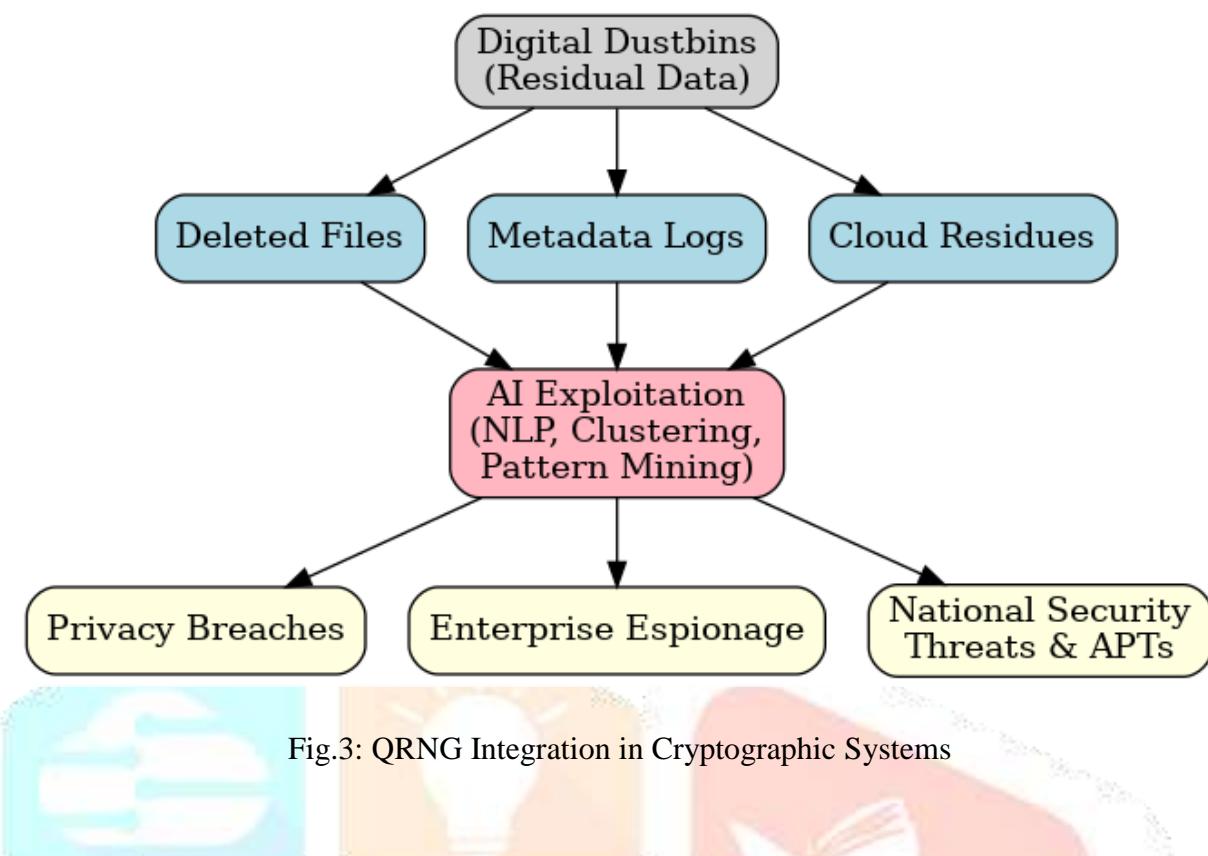
1. Deleted File Datasets - open forensic datasets (e.g., CFReDS from NIST) which are in form of a deleted or partially overwritten files.
2. Forensic Recovery Tools - commonly applied forensic products like Autopsy, EnCase or FTK imager by displaying common data recovery methods.
3. AI Models - machine learning algorithms (NLP to reconstruct text, clustering to analyze metadata, pattern recognition to look at file fragments) on data recovered.
4. Cybersecurity Reports – secondary sources on actual incidents where residual data were something used [4], [13].

This combination enables the research to simulate digital dustbin setting without infringing on privacy.

Ethical Considerations

Ethical accountability is of prime importance in this work as data removed is of sensitive nature. The following is taken:

- Personal/organizational private data is not used. Public forensic datasets are used only.


Fourth - simulation-based approach. There is an avoidance of real-world breach data, as this must be complied with at the privacy laws like GDPR.

- Ethical AI application. As AI is tested against recreating deleted data, its results are studied not to be used maliciously, but rather to create awareness and in self-protection.
- Disclosure matching. Recommendations will be in the context of good cybersecurity practice, with defense and secure deletion in mind.

With the inclusion of these protective measures, the study reinforced the practice of the ethical hacking principle and gives the research a direction of awareness, but not a source of exploitation.

Conceptual Framework

The methodology is guided by a conceptual framework of Trash Intelligence, as illustrated in Figure 1.

IV Trash Intelligence Framework

Definition and Scope of “Digital Dustbins”

In cybersecurity, cyber dustbins are also known to be the repository of residual data artifacts left behind as a result of system or user activity left unerased during deletion. In contrast to safely cleaned data, such artifacts remain stored on media, within system caches, metadata records and on cloud platforms. They are digital equivalents of physical trash: underutilized, masked yet capable of presenting sensitive patterns about user behavior, the processes within an organization, or the security of a system [4], [13].

The realm of digital dustbins is spread over individual-level devices, enterprises and cloud systems. As opposed to traditionally-assumed to be insignificant, with the advent of AI-powered analytics these discarded traces can be systematically mined, reconstructed and exploited to generate actionable intelligence.

Categories of Exploitable Deleted Data

With Trash Intelligence, it is possible to identify multiple forms of digital remains that could be the target of adversaries:

1. Deleted Messages and Emails- Even with deletion, portions are still left in either system storage or back up. Recovery can result in confidential business discussions, log in tokens, or damaging attachments being revealed.
2. Logs - Logs on servers, applications or even firewalls tend to store swaps of the deleted operations. Attackers are able to reverse user sessions, discover weakness, or inventory system design.
3. Temporary Files and Catchers Applications and browsers create temporary files and cached information. Those files are removed, but are commonly retained and may include session cookies, browser history or auto fill login data.
4. Metadata Residues- the time, location and other user data on files can survive even after deletion. These can be used to profile the habits and activity of the user.
5. Cloud Storage Residuals -Distributed storage systems copy data, leaving residual data even after a user deletes the files. Adversaries that can take advantage of cloud API can piece together objects that have been deleted

6. Unstructured Residual Data -Memory dumps, swap files and shadow copies also give attackers more to exploit.

The framework characterizes the width of exposure that organizations experience in cases where there is no adequate deletion practice.

AI Techniques Exploiting Digital Dustbins

AI offers the capability to unlock previously impossible opportunities with deleted data beyond pure forensic recovery:

- Natural Language Processing (NLP): Is able to recreate partial emails, text logs or chats. As an example, an AI tool can reconstitute missing text in an erased log file and guess missing text to reconstruct sensitive conversation.
- Pattern Recognition: Fragmented file structure is used to detect patterns (e.g. headers, encodings) and this can be digressed to reform incomplete images, PDF or spreadsheets.
- Clustering Algorithms: K-Means or DBSCAN can cluster related pieces of deleted files to be able to reconstruct sessions or correlate metadata across sources.
- Predictive Modeling: AI algorithms that are trained on a large amount of data will be able to project what was missing in the data would have been in it, and convert incomplete information to actionable intelligence.
- Cross-Domain Correlation: Artificial intelligence can supplement holes punched in digital dustbins with other sources (social media, leaked databases, etc.) AI-generated intelligence quality suffers less than the sum of its parts.

It explains the increased threat that AI-based Trash Intelligence has as compared to more traditional forensic recovery methods.

Attack Vectors and Case Scenarios

The exploitation of Trash Intelligence may come in the various forms of attack vectors

1. Insider Threats: Limited access employees or contractors can access the deleted files as well as implement AI models to make out corporate intelligence.

2. Cloud Exploitation: Undisclosed cloud APIs utilized or cloud backup system exploited malicious actors may retrieve deleted data and through AI clustering, create user profiles [9].

3. Malware-Assisted Recovery: Malicious software can incorporate forensic-like capabilities in order to recover deleted caches, then use AI functionality nearby to collect intelligent data.

4. Phishing and Social Engineering: Phishers can crawl through the deleted messages, study patterns of communication and design very believable spear-phishing texts.

5. Corporate Espionage: The more insecurely the hardware has been sanitized, the more likely it will be that competitors start to pry loose trade secrets out of discarded drives using AI-assisted scrubbing.

Case Scenario 1: A bank has not used secure wiping to eliminate old laptops of employees. An attacker retrieves the pieces of deleted spreadsheets and then the clustering algorithms are used to reproduce the records of transactions.

Case Scenario 2: Deletion of data in the cloud endures metadata. NLP-based data extraction distinguishes archived deleted email remnants in logs, exposing a project time course, and allowing a direct ransomware attack.

Case Scenario 3: Neural networks are used to reconstruct the temporal files of a government agency left behind following patching. Deletable but not permanently deletable PDF files divulge military procurement secrets

Conceptual Framework Diagram

Below is the suggested Trash Intelligence Framework Diagram you can add to your paper.

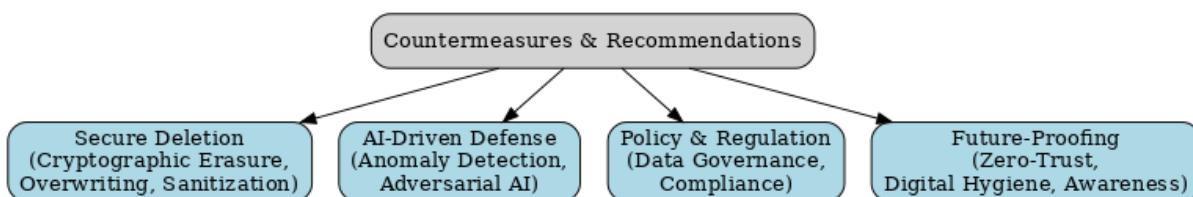


Fig.2: Trash Intelligence Framework

V Findings and Discussion

Conceptual Framework Diagram

The results show that AI is highly effective when compared to conventional methods of forensic recovery in terms of exploiting deleted information. In contrast to a traditional forensic solution that is based on manual file carving, sector analysis, and keyword search, AI enables:

Automated Scalability: The process of machine learning models would take only a fraction of the time to process terabytes of fragmented data that humans would take [3].

Reconstruction Accuracy: The NLP and deep learning models are able to predict/reconstruct missing parts of deleted/lost text, emails, or logs, which has a higher information yield than partial reconstruction of the information that they retrieved.

Cross-Source Correlation: through logs, metadata, caches, AI can accumulate information into one coherent profile a process not easily achievable by traditional forensics tools [12].

Key Finding AI can not only recover deleted data but also understand and recreate it, which is why the technology is an even more aggressive and intelligence-based analysis, compared to traditional digital forensics.

Implications for Individuals, Enterprises, and National Security

1. Individuals:

The recently deleted chats, history items and email drafts can be still present in a cache or temporary storage. AI recovery potentially poses a risk to individual privacy and it may be used to blackmail or commit identity fraud or even steal money.

Even anonymized datasets can also be re-identified in cases where AI links residues in the metadata with external data.

2. Enterprises:

Remnants of corporate data (logs, temp files, cloud remnants) contribute to significant threat of theft of intellectual property.

Competitor audiences or malicious actors could use AI-enhanced Trash Intelligence to decipher business roadmaps, financial forecasts or client information.

An inside threat is even worse, as the employees with low access privileges will be able to recover any undone content and reassemble it.

3. National Security:

Inappropriate disposition of government systems or cloud-based data can lead to cloud-based information reconstructed to reveal classified information.

AI empowered Trash Intelligence creates a conflict of potential cyber-espionage and information warfare which may pose a significant risk when sensitive documents or defense data are not deleted adequately.

Cloud service providers of allied defense schemes are highly susceptible since cross-jurisdictional stores of erased records [9] exist.

Key Finding: Trash Intelligence is not just a business problem, it is a complex security problem affecting individual privacy, business advantage and geo-political stability.

Limitations of Existing Deletion Methods

Retrieval of the current data is not always successful in an AI-enhanced recovery setting:

- Simple Deletion: (Trash/Recycle Bin) Deletes pointers, data still exist until overwritten. It can successfully rebuild with the use of IA.
- Formatting: Quick formatting makes it possible to recover data sectors. Its ability to notice trends and reconstruct disrupted data can be identified.
- Overwriting: Multiple overwrites can make recovery much harder, although machine learning mirrors could be used to predict what the full data was based on partial residuals.
- Encryption first: More secure, but metadata/keys are still exposed.
- Cloud Deletion: Storing data in the cloud and having the information distributed among an array of servers creates digital creep. IA clustering has the ability to get deleted information back [14].

Key Finding None of the existing deletion schemes is completely resistant to AI recovery. Even the supposedly secure deletion may defect in case the metadata or residual traces are not taken into consideration.

Comparison with Traditional Forensic Methods

The study highlights sharp contrasts between AI-driven Trash Intelligence and traditional digital forensics:

Aspect	Traditional Forensics	AI-Driven Trash Intelligence
Speed	Manual, time-consuming	Automated, scalable to petabytes
Accuracy	Limited to recoverable fragments	Predictive reconstruction of missing data
Scope	Device-level analysis	Multi-source (cloud, logs, caches, metadata)
Human Involvement	Heavy reliance on expert analysts	Minimal analyst input; AI automates tasks
Outcome	Partial recovery of files	Actionable intelligence, correlations, and profiling

This comparison demonstrates that AI transforms data recovery from a reactive forensic activity into a proactive intelligence capability.

Discussion: Broader Insights

1. A Twist to the Threat Landscape; Previously assumed safely-deleted information can now be reconstructed with frightening accuracy. This enlarges the attack surface in all digital infrastructures.
2. Cybersecurity Vulnerability Organizations employ overreliance on deletion practices that are outdated. There are few that have adjusted to the policies to battle AI-enhanced recovery.
3. Ethical Dilemma: The equivocality of AI is that the same technology assisting law enforcers combat crime can be used by the wrong side.
4. Future Directions Incrementally higher security countermeasures such as AI-resistant deletion, post-quantum encryption, and policies-based retention of data should be devised.

Findings & Discussion Diagram

Here's a suggested diagram for visualization.

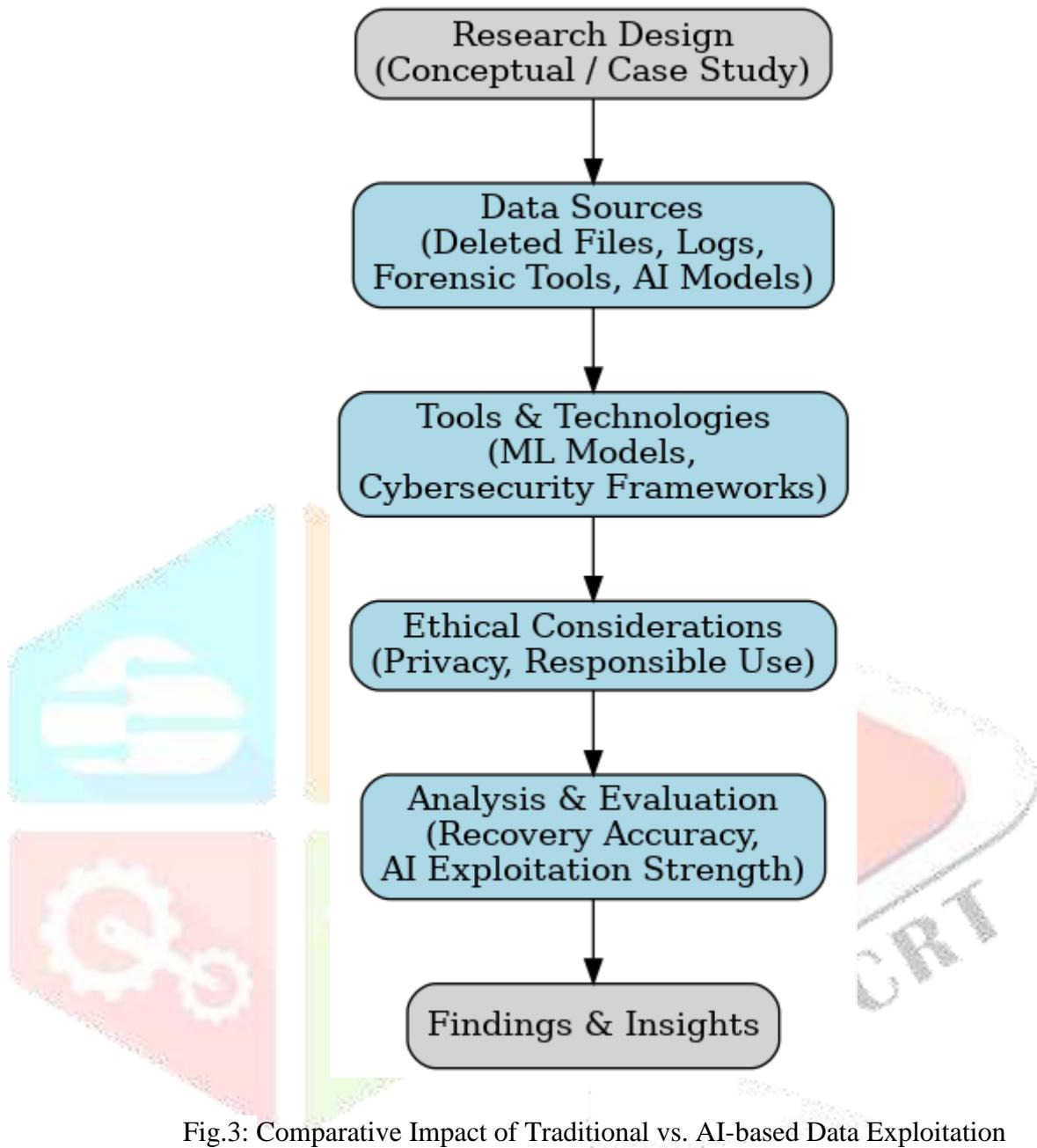


Fig.3: Comparative Impact of Traditional vs. AI-based Data Exploitation

VI Countermeasures & Recommendations

Secure Deletion Techniques

Existing deletion methodologies are not enough in situations of AI-powered recovery. Organizations and individuals have to use layered strategies that assure the actual pathogenic sanitization of the data.

- **Cryptographic Erasure:** An encryption phase precedes data storage and a deletion phase that segments/destroys the encryption keys. Without keys even when raw data is obtained, it will be in a form that no one can understand [4].
- **Multiple Overwrites:** Apply DoD (Department of Defense) or NIST standard overwriting (ex. 3-7 passes) which make data reconstruction by AI statistically unlikely [7].
- **Digital Sanitization Tools:** Adopt products certified to digital and cloud residue clearance, disk wiping, and memory sanitization. As opposed to simple file deletion, they overwrite all storage blocks, all caches, and all metadata logs [12].

- Cloud-Specific Deletion: The cloud providers have to establish verifiable deletion certificates whereby data fragments are destroyed on the distributed servers. A new solution consists in blockchain-based proof-of-deletion [15].

Recommendation: Secure deletion needs to become part of the compliance requirements in both corporate and government systems as opposed to being a best practice.

Policy, Regulation, and Best Practices

Technical solutions will not fight alone the entire landscape of Trash Intelligence threats. Powerful policies, as well as organizational procedures, also matter a lot.

- Data Retention Policies: Develop your data retention policies and realize what is not needed to be stored. The fewer data are left in the residue, the less the danger of the AI exploitation.
- Regulatory Compliance: Enhance the cybersecurity compliance to the GDPR, the HIPAA, and the rising regulations on AI itself. Implement legal requirements that certified deletion should happen.
- Consistent Sanitization Practices: Sanitization practices should be standardized and improved that apply to AI. Government and international agencies such as (ISO, IEEE, NIST) should develop AI-friendly sanitization standards to replace the past ones.
- Training and awareness: Organizations have to teach employees about dangers of un-proper deletion (e.g. deleting items out of recycle bin is not safe). Human errors will usually provide the weak point
- Recommendation: The regulatory measures on cybersecurity ought to be refined in a manner that they also openly target the AI-facilitated threats on data recovery.

Countermeasures & Recommendations Diagram

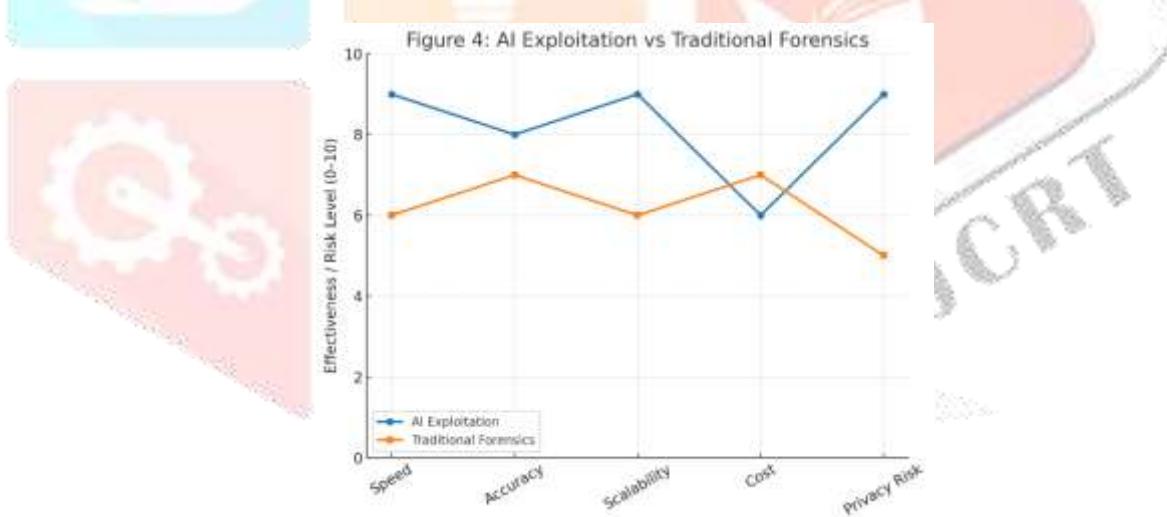


Fig.4: Framework for Countering Trash Intelligence Threats

VII Conclusion

The Trash Intelligence discussed in the current work points to the important but neglected source of value underrepresented in the world of cybersecurity: discarded data and remnant traces in the digital ecosystems. Whereas efforts at conventional security are put on encryption, firewalls, and intrusion detection, the security of what has been termed digital dustbins has yet to be taken with greater seriousness. Such things as deleted files, temporary logs, metadata fragments and cloud residues can exist long after they have reached their intended lifecycle. As the analytical and recovery ability of AI increases, such remnants can no longer be dismissed as mere artifacts as they could be goldmines to adversaries.

This study highlights the fact that AI is very powerful in terms of exploiting the deleted data. Natural language processing techniques, machine learning, clustering, and other models are increasing their ability to reconstruct sensitive data using partial fragments to a degree that one might consider alarming. What was in the past a time-consuming task to investigate through forensic means can now be automatically scaled and weaponized by adversaries. These results indicate that disregarding Trash Intelligence risks not only the privacy of the individual but also carries an enterprise-wide and even national infrastructural risk. As an example, leaked organizational logs or user caches could be used to fuel an advanced persistent threat (APT), industrial espionage, or sabotage of a critical infrastructure.

The analysis also shows that the current methods of deletion cannot keep up with an AI-driven threat environment. Even simple file deletion and even classic overwriting schemes tend to produce residues that can be exploited. In contrast to the traditional forensic methods of recovery, the speed and depth of extraction are increased by AI, expanding the attack surface. This tension highlights that a cybersecurity approach that keeps abreast with advancing AI of adversaries is necessary with haste.

To mitigate these threats, this paper provided a multi-layered security mechanism: (1) data sanitization schemes including cryptographic erasure, multi-overwrite, and cloud-based sanitization; (2) AI-based defensive methods that are able to detect and sanitize adversarial recovery efforts and mislead them; (3) legal, regulatory and policy solutions that can require adherence, standardization of sanitization, and sanitization education; and (4) forward-looking security solutions that anticipate the quantum age, ephemeral computing, and data work and removal framework. Taken together, these recommendations assert that countering Trash Intelligence is not simply a technical issue but a focus on the sociotechnical balance with governance and human actions across technology and governance.

The possible conclusions of this research are obvious: the practice of disregarding the existence of digital dustbins is not to be employed anymore. In the age of the new oil, data, even that which is discarded can be used to execute potent attacks. Should organizations and governments not realize this they risk finding themselves having a catastrophically breached state where attackers use their digital refuse against them. On the other hand, extensive use of secure deletion practices, the incorporation of AI into the defense, and effective regulatory frameworks will allow turning digital dustbins into an area of managed, neutralized information.

In summary, Trash Intelligence is not just another cool academic idea--it represents a challenge to the cybersecurity industry in the era of AI. With the proliferation of digital ecosystems and AI capabilities, the costs of ignoring residual data will continue to increase. Through new thinking on deletion, application of resilient sanitization norms, and the targeted use of AI as a defensive tool, it can be possible to relegate the exploitative possibility of AI to a minor role when compared with the security potential of AI. This is a difficult challenge, there is real risk involved, and it needs to be done right now.

REFERENCES

- [1] Atta Ur Rehman Khan; Raja Wasim Ahmad, “A Blockchain-Based IoT-Enabled E-Waste Tracking and Tracing System for Smart Cities” ,IEEE Access, August 2022, Available: <https://ieeexplore.ieee.org/document/9857851>
- [2] Hamed Nozari ,Agnieszka Szmelter-Jarosz and Javid Ghahremani-Nahr Analysis of the Challenges of Artificial Intelligence of Things (AIoT) for the Smart Supply Chain (Case Study: FMCG Industries). MDPL, April 2022 , Available : <https://www.mdpi.com/1424-8220/22/8/2931>
- [3] Graciela Carrillo González, Jorge Issac Lechuga-Cardozo & Adriana Marcela Cáceres-Martelo Barriers to Circular Business Models in Mexico and Colombia Economies. Springer Nature Link , March 2025 , Available : https://link.springer.com/chapter/10.1007/978-981-96-1064-8_8#:~:text=The%20conclusions%20indicate%20that%20both,that%20promote%20the%20creation%20of
- [4] Dr. Muhammad Faraz Hyder1 , Arbaz Shah , Anus Abid , Moaaz Siddiqui , Syed Owais Ali . SECURITY THREATS AND MITIGATION IN DIGITAL WASTE ,Research Gate, August 2024, Available:

https://www.researchgate.net/publication/382869641_SECURITY_THREATS_AND_MITIGATION_IN_DIGITAL_WASTE

[5] Syed Ali Reza , Muhammad Shoyaibur Rahman Chowdhury , Saddam Hossain , Muhammad Hasanuzzaman , Reza E Rabbi Shawon , Bivash Ranjan Chowdhury and MD Sohel Rana .Global Plastic Waste Management: Analyzing Trends, Economic and Social Implications, and Predictive Modeling Using Artificial Intelligence. *Journal of Environmental and Agricultural Studies*, December 2024 , Available : <https://al-kindipublishers.org/index.php/jeas/article/view/8520>

[6] Gripsy J. Viji , L Sheeba , Deepa Kumar , Banu N. Sharmila , and Bobby Lukose . Eco-Intelligent 6G Deployment: A Data-Driven Multi-Objective Framework for Sustainable Impact Analysis and Optimization .IGI Global , 2025 ,Available : <https://www.igi-global.com/chapter/eco-intelligent-6g-deployment/378230>

[7] Kalirajan Murugasridevi,V. R. Mageshen , Ramesh Poornima , Ambikapathi Ramya . The Role of Robotics in Sustainable Agriculture and Waste Management. *Research Gate* , June 2025 , Available : https://www.researchgate.net/publication/392665650_The_Role_of_Robotics_in_Sustainable_Agriculture_and_Waste_Management

[8] Abderahman Rejeb , Andrea Appolloni , Karim Rejeb , Horst Treiblmaier , Mohammad Iranmanesh , John G. Keogh . The role of blockchain technology in the transition toward the circular economy: Findings from a systematic literature review. *Science Direct* , December 2022 , Available : <https://www.sciencedirect.com/science/article/pii/S2667378922000633>

[9] In Lee and George Mangalaraj. Big Data Analytics in Supply Chain Management: A Systematic Literature Review and Research Directions. *Research Gate* , February 2022 , Available : https://www.researchgate.net/publication/358300092_Big_Data_Analytics_in_Supply_Chain_Management_A_Systematic_Literature_Review_and_Research_Directions

[10] Velibor Božić . Leveraging Artificial Intelligence for a Circular Economy: Opportunities, Challenges, and Mitigation Strategies. *Research Gate* , May 2025 , Available : https://www.researchgate.net/publication/371417616_Leveraging_Artificial_Intelligence_for_a_Circular_Economy_Opportunities_Challenges_and_Mitigation_Strategies

[11] Srinivas Kasulla , S J Malik , Sanjay Prakash Baxla ,Salman Zafar. The Role of IoT in Waste Management and Sustainability. *Research Gate* , June 2024 , Available : https://www.researchgate.net/publication/381671149_The_Role_of_IoT_in_Waste_Management_and_Sustainability

[12] Zain Anwar Ali, Mahreen Zain ,Raza Hasan , Muhammad Salman Pathan , Hussain AlSalman , Faisal Abdulaziz Almisned. Digital twins: cornerstone to circular economy and sustainability goals. *Springer Nature Link* , May 2025 , Available : <https://link.springer.com/article/10.1007/s10668-025-06221-4>

[13] Chalermpong Senarak . Toward sustainability and digital resilience: A circular economy cybersecurity framework for seaports . *Science Direct* , May 2025 , Available : <https://www.sciencedirect.com/science/article/pii/S2772390925000198>

[14] Yudi Fernando , Ming – Lang Tseng , Nurarif Aziz , Ridho Bramulya Ikhwan , Ika Sari Wahyuni-TD. Waste-to-energy supply chain management on circular economy capability: An empirical study. *Science Direct* , February 2022 , Available : <https://www.sciencedirect.com/science/article/abs/pii/S2352550922000343>

[15] Riccardo Losa . Public policies on circular economy: A systematic review. *Science Direct* , November 2024 , Available : <https://www.sciencedirect.com/science/article/pii/S0921800924003495>