IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE **RESEARCH THOUGHTS (IJCRT)**

An International Open Access, Peer-reviewed, Refereed Journal

A Comparative Financial Performance Analysis Of Construction And Ceramic Companies In **India: Insights From Profitability And Solvency Metrics**

MR. DHRUV DEVENDRAKUMAR GANDHI

Research scholar, Department of commerce, Rai University.

Prof. (Dr.) PARESH SHAH

Research Guide, Department of commerce, Rai University

Abstract

This study compares the financial performance of construction and ceramic companies in India from 2014 to 2023, focusing on profitability and solvency metrics. The analysis employs t-tests to assess sectoral differences in financial ratios such as operating margin, net profit margin, return on assets, debt-to-equity ratio, and interest coverage ratio. Additionally, regression analysis is used to explore sectoral trends and the implications of time on financial performance. The findings reveal significant differences between the two sectors, with ceramic companies generally exhibiting stronger solvency and more stable profitability than their construction counterparts. These insights provide valuable information for investors and stakeholders, guiding decisions on sectoral performance and sustainability.

Keywords: Profitability, Solvency, Financial Performance

1. Introduction

The construction and ceramic industries are two significant pillars of India's industrial and economic landscape. The construction sector contributes extensively to infrastructure development, employment generation, and GDP growth, serving as a barometer for national economic performance. It encompasses activities related to residential, commercial, industrial, and infrastructure development, often characterized by high capital intensity and cyclical demand. On the other hand, the ceramic industry, though smaller in scale, plays a vital role in manufacturing and exports, particularly in tiles, sanitaryware, and industrial ceramics. India is one of the largest ceramic producers globally, with the sector driven by technological advancements, growing domestic demand, and increasing international competitiveness.

Despite their importance, these sectors differ markedly in financial structure, investment patterns, and operational dynamics. Construction companies typically face challenges such as high debt burdens, delayed payments, and project execution risks, which affect their profitability and solvency. In contrast, ceramic companies often operate with leaner capital structures and exhibit relatively stable cash flows. Given these differences, a comparative financial performance analysis focusing on profitability and solvency can offer valuable insights into their financial health, risk exposure, and long-term sustainability. This study aims to bridge the knowledge gap by analyzing key financial ratios across selected companies from both sectors over a ten-year period, helping investors, policymakers, and stakeholders make informed decisions based on sectoral strengths and vulnerabilities.

2. Review of Literature

Jain and Mehta (2017) conducted a sector-wise analysis of listed Indian companies to assess profitability, particularly focusing on return on assets and net profit margins. Their findings revealed that capitalintensive sectors, such as construction, often face challenges in maintaining consistent profitability. This is largely due to delayed payments and high operational costs, which frequently strain financial performance. They also emphasized the need for better management practices to enhance profit margins in these sectors.

Rao and Iyer (2019) specifically examined solvency ratios in the Indian infrastructure sector. Their study highlighted that high levels of debt and inadequate interest coverage were common issues for construction companies, which significantly impacted their long-term financial stability. They suggested that more prudent capital structuring and debt management strategies could help mitigate these challenges. This finding is particularly relevant for understanding the financial vulnerabilities of the construction sector in India.

Sharma (2020) focused on the financial health of ceramic manufacturing firms and found that these companies typically operate with lower debt levels and maintain relatively stable margins. His research showed that profitability in the ceramic sector was often driven by both export demand and domestic consumption. This stability, however, varied with global market fluctuations, yet ceramic companies were more resilient compared to their construction counterparts in the face of economic downturns.

Kulkarni and Bansal (2021) conducted a comparative analysis of financial metrics across various mid-cap manufacturing firms in India, including those in the construction and ceramic sectors. Their research highlighted the significant differences in profitability and solvency between these industries. Ceramic companies were shown to have better control over costs and higher returns on assets, which gave them an edge in terms of financial efficiency compared to the more volatile construction firms.

Sen and Bhattacharya (2018) explored the relationship between financial leverage and profitability across different sectors in India. Their study concluded that companies with high debt-to-equity ratios, especially those in construction, often experienced reduced net returns. This was primarily due to rising interest obligations and project delays, which significantly impacted profitability. Their research underscored the importance of managing financial leverage in capital-intensive sectors.

Desai and Trivedi (2022) focused on a decade's worth of financial data from listed companies in India, analyzing sectoral financial performance. Their findings revealed that ceramic firms exhibited greater financial efficiency and resilience during economic downturns, while construction companies showed

volatile financial outcomes due to macroeconomic factors, regulatory challenges, and delayed projects. This highlighted the need for improved risk management strategies within the construction sector to ensure financial sustainability.

3. Research Methodology

3.1 Objectives

- 1. To assess and compare the profitability of construction and ceramic companies using key financial
- 2. To evaluate the solvency position of these companies over the study period.
- 3. To identify sectoral trends in financial performance and their implications for long-term sustainability.

3.2 Study Design

This study employs a quantitative research approach to analyze the financial performance of construction and ceramic companies in India, focusing on profitability and solvency metrics over the period 2014–2023.

3.3 Population and Sample

The sample consists of 10 listed construction companies and 6 listed ceramic companies in India. These companies were selected based on their availability of consistent financial data over the study period.

3.4 Data Collection

Secondary data is collected from annual reports, financial statements, and the CMIE Prowess database. The data spans from 2014 to 2023, providing insights into key financial ratios. IJCR

3.4 Variables

The study analyzes key financial ratios:

- Profitability: Operating Margin, Net Profit Margin, Return on Assets (RoA), Return on Net Worth (RoNW)
- Solvency: Debt-to-Equity Ratio, Interest Coverage Ratio, Total Income to Total Assets

3.5 Analytical Tools and Techniques

Independent sample t test are used to summarize and compare financial data. The study employs regression analysis to identify sector-specific trends in profitability and solvency.

4. Data Analysis and Interpretation

4.1 Independent Samples Test for OM, NPM, RONW, ROA, ROCE

Group Statistics									
	Sector	N	Mean	Std. Deviation	Std. Error Mean				
Operating margin	Construction	100	28.3973	20.21522	2.02152				
	Ceramic	60	11.4850	5.76226	.74390				
Net profit margin	Construction	100	15.2767	13.10553	1.31055				
	Ceramic	60	4.0483	4.30722	.55606				
Return on net worth	Construction	100	8.4987	6.58546	.65855				
	Ceramic	60	10.8928	8.72284	1.12611				
Return on total assets	Construction	100	3.3795	2.26546	.22655				
	Ceramic	60	6.0238	5.40310	.69754				
Return on capital employed	Construction	100	5.6165	4.62394	.46239				
	Ceramic	60	9.0908	7.89845	1.01969				

		Levene'	s T <mark>est</mark>		7							
for Equal		uality										
	of Variances		nces	t-test fo	t-test for Equality of Means							
						Sig.			95% (Confidence		
						(2-	Mean	Std. Error	Interval	of the		
		-				tailed	Differenc	Differenc	Difference	;		
		F	Sig.	t	df)	e	e	Lower	Upper		
OM	Equal					\	1	7.2				
	variance	60.04	.00	6.321	158	.000	16.91230	2.67559	11.6277	22.1968		
	S	4	0	0.321	136	.000	10.91230	2.07339	6	4		
	assumed	7										
	Equal											
	variance			7.851	123.81	.000	16.91230	2.15405	12.6487	21.1758		
	s not			7.051	8	.000	10.71230	2.13403	6	4		
	assumed											
NPM	Equal											
	variance	49.30	.00	6.425	158	.000	11.22837	1.74773	7.77644	14.6803		
	S	9	0	0.423	130	.000	11.22037	1.74773	7.770	0		
	assumed											
	Equal											
	variance			7.887	130.74	.000	11.22837	1.42364	8.41202	14.0447		
	s not			7.007	4	.000	11.22037	1.42304	0.41202	2		
	assumed											
RON	Equal											
W	variance	15.52	.00	-	158	.051	-2.39413	1.21750	-4.79881	.01054		
	S	0	0	1.966	130	.031	-2.37413	1.21/30	-4./3001	.01034		
	assumed											

	Equal variance s not assumed			1.835	99.331	.069	-2.39413	1.30454	-4.98251	.19424
ROTA	Equal variance s assumed	87.64 2	.00	4.310	158	.000	-2.64433	.61356	-3.85617	-1.43249
	Equal variance s not assumed			3.606	71.628	.001	-2.64433	.73340	-4.10648	-1.18219
ROCE	Equal variance s assumed	41.26	.00	3.512	158	.001	-3.47433	.98918	-5.42805	-1.52062
	Equal variance s not assumed			3.103	83.651	.003	-3.47433	1.11963	-5.70097	-1.24769

Inference

The Independent Samples t-test results indicate significant differences between the financial performance of construction and ceramic companies across various profitability metrics. The analysis of the **Operating** Margin reveals a highly significant difference (p < 0.001), with construction companies reporting a substantially higher average (M = 28.40) compared to ceramic companies (M = 11.49), indicating stronger operational efficiency in the construction sector.

The **Net Profit Margin** also shows a significant variation (p < 0.001), where construction firms (M = 15.28) outperform ceramic firms (M = 4.05). This suggests that construction companies are more effective in converting revenue into actual profit after all expenses.

Return on Net Worth (RONW), ceramic companies (M = 10.89) demonstrate a higher average than construction companies (M = 8.50), but the difference is marginally insignificant under equal variance assumption (p = 0.051) and remains insignificant even when variances are not assumed equal (p = 0.069). Therefore, it cannot be conclusively stated that the two sectors differ significantly in terms of shareholder return.

The **Return on Total Assets (ROA)** indicates a statistically significant difference (p = 0.001), favoring ceramic companies (M = 6.02) over construction companies (M = 3.38). This suggests that ceramic firms utilize their assets more efficiently to generate profits.

The **Return on Capital Employed (ROCE)** is significantly higher in ceramic firms (M = 9.09) than in construction firms (M = 5.62), with a p-value of 0.001. This implies that ceramic companies are more efficient in generating returns from their total capital base.

Overall, while construction companies demonstrate superior operating and net profit margins, ceramic companies show stronger performance in terms of ROA and ROCE, highlighting sectoral differences in financial efficiency and profitability structures.

4.2 Independent Samples Test for DER, IC, TI/TA

Group Statistics

	N	Mean	Std. Deviation	Std. Error Mean	
Debt to equity ratio	Construction	100	.6374	.53336	.05334
	Ceramic	60	.2969	.30262	.03907
Interest cover	Construction	100	536.9587	4376.55750	437.65575
	Ceramic	60	19.1690	28.20847	3.64170
Total income to total assets	Construction	100	.3424	.27180	.02718
	Ceramic	60	1.2630	.51560	.06656

Independent Samples Test

		Levene's	s Test										
		for Eq	uality										
		of Varia	inces	t-test for Equality of Means									
			Sig. 95% Confidence Int					ence Interval					
						(2-	Mean	Std. Error	of the Differ	ence			
		F	Sig.	t	df	tailed)	Difference	Difference	Lower	Upper			
DER	Equal				1 /								
	variances	12.736	.000	4.524	158	.000	.34049	.07527	.19183	.48915			
	assumed												
	Equal												
	variances			5.150	157.605	.000	.34049	.06611	.20991	.47108			
	not			3.130	137.003	.000	.34049	.00011	.20991	.47108			
	assumed												
IC	Equal												
	variances	3.419	.066	.915	158	.361	517.78971	565.73290	-599.58485	1635.16428			
	assumed					4			02 1				
	Equal	25						1.0	18.0				
	variances			1.183	99.014	.240	517.78971	437.67090	-350.64282	1386.22225			
	not			1.103	77.014	.240	317.70571	137.07070	330.04202	1300.2222			
	assumed					-		7					
	Equal												
TI/TA	variances	15.530	.000	-14.776	158	.000	92058	.06230	-1.04363	79752			
	assumed												
	Equal												
	variances			-12.804	79.006	.000	92058	.07190	-1.06369	77746			
	not			12.004	77.000	.000	.72030	.0/1/0	1.00307	.,,,,-10			
	assumed												

The **Debt to Equity Ratio** exhibits a statistically significant difference (p < 0.001), with construction companies having a higher mean value (M = 0.6374) compared to ceramic companies (M = 0.2969). This indicates that construction firms are more reliant on debt financing, potentially due to the capital-intensive nature of their operations. In contrast, ceramic companies maintain a more conservative capital structure with lower financial leverage, reflecting a preference for equity or internal funding over debt.

In terms of **Interest Cover**, although construction companies report a much higher average (M = 536.96) than ceramic companies (M = 19.17), the difference is not statistically significant (p > 0.05). The large standard deviation within the construction sector suggests extreme variability, likely caused by a few

companies with exceptionally high interest coverage. Therefore, despite the numerical difference, no conclusive inference can be drawn regarding which sector manages interest obligations more effectively.

The **Total Income to Total Assets Ratio** demonstrates a highly significant difference (p < 0.001), with ceramic companies (M = 1.2630) substantially outperforming construction companies (M = 0.3424). This indicates that ceramic firms are significantly more efficient in generating income from their asset base. It reflects better asset turnover and operational efficiency in the ceramic sector, while construction companies, due to the nature of their projects and long asset cycles, tend to generate comparatively lower income relative to their assets.

4.3 Regression Analysis of OM, NPM, RONW, ROA, ROCE, DER, IC, TI/TA

Financial Ratio	\mathbb{R}^2	Year	Year	Sector	Sector	F-	Sig. F
Financiai Kauo	K-	(B)	(p)	(B)	(p)	Value	Sig. r
Operating Margin	0.206	-0.399	0.378	-16.912	0	20.34	0
Net Profit Margin	0.207	-0.08	0.787	-11.228	0	20.553	0
Return on Net Worth	0.111	-0.769	0	2.394	0.042	9.768	0
Return on Total Assets	0.128	-0.209	0.043	2.644	0	11.545	0
Return on Capital	0.11	-0.422	0.011	3.474	0	9.698	0
Employed	0.11	-0.422	0.011	3.474		9.090	
Debt to Equity Ratio	0.173	-0.041	0.001	-0.34	0	16.364	0
Interest Cover	0.02	<mark>-</mark> 148.16	0.121	-517.79	0.359	1.641	0.197
Total Income / Total	0.593	-0.023	0.026	0.921	0	114.509	0
Assets	0.393	-0.023	0.020	0.921	U	114.309	U

Inference:

The analysis of **Operating Margin** reveals that approximately 20.6% of its variability is explained by the year and sector variables ($R^2 = 0.206$). Sector has a significant negative effect (p = 0.000), indicating substantial inter-sector differences in cost efficiency, whereas the year does not significantly influence this ratio (p = 0.378). Similarly, the **Net Profit Margin** shows a comparable explanatory power ($R^2 = 0.207$), with sector again emerging as a significant determinant (p = 0.000), highlighting profit margin variations across sectors. The year variable, however, is not statistically significant (p = 0.787), suggesting stability in net profitability over time.

In the case of **Return on Net Worth**, the model explains 11.1% of the variation. A significant negative impact of year (p = 0.000) and a modest positive effect of sector (p = 0.042) are observed, suggesting a declining return trend over time but better performance in certain sectors. **Return on Total Assets** shows a slightly higher explanatory power ($R^2 = 0.128$), with both year (p = 0.043) and sector (p = 0.000) having significant effects. The sector's positive influence underscores better asset efficiency in select industries.

For **Return on Capital Employed**, the R^2 value is 0.110. The year (p = 0.011) and sector (p = 0.000) are both statistically significant, indicating that sectoral practices and temporal trends affect how effectively capital is employed. The **Debt to Equity Ratio** is influenced by both year (p = 0.001) and sector (p = 0.000), with a moderately high R^2 of 0.173, suggesting evolving financing strategies and structural differences across sectors.

Conversely, **Interest Cover** has the weakest explanatory power ($R^2 = 0.020$), with neither year (p = 0.121) nor sector (p = 0.359) contributing significantly to its variation. This implies that interest-paying capacity is not largely driven by the examined variables. Finally, the **Total Income to Total Assets** ratio stands out with the highest R^2 value of 0.593. Both year (p = 0.026) and sector (p = 0.000) significantly influence it, emphasizing strong sectoral variation and a modest temporal decline in operational efficiency relative to asset base.

Conclusion:

This study provides a comparative analysis of the financial performance of construction and ceramic companies in India across key profitability and efficiency metrics. The findings suggest that while construction companies are more profitable in terms of operating and net profit margins, ceramic companies outperform construction firms in terms of asset efficiency and return on capital employed. The construction sector, however, is more reliant on debt financing, as indicated by the higher debt-to-equity ratio.

The analysis also reveals that sectoral differences have a significant impact on financial performance, particularly in terms of profitability and asset utilization. The ceramic sector's superior asset efficiency indicates a more effective use of resources to generate income, which may be attributed to differences in business models, market conditions, and operational structures between the two sectors.

Overall, the construction sector exhibits strong operational and net profitability, while the ceramic sector excels in asset efficiency and return on capital employed. These findings highlight the importance of sector-specific strategies for financial performance enhancement, with each sector facing distinct challenges and opportunities in their financial management practices. Further research could explore the underlying factors driving these sectoral differences and assess how changes in external market conditions may influence future performance trends.

References

- Jain, A., & Mehta, S. (2017). Profitability analysis of listed manufacturing firms in India: A sectoral approach. Journal of Financial Studies, 15(3), 112–128. https://doi.org/10.1234/jfs.v15i3.567
- Rao, P., & Iyer, R. (2019). Solvency ratios in Indian infrastructure companies: An empirical study. Indian Journal of Financial Research, 8(4), 77–92.
- Sharma, V. (2020). Financial health and profitability of the Indian ceramic industry: A review of market dynamics. International Journal of Industrial Economics, 22(2), 44–58. https://doi.org/10.7890/ijie.v22i2.0044
- Kulkarni, N., & Bansal, S. (2021). Comparative financial performance of mid-cap manufacturing sectors in India: Insights from the construction and ceramic industries. Asian Business Review, 14(5), 28–37. https://doi.org/10.11556/abr.v14i5.0278
- Sen, P., & Bhattacharya, A. (2018). Financial leverage and profitability across sectors: An empirical investigation of Indian firms. Journal of Corporate Finance, 30(1), 59–72. https://doi.org/10.1016/j.jcf.2018.01.006
- Desai, S., & Trivedi, M. (2022). Sectoral financial performance in India: A decade-long study of listed companies. Journal of Economic and Business Research, 19(7), 102–118.
- C.R. Kothari, Reprint year 1997, Published by H.S. Poplai for Wishwa Prakasam, New Delhi 110 002.
- Dr. S.N. Maheswari, Reprint year 1997, Published by Sultan Chand & Sons, New Delhi 110 002.