IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Solution Combustion Approach For The Synthesis Of $Bife_{1-x}pb_{x}o_{3}$ (X = 0, 0.05, 0.15, 0.25, 0.35) Multiferroic Ceramic Samples Using Nitrates And Urea Fuel As Primary Precursors: Studies Related With Dielectric Characteristics

Yogesh A. Chaudhari⁺

Assistant Professor and Head, Department of Physics,

Shri Pancham Khemraj Mahavidyalaya (Autonomous), Sawantwadi, Sindhudurg, Maharashtra, India

ABSTRACT:

This paper presents the synthesis of samples such as, BiFeO₃, BiFeO_{.95}Pb_{0.05}O₃, BiFeO_{.85}Pb_{0.15}O₃, BiFeO_{.85}Pb_{0.15}O₃ and BiFeO_{.85}Pb_{0.25}O₃ multiferroic ceramics via solution combustion method (SCM). These BiFeO₃, BiFeO_{.95}Pb_{0.05}O₃, BiFeO_{.85}Pb_{0.15}O₃, BiFeO_{.85}Pb_{0.25}O₃ and BiFeO_{.65}Pb_{0.35}O₃ ceramic materials were formulated by using metal nitrates and urea as an initial starting precursors. The temperature dependence of dielectric constant shows a dielectric anomalies at various temperatures in BiFeO_{.95}Pb_{0.05}O₃, BiFeO_{.85}Pb_{0.15}O₃, BiFeO_{.85}Pb_{0.25}O₃ and BiFeO_{.65}Pb_{0.35}O₃ ceramics at 1 kHz, 3 kHz and 5 kHz frequencies. Each of these powdered samples were ground in an acetone medium, then calcined and sintered at elevated temperatures before being pelletized.

Keywords: Multiferroics, Pure BiFeO₃, Pb doped BiFeO₃, SCM, Dielectric, applications.

I. INTRODUCTION:

Electrical and magnetic order occurring simultaneously in multiferroic materials [1]. BiFeO₃ has an antiferromagnetic Neel temperature (T_N) of 640 K and a ferroelectric Curie temperature (T_C) of 1100 K [2]. The multiferroic BiFeO₃ ceramics have number of potential applications in different sectors such as magnetocapacitive transducers [3], ferroelectric memory storage [4], microelectronic devices [5], photovoltaic devices [6], spin field effect transistors, nanoelectronics [7].

The pure and doped BiFeO₃ multiferroic ceramics have been synthesized using different formulation routes such as solid state reaction [8], sol- gel method [9], Pechini method [10], Auto-combustion Technique [11], combustion method [12] and hydrothermal method [13].

II. EXPERIMENTAL PROCEDURE:

The preparation of pure BiFeO₃ and Pb-doped samples such as BiFe_{0.95}Pb_{0.05}O₃, BiFe_{0.85}Pb_{0.15}O₃, BiFe_{0.75}Pb_{0.25}O₃ and BiFe_{0.65}Pb_{0.35}O₃ ceramics were formulated using solution combustion method (SCM).

MATERIALS:

The principal components are urea, ferric nitrate, lead nitrate, and bismuth nitrate.

SYNTHESIS PROCESS:

The preparation of BiFeO₃, BiFe_{0.95}Pb_{0.05}O₃, BiFe_{0.85}Pb_{0.15}O₃, BiFe_{0.75}Pb_{0.25}O₃ and BiFe_{0.65}Pb_{0.35}O₃ ceramic samples were carried out using the precursors such as bismuth nitrate, lead nitrate, ferric nitrate as oxidizers while urea was used as a fuel. The oxidizer (O) to fuel (F) ratio was precisely taken into account when producing the sample combination using the oxidizing and reducing valences of the metal nitrates and fuel [14]. Distilled water was used to dissolve stoichiometric amounts of bismuth nitrate, lead nitrate, ferric nitrate, and urea in various beakers. These solutions were then mixed and boiled on a gas burner in a Pyrex dish. Subsequently the constant heating, the water gets evaporated and lastly a combustion takes place with formation of BiFeO₃, BiFe_{0.95}Pb_{0.05}O₃, BiFe_{0.85}Pb_{0.15}O₃, BiFe_{0.75}Pb_{0.25}O₃ and BiFe_{0.65}Pb_{0.35}O₃ ceramic samples. The experimental procedure was provided by Chaudhari et.al. [15], these powders were grinded in an acetone medium, finally calcined and sintered at 425°C, 450°C, 475°C, 500°C, 525°C for 3 hours in a furnace and lastly carried out for pelletization. The process of producing BiFeO₃ ceramic samples is shown in Fig.1. Fig.2 presents the experimental procedure used for developing BiFeO₃ ceramics. Figure 3 displays the BiFeO₃ samples in powdered form, and Figure 4 displays the BiFeO₃ pellet that was formed. The BiFe_{0.95}Pb_{0.05}O₃, BiFe_{0.85}Pb_{0.15}O₃, BiFe_{0.75}Pb_{0.25}O₃, and BiFe_{0.65}Pb_{0.35}O₃ ceramic samples are synthesized using the flowchart in Fig.5, and the experimental approach to produce doped BiFe_{0.95}Pb_{0.05}O₃, BiFe_{0.85}Pb_{0.15}O₃, BiFe_{0.75}Pb_{0.25}O₃, and BiFe_{0.65}Pb_{0.35}O₃ ceramic samples is shown in Fig. 6. Fig. 7 (a), (b), (c), (d) shows the synthesized powder samples of the BiFe_{0.95}Pb_{0.05}O₃, BiFe_{0.85}Pb_{0.15}O₃, BiFe_{0.75}Pb_{0.25}O₃ and BiFe_{0.65}Pb_{0.35}O₃ ceramic samples and the developed pellets of the doped BiFe_{0.95}Pb_{0.05}O₃, BiFe_{0.85}Pb_{0.15}O₃, BiFe_{0.75}Pb_{0.25}O₃ and BiFe_{0.65}Pb_{0.35}O₃ ceramic samples are displayed in Fig. 8 (a), (b), (c), (d). Fig. 9 (a), (b), (c), (d) and (e) presents the temperature dependence of dielectric constant for the BiFe_{0.95}Pb_{0.05}O₃, BiFe_{0.85}Pb_{0.15}O₃, BiFe_{0.75}Pb_{0.25}O₃ and BiFe_{0.65}Pb_{0.35}O₃ samples at 1kHz, 3kHz and 5kHz frequencies. The dielectric studies exhibits a dielectric anomalies in at different temperatures in BiFe_{0.95}Pb_{0.05}O₃, BiFe_{0.85}Pb_{0.15}O₃, BiFe_{0.75}Pb_{0.25}O₃ and BiFe_{0.65}Pb_{0.35}O₃ ceramics at different frequencies like 1 kHz, 3 kHz and 5 kHz are given in the table 1.

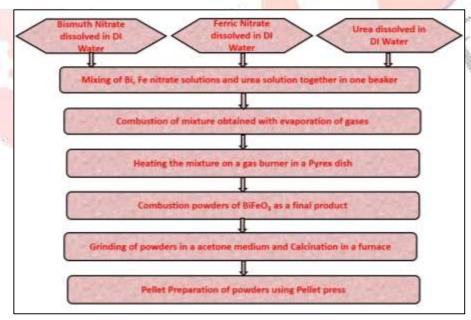


Fig.1. Flowchart of synthesis of BiFeO₃ samples by SCM.

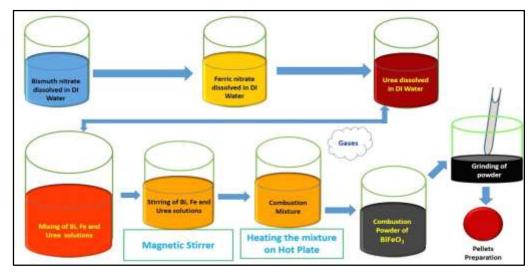


Fig. 2. Experimental procedure of synthesis of BiFeO₃ nanoceramic samples by SCM.

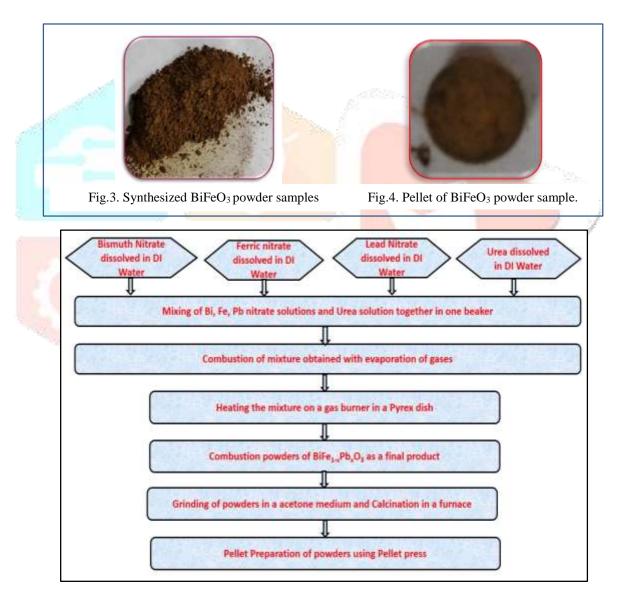


Fig.5. Flowchart of synthesis of BiFe $_{0.95}$ Pb $_{0.05}$ O3, BiFe $_{0.85}$ Pb $_{0.15}$ O3, BiFe $_{0.75}$ Pb $_{0.25}$ O3 and BiFe $_{0.65}$ Pb $_{0.35}$ O3 ceramic samples by SCM.

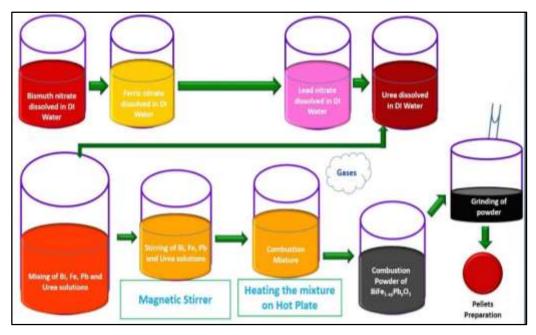


Fig.6. Experimental process of synthesis of BiFe_{0.95}Pb_{0.05}O₃, BiFe_{0.85}Pb_{0.15}O₃, $BiFe_{0.75}Pb_{0.25}O_3$ and $BiFe_{0.65}Pb_{0.35}O_3$ ceramic samples by SCM.

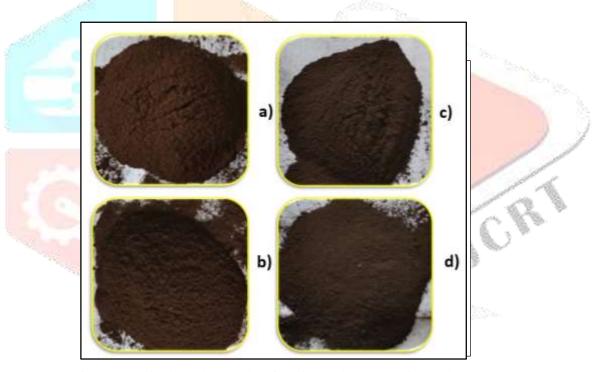


Fig.7. Synthesized powder samples of a) BiFe_{0.95}Pb_{0.05}O₃, b) BiFe_{0.85}Pb_{0.15}O₃, c) $BiFe_{0.75}Pb_{0.25}O_3$ and d) $BiFe_{0.65}Pb_{0.5}O_3$ ceramic samples. sampies.

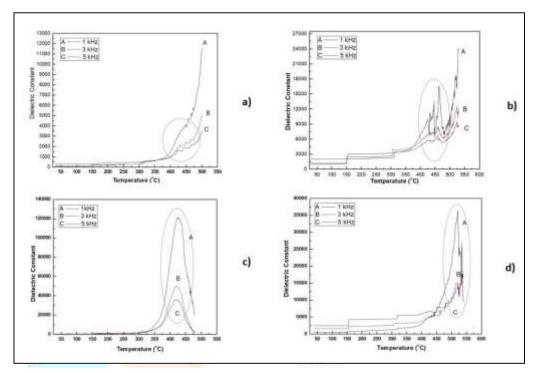


Fig. 9 shows the dielectric constant as a function of temperature a) BiFe_{0.95}Pb_{0.05}O₃, b) BiFe_{0.85}Pb_{0.15}O₃, c) BiFe_{0.75}Pb_{0.25}O₃ and d) BiFe_{0.65}Pb_{0.5}O₃ ceramic samples.

Sr. No.	Samples	1 kHz	3 kHz	5 kHz
1.	BiFe _{0.95} Pb _{0.05} O ₃	450 °C	425 °C	415 °C
2.	BiFe _{0.85} Pb _{0.15} O ₃	440 °C	450 °C	465 °C
3.	BiFe _{0.75} Pb _{0.25} O ₃	430 °C	425 °C	410 °C
4.	BiFe _{0.65} Pb _{0.5} O ₃	520 °C	530 °C	540 °C

Table 1. Temperature dependence of dielectric constant of a) BiFe_{0.95}Pb_{0.05}O₃, b) BiFe_{0.85}Pb_{0.15}O₃, c) BiFe_{0.75}Pb_{0.25}O₃ and d) BiFe_{0.65}Pb_{0.5}O₃ samples.

RESULTS AND DISCUSSION:

Fig. 1 displays the flowchart used to create the BiFeO₃ ceramic sample. The experimental procedure to make BiFeO₃ ceramics is described in Fig.2. The BiFeO₃ sample's synthesized powder is shown in Fig.3, and the produced BiFeO₃ pellet is shown in Fig.4. In Fig.5, the synthesis mechanism for the ceramic samples BiFe_{0.95}Pb_{0.05}O₃, BiFe_{0.85}Pb_{0.15}O₃, BiFe_{0.75}Pb_{0.25}O₃, and BiFe_{0.65}Pb_{0.35}O₃ is displayed. Fig. 6 shows the experimental procedure for creating doped BiFe_{0.95}Pb_{0.05}O₃, BiFe_{0.85}Pb_{0.15}O₃, BiFe_{0.75}Pb_{0.25}O₃ and BiFe_{0.65}Pb_{0.35}O₃ ceramic samples. The Fig. 7 (a), (b), (c), (d) shows the synthesized powder samples of the BiFe_{0.95}Pb_{0.05}O₃, BiFe_{0.85}Pb_{0.15}O₃, BiFe_{0.75}Pb_{0.25}O₃ and BiFe_{0.65}Pb_{0.35}O₃ ceramic samples and Fig. 8 (a), (b), (c), and (d) display the fabricated pellets of the ceramic samples doped with BiFe_{0.95}Pb_{0.05}O₃, BiFe_{0.85}Pb_{0.15}O₃, BiFe_{0.75}Pb_{0.25}O₃ and BiFe_{0.65}Pb_{0.35}O₃. Fig. 9 (a), (b), (c), (d) and (e) presents the temperature dependence of dielectric constant for the BiFe_{0.95}Pb_{0.05}O₃, BiFe_{0.85}Pb_{0.15}O₃, BiFe_{0.75}Pb_{0.25}O₃ and BiFe_{0.65}Pb_{0.35}O₃ samples at 1kHz, 3kHz and 5kHz frequencies. The dielectric studies exhibits a dielectric anomalies in BiFe_{0.95}Pb_{0.05}O₃, BiFe_{0.85}Pb_{0.15}O₃, BiFe_{0.75}Pb_{0.25}O₃ and BiFe_{0.65}Pb_{0.35}O₃ samples at different temperatures at 1 kHz, 3 kHz and 5 kHz frequencies are given in the table 1.

CONCLUSIONS:

We have successfully prepared the pure BiFeO₃ as well as the Pb substituted BiFeO₃ samples like BiFe_{0.95}Pb_{0.05}O₃, BiFe_{0.85}Pb_{0.15}O₃, BiFe_{0.75}Pb_{0.25}O₃ and BiFe_{0.65}Pb_{0.35}O₃ ceramics were formulated through solution combustion method (SCM).

REFERENCES:

- [1]. J. Penalva, A. Lazo, Synthesis of Bismuth Ferrite BiFeO₃ by solution combustion method, IOP Conf. Series: Journal of Physics: Conf. Series, 1143, 012025 (2018).
- [2]. M. Polomska, B. Hilczer, I. Szafraniak-Wiza, A. Pietraszko, B. Andrzejewski, XRD, Raman and magnetic studies of Bi_{1-x}La_xFeO₃ solid solution obtained by mechanochemical synthesis, Phase Transitions, 90 (1), 24-33 (2017).
- [3]. Alina V. Semchenko, Vitaly V. Sidsky, Igor Bdikin, Vladimir E. Gaishun, Svitlana Kopyl, Dmitry L. Kovalenko, Oleg Pakhomov, Sergei A. Khakhomov, Andrei L. Kholkin, Nanoscale Piezoelectric Properties and Phase Separation in Pure and La-Doped BiFeO₃ Films Prepared by Sol-Gel Method, Materials, 14, 1694 (2021).
- [4]. Alima Bai, Shifeng Zhao, Jieyu Chen, Improved Ferroelectric and Leakage Properties of Ce Doped in BiFeO₃ Thin Films, Journal of Nanomaterials, Volume 2014, Article ID 509408, 7 pages.
- [5]. Ghanshyam Arya, Ashwani Kumar, Mast Ram, Nainjeet Singh Negi, Structural, Dielectric, Ferroelectric and Magnetic Properties of Mn-Doped BiFeO₃ Nanoparticles Synthesized by Sol-Gel Method, International Journal of Advances in Engineering & Technology, 5 (2), 245-252 (2013).
- [6]. Baljinder Kaur, Lakhbir Singh, V. Annapu Reddy, Dae-Yong Jeong, Navneet Dabra, Jasbir S. Hundal, AC Impedance Spectroscopy, Conductivity and Optical Studies of Sr doped Bismuth Ferrite Nanocomposites, Int. J. Electrochem. Sci., 11, 4120 – 4135 (2016).
- [7]. Md. Masud Parvez, Synthesis of Yttrium Doped Bismuth Feraites Nanoparticles by Modified Pechini Sol-Gel Method, SEU Journal of Science and Engineering, 11 (2), 41-48 (2017).
- [8]. E. Mostafavi, A. Ataie, Fabrication and characterization of nanostructured Ba-doped BiFeO₃ porous ceramics, Materials Science-Poland, 34 (1), 148-156 (2016).
- [9]. G. M. Taha, M. N. Rashed, M. S. El-Sadek, M. A. Moghazy, Effect of Preheating Temperature on Synthesis of Pure BiFeO₃ via Sol-Gel Method, Nanopages, 1–11 (2019).
- [10]. Omid Amiri, Mohammad Reza Mozdianfar, Mahmoud Vahid, Masoud Salavati-Niasari. Sousan Gholamrezaei, Synthesis and Characterization of BiFeO₃ Ceramic by Simple and Novel Methods, High Temp. Mater. Proc., 35 (6), 551–557 (2016).
- [11]. J. A. Bhalodia, P. V. Kanjariya, S. R. Mankadia, G. D. Jadav, Structural and Magnetic Characterization of BiFeO₃ Nanoparticles Synthesized Using Auto-combustion Technique, International Journal of ChemTech Research, 6 (3), 2144-2146 (2014).
- [12]. Samar Layek, Santanu Saha, H. C. Verma, Preparation, structural and magnetic studies on BiFe_{1-x}Cr_xO₃ (x = 0.0, 0.05 and 0.1) multiferroic nanoparticles, AIP Advances, 3, 032140 (2013).
- [13]. Seyed Ebrahim Mousavi Ghahfarokhi, Khadijeh Helfi, Morteza Zargar Shoushtari, Synthesis of the Single-Phase Bismuth Ferrite (BiFeO₃) Nanoparticle and Investigation of Their Structural, Magnetic, Optical and Photocatalytic Properties, Advanced Journal of Chemistry-Section A, 5(1), 45-58 (2022).
- [14]. S. Saha, S. J. Ghanawat, R. D. Purohit, Solution combustion synthesis of nano particle La_{0.9}Sr_{0.1}MnO₃ powder by a unique oxidant-fuel combination and its characterization, J. Mater. Sci., 41, 1939-1943 (2006).
- [15]. Yogesh A. Chaudhari, Chandrashekhar M. Mahajan, Ebrahim M. Abuassaj, Prashant P. Jagtap, Pramod B. Patil, Subhash T. Bendre, Ferroelectric and dielectric properties of nanocrystalline BiFeO₃ multiferroic ceramics synthesized by solution combustion method (SCM), Materials Science-Poland, 31(2), 221-225 (2013).