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Abstract—The rise of autonomous and semi-autonomous 

machinery in industrial settings necessitates advanced safety 

mechanisms to ensure smooth operation while preventing 

collisions and protecting nearby workers [1]. This project 

proposes an AI-based Extreme-Edge Collision-Avoidance 

System utilizing a Temporal Convolutional Network (TCN) 

deployed on a Raspberry Pi microcontroller. The system 

integrates multiple sensing technologies, including LIDAR, 

Camera Modules, Ultrasonic Sensors, and Infrared Sensors, to 

comprehensively monitor the machine’s surroundings [2]. At 

the system's core, the STM32 microcontroller processes real-

time data from the sensors via a driver circuit, ensuring ultra-

low-latency response. AI-based monitoring runs on a Raspberry 

Pi, analyzing time-series sensor data using the TCN model to 

detect potential hazards in real-time [3]. The AI algorithm 

predicts collision risks and enhances situational awareness, 

ensuring timely interventions critical for industrial safety [4]. 

Upon detecting an obstacle, the Raspberry Pi triggers 

immediate corrective actions, controlling machinery operations 

while engaging an alarm and alert system to notify nearby 

workers. The integration of Raspberry Pi extends 

computational flexibility, supporting data logging, visualization, 

and remote monitoring, while enabling machine learning model 

updates [4]. The system ensures robust performance in noisy 

and dynamic industrial environments by leveraging sensor 

fusion and AI. Extreme-edge processing minimizes latency, 

optimizes energy consumption, and maintains a compact 

memory footprint. Designed for seamless integration into 

industrial applications, this real-time collision avoidance system 

significantly enhances workplace safety, reduces accidents, and 

improves operational efficiency [5].  

Keywords— Collision avoidance, Industrial safety, Edge 

computing, Ultrasound sensors, Temporal Convolutional 

Network (TCN), Machine learning, Low-power MCU, 

Raspberry Pi, Real-time processing, Sensor fusion, Acoustic 

noise robustness, Embedded systems, Proximity sensing, Smart 

manufacturing, Industrial automation. 

 

 

I. INTRODUCTION 

In industrial environments, the increasing complexity and 

automation of machinery present new challenges for worker 

safety and operational efficiency [6]. The rise of smart 

manufacturing and Industry 4.0 has led to the development of 

interconnected and autonomous systems, where machines 

perform tasks with minimal human intervention. However, as 

industrial machinery operates in dynamic environments, 

ensuring robust, low-latency collision avoidance becomes 

crucial to safeguarding workers and preventing costly equipment 

damage [7]. Traditional collision-avoidance systems often rely 

on centralized processing, where sensor data is transmitted to 

cloud-based platforms for decision-making. While effective in 

some scenarios, this approach introduces higher latencies that 

may compromise safety in industrial settings, where split-second 

responses are required [8]. Additionally, industrial environments 

are characterized by high levels of acoustic and electromagnetic 

noise, vibrations, and variable lighting conditions, which can 

degrade the accuracy of many sensing technologies [9]. Existing 

solutions must address these challenges while adhering to strict 

constraints related to power, memory, and processing 

capabilities, particularly when deployed on resource-limited 

embedded devices [10]. To overcome these challenges, Edge AI 

offers a promising solution by enabling real-time computation 

directly at the machine level, reducing communication delays 

and dependency on external cloud infrastructure. Edge AI 

systems must be low-power, compact, and efficient, particularly 

in environments where energy efficiency and real-time 

performance are critical, such as in battery-powered or 
autonomous systems [11]. 
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II. PROPOSED WORK 

In this proposed work, Temporal Convolutional Networks (TCNs) 

emerge as an ideal solution for processing time-series data generated 

by industrial sensors. Unlike traditional machine learning models or 

Recurrent Neural Networks (RNNs), TCNs provide several 

advantages: they maintain long memory, efficiently learn temporal 

dependencies, and process sequences in parallel, enabling faster 

inference [9]. These features make TCNs highly suitable for real-

time prediction tasks, such as collision avoidance, where rapid 

decision-making is essential. Furthermore, TCNs' ability to handle 

noise and their efficient use of computational resources make them 

ideal for deployment in industrial environments [11]. This work 

proposes an AI-based extreme-edge collision-avoidance system 

utilizing a TCN model, deployed on a Raspberry Pi, with additional 

computational support from a Raspberry Pi. The system integrates 

Ultrasonic (US) sensors, LIDAR, camera modules, and infrared 

sensors to detect potential collisions or obstacles in real-time. 

Ultrasonic sensors, in particular, are well-suited for industrial 

applications due to their ability to measure proximity accurately, 

even in conditions of low visibility or excessive noise, making them 
more reliable than vision-based systems in certain scenarios [12]. 

The Raspberry Pi serves as the primary real-time processing unit, 

efficiently handling sensor data and executing the TCN model with 

ultra-low latency [13]. Meanwhile, the Raspberry Pi plays a 

complementary role, offering additional computational capabilities 

for AI model execution, data logging, and remote monitoring [11]. 

This hybrid approach balances energy efficiency with high-

performance processing, ensuring that the system operates 

autonomously while remaining capable of incremental learning and 

future updates [10].A sensor-fusion dataset, collected from 

Ultrasonic sensors mounted on an industrial woodworking machine, 

forms the basis for training and refining the TCN model. By 

leveraging incremental learning, the system continuously adapts to 

evolving environmental conditions and operational nuances, 

improving its accuracy over time. This adaptability is particularly 

advantageous in industrial settings, where machinery behaviour and 

surrounding environments fluctuate due to factors such as wear and 
tear, workload variations, acoustic noise, and vibrations. 

III. Problem statement 
Design and Development of an AI-driven low-latency Extreme-

Edge Collision Avoidance Safety System for Industrial Machinery 

Using TCN, Sensor Fusion, and Embedded Controllers. Industrial 

machinery operates in complex and dynamic environments where 

the risk of collisions poses significant threats to worker safety, 

equipment longevity, and operational efficiency. Traditional safety 

approaches, such as manual monitoring and reactive safety 

measures, are often slow, inconsistent, and prone to human error. 

These limitations result in delayed responses to potential hazards, 

leading to accidents, costly downtime, and damage to both personnel 

and machinery. 

The primary challenge is to develop a real-time, intelligent collision-

avoidance system that can reliably detect and prevent collisions with 

minimal human intervention. Existing solutions struggle in high-

noise environments, have limited adaptability to rapidly changing 

industrial conditions, and often suffer from high latency. As 

manufacturing processes become increasingly automated and high-

speed machinery dominates industrial workflows, there is an urgent 

need for low-latency, AI-powered safety solutions capable of instant 

hazard detection and prevention without disrupting operations. 

This project aims to leverage Artificial Intelligence (AI), Temporal 

Convolutional Networks (TCN), and sensor fusion techniques to 

create an advanced safety system that ensures continuous real-time 

monitoring and precise decision-making. By deploying AI inference 

directly at the edge using embedded controllers, the system 

minimizes processing delays, making it highly suitable for high-

speed industrial environments. This innovation enables rapid hazard 

detection, proactive collision prevention, and seamless adaptability 

to diverse industrial settings. 

Significance of the Problem Statement: 
1. Clear Focus: Addresses the inefficiencies of traditional 

safety systems and emphasizes the need for AI-driven 

automation. 

2. Technology Integration: Highlights the role of AI, sensor 

fusion, and embedded controllers in achieving real-time safety 

monitoring and response. 

3. Impact & Justification: Demonstrates the necessity of 

improved worker protection, enhanced machine efficiency, and 

reduced industrial hazards. 

4. Success Metrics: Defines performance expectations, 

including real-time detection, ultra-low latency response, 

environmental adaptability, and robust industrial safety 

enhancements. 

 

Objective:  
1. Designing a retractor mechanism that can be controlled 

automatically with the help of the application. 

 2. Integrating AI to adjust retraction pressure and positioning 

dynamically based on real-time feedback. 

3. Utilizing IoT to monitor and control the retractor remotely, 

ensuring precise and consistent retraction. 

4. Testing and validating the design through simulations and 

practical trials to ensure its effectiveness and safety. 

5. Evaluating the performance of the automatic retractor in 

comparison to traditional manual methods in terms of precision, 

efficiency, and user satisfaction.  

 

Scope of the project:  

a. Designing a multi-sensor collision-avoidance system that 

integrates various sensors such as LIDAR, ultrasonic, IR, and 

camera modules for real-time monitoring and detection of 

obstacles in industrial environments. The system will be 

controlled automatically through embedded algorithms running 

on a microcontroller. 

b. Integrating AI (Temporal Convolutional Network - TCN) to 

analyze sensor data and dynamically adjust the machinery's 

response to potential hazards. The AI will help in predicting and 

preventing collisions by adapting to real-time environmental 

changes and providing low-latency responses. 

c. Utilizing IoT technology to monitor the system remotely, 

allowing for remote alerts, diagnostics, and control of the safety 

system. This will ensure continuous operation, even in complex 

industrial settings, by providing live feedback to operators and 

remote monitoring units. 

d. Testing and validating the collision-avoidance system 

through simulations and practical trials in industrial 

environments to ensure its accuracy, reliability, and safety. 

Validation will include testing in various noise and lighting 

conditions to confirm robustness. 

e. Evaluating the performance of the automated collision-

avoidance system against traditional safety mechanisms in terms 

of precision, latency, energy efficiency, and overall 

improvement in operator safety. The evaluation will focus on 

improvements in real-time adaptability, reduction of human 

error, and overall system efficiency. 

 

Literature Review 

Functional safety of electrical/electronic/programmable 

electronic safety-related systems - Part 1: General 

requirements (see Functional Safety and IEC 61508): IEC 

61508-1:2010 covers those aspects to be considered when 

electrical/electronic/programmable electronic (E/E/PE) systems 

are used to carry out safety functions. A major objective of this 

standard is to facilitate the development of product and 

application sector international standards by the technical 

committees responsible for the product or application sector. 

This will allow all the relevant factors, associated with the 
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product or application, to be fully taken into account and thereby 

meet the specific needs of users of the product and the application 

sector. A second objective of this standard is to enable the 

development of E/E/PE safety-related systems where product or 

application sector international standards do not exist. This second 

edition cancels and replaces the first edition published in 1998. This 

edition constitutes a technical revision. It has been subject to a 

thorough review and incorporates many comments received at the 

various revision stages. It has the status of a basic safety publication 

according to IEC Guide 104. This publication is of high relevance 

for Smart Grid. 

K. Cao, Y. Liu, G. Meng, and Q. Sun, ‘‘An overview on edge 

computing research,’’ IEEE Access, vol. 8, pp. 85714–85728, 

2020: Edge computing is a novel computing paradigm designed to 

address the limitations of traditional cloud computing in the era of 

the Internet of Everything (IoE). As the number of smart devices 

increases, generating vast amounts of data, issues like bandwidth 

load, slow response times, security, and privacy concerns become 

more prominent. Edge computing addresses these challenges by 

performing data processing closer to the data source, providing 

faster, real-time, and secure services. 

F. Wang, M. Zhang, X. Wang, X. Ma, and J. Liu, ‘‘Deep learning for 

edge computing applications: A state-of-the-art survey,’’ IEEE 

Access, vol. 8, pp. 58322–58336, 2020: With the booming 

development of Internet-of-Things (IoT) and communication 

technologies such as 5G, our future world is envisioned as an 

interconnected entity where billions of devices will provide 

uninterrupted service to our daily lives and the industry. Meanwhile, 

these devices will generate massive amounts of valuable data at the 

network edge, calling for not only instant data processing but also 

intelligent data analysis to fully unleash the potential of the edge big 

data. Both traditional cloud computing and on-device computing 

cannot sufficiently address this problem due to the high latency and 

the limited computation capacity, respectively. Fortunately, 

emerging edge computing sheds light on the issue by pushing the 

data processing from the remote network core to the local network 

edge, remarkably reducing the latency and improving the efficiency. 

Besides, the recent breakthroughs in deep learning have greatly 

facilitated the data processing capacity, enabling a thrilling 

development of novel applications, such as video surveillance and 

autonomous driving. 

D. L. Dutta and S. Bharali, ‘‘Tiny ML meets IoT: A comprehensive 

survey,’’ Internet Things, vol. 16, Dec. 2021, Art. no. 100461: 

The rapid growth in miniaturization of low-power embedded 

devices and advancement in the optimization of machine learning 

(ML) algorithms have opened up a new prospect of the Internet of 

Things (IoT), tiny machine learning (Tiny ML), which calls for 

implementing the ML algorithm within the IoT device. Tiny ML 

framework in IoT is aimed to provide low latency, effective 

bandwidth utilization, strengthen data safety, enhance privacy, and 

reduce cost. Its ability to empower the IoT device to reliably 

function without consistent access to the cloud services while 

delivering accurate ML services makes it a promising option for IoT 

applications seeking cost-effective solutions. Especially in settings 

where inadequate connectivity is common, Tiny ML aims to provide 

on-premise analytics that will add substantial benefit to IoT services. 

In this article, we introduce the definition of Tiny ML and provide 

background information on diverse related technologies stating their 

strengths and weaknesses. We then show how Tiny ML-as-a-service 

is implemented through efficient hardware-software co-design. This 

article also introduces the role of 5G in the Tiny ML-IoT scenario. 

Furthermore, it touches on the recent progress in Tiny ML research 

in both academia and industry along with future challenges and 

opportunities. We believe that this review will serve as an 

information cornerstone for the IoT research community and pave 

the way for further research in this direction. 

P. P. Ray, ‘‘A review on Tiny ML: State-of-the-art and prospects,’’ 

J. King Saud Univ. Comput. Inf. Sci., vol. 34, no. 4, pp. 1595–

1623, Apr. 2022: Machine learning has become an indispensable 

part of the existing technological domain. Edge computing and the 

Internet of Things (IoT) together present a new opportunity to 

imply machine learning techniques at the resource-constrained 

embedded devices at the edge of the network. Conventional 

machine learning requires an enormous amount of power to 

predict a scenario. Embedded machine learning – The tiny ML 

paradigm aims to shift such a plethora from traditional high-end 

systems to low-end clients. Several challenges are paved while 

doing such a transition such as maintaining the accuracy of 

learning models, providing a train-to-deploy facility in resource-

frugal tiny edge devices, optimizing processing capacity, and 

improving reliability. In this paper, we present an intuitive 

review of such possibilities for Tiny ML. We first present the 

background of Tiny ML. Secondly, we list the tool sets for 

supporting Tiny ML. Thirdly, we present key enablers for the 

improvement of Tiny ML systems. Fourthly, we present state-

of-the-art frameworks for Tiny ML. Finally, we identify key 

challenges and prescribe a future roadmap for mitigating several 

research issues of Tiny ML.  
 

Methodology 

To develop an AI-based Extreme-Edge TCN-Based Low-

Latency Collision-Avoidance Safety System, a systematic 

approach is necessary to ensure efficiency, real-time 

responsiveness, and safety in industrial environments. The 

methodology follows a structured framework encompassing 

system architecture, sensor integration, AI model development, 

edge computing deployment, testing, and optimization to 

enhance collision avoidance capabilities. 

System Architecture Design 

The system architecture is designed to integrate AI algorithms, 

real-time sensors, and edge computing to detect and prevent 

collisions. The essential components of the system include: 

1. Embedded Microcontroller: A low-power AI-compatible 

microcontroller (e.g., STM32, ESP32, or an ARM Cortex-based 

MCU) to perform AI inference at the edge. 

2. Sensors: A combination of LIDAR, ultrasonic sensors, 

infrared sensors, and cameras to detect objects, movements, and 

distances in industrial environments. 

3. Actuators and Alarms: Emergency braking mechanisms, 

visual indicators, and sound alarms that activate in case of a 

predicted collision. 

To enhance the accuracy and reliability of collision detection, 

multi-sensor fusion is implemented. Each sensor provides a 

different perspective of the environment, improving the system's 

ability to detect obstacles effectively. The steps involved 

include: 

1. Data Collection: Continuous acquisition of 

environmental data from multiple sensors. 

2. Noise Reduction: Filtering out erroneous readings 

using signal-processing techniques. 

3. Data Synchronization: Aligning sensor inputs in a 

unified format for accurate analysis. 

4. Feature Extraction: Identifying critical parameters 

such as object proximity, velocity, and movement 

direction. 

 
 

Fig 1. Block Diagram of collision avoidance system 
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AI Model Development Using Temporal Convolutional 

Networks (TCN): The AI model is developed using a Temporal 

Convolutional Network (TCN), which processes time-series sensor 

data to predict potential collisions. TCN is preferred over 

conventional Recurrent Neural Networks (RNNs) or Long Short-

Term Memory (LSTM) models due to its advantages in low-latency 

processing, ability to capture long-range dependencies, and efficiency 

in time-series prediction. 

AI Model Development Steps: 

Dataset Collection: Gathering real-world collision scenarios using 

industrial sensor data. Preprocessing: Normalizing sensor values, 

eliminating outliers, and labeling collision events. Feature 

Engineering: Extracting key indicators like object trajectory, 

acceleration, and risk factors. Model Training: Training the TCN 

model with supervised learning techniques on time-series data. 

Optimization: Applying quantization and pruning to minimize the 

model size for embedded system deployment. 

Edge Computing Implementation 

To ensure ultra-low latency, the AI model is deployed on an edge 

computing device, enabling real-time processing without reliance on 

external servers. This step ensures: Faster decision-making: AI 

inference is executed directly on the microcontroller, avoiding delays 

from cloud-based processing. Energy efficiency: Optimized 

algorithms reduce power consumption for prolonged operation. 

Offline functionality: The system remains fully operational even in 

network-constrained environments. 

Collision Prediction and Preventive Actions 

Once deployed, the system operates in real-time, continuously 

monitoring the surroundings and predicting possible collisions. The 

execution process follows these steps: Real-Time Data Acquisition: 

Sensors collect and transmit data at high frequency. Data Processing: 

The microcontroller preprocesses sensor inputs and runs AI 

inference. Collision Prediction: The AI model assesses time-series 

data and identifies potential obstacles. Preventive Actions: If a 

collision is predicted, the system triggers: Emergency braking 

mechanisms for machinery. Visual and audio alarms to alert 

nearby personnel. Vibration feedback systems for operator 

notification. 

Block diagram explanation:  
1. LIDAR Sensor, Camera Module: 

The LIDAR Sensor, Camera Module play a crucial role in 

detecting obstacles and monitoring the environment in real time. 

The LIDAR sensor provides precise distance measurements, the 

camera module captures visual data, and the ultrasonic sensor 

detects nearby objects. These sensors collect environmental data 

and send it as raw signals to the Driver Circuit for Sensors for 

further processing. 
2. Driver Circuit for Sensors:  

The Driver Circuit for Sensors is an intermediary between the 

sensors and the microcontroller. It processes the raw signals from 

the LIDAR, camera, ensuring proper voltage levels and signal 

conditioning. Once processed, the refined sensor data is sent to the 

Microcontroller Circuit, which serves as the system’s central 

processing unit. 
3. Microcontroller Circuit:   

The Microcontroller Circuit is responsible for analyzing sensor 

data and making real-time decisions to prevent collisions. It 

receives inputs from the driver circuit and determines whether an 

obstacle is present. Based on the detected risk, the microcontroller 

sends control signals to the Machine Control system to adjust 

movement and avoid accidents. Additionally, it activates the Alarm 

Indication & Alert System to warn nearby workers and transmits 

real-time data to the IoT Transmitter for remote monitoring. 
4. Power Supply:  

The Power Supply is essential for the proper functioning of the 

entire system. It provides electrical energy to all components, 

including the sensors, driver circuit, microcontroller, alarm 

system, and IoT transmitter. This ensures stable operation and 

reliable performance. It is battery operated; a 12V dc power 

supply is used here to provide power to the entire circuit.  
5. Alarm Indication & Alert System: 

 The Alarm Indication & Alert System is designed to notify 

workers of potential hazards. It receives activation signals from 

the microcontroller whenever an obstacle is detected. Upon 

receiving the signal, the system triggers warning mechanisms 

such as buzzers, flashing lights, or voice alerts to ensure worker 

safety. 
6. Monitoring Device:  

The IoT Transmitter to Monitoring Device enables remote 

supervision and real-time data transmission. It receives 

processed information from the microcontroller and transmits 

it wirelessly to a cloud-based dashboard, computer, or mobile 

application. This allows industrial supervisors to monitor 

machine operations and safety status remotely. 
7. Machine Control:  

The Machine Control system is responsible for adjusting the 

machine’s movements in response to potential collision risks. 

It receives control signals from the microcontroller and 

executes corrective actions, such as stopping, slowing down, or 

changing direction. This ensures that the machine operates 

safely without causing accidents. 

 

SIMULATION OF THE CIRCUIT:  

 

Fig 2. Machine control i.e. motors driving simulation 

 

 

 

Fig 3. Camera detection simulation 
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VI. CONCLUSION 

 

The AI-based Extreme-Edge TCN Low-Latency Collision-

Avoidance System effectively enhances industrial safety by 

integrating real-time sensor fusion, AI-driven time-series analysis, 

and edge computing. The system ensures ultra-fast collision 

prediction and response, minimizing accidents and improving 

operational efficiency. By leveraging low-power microcontrollers 

and optimized AI models, it operates with high accuracy and 

reliability. Continuous monitoring and adaptive learning further 

enhance its effectiveness, making it a robust and scalable solution 

for industrial environments. 
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