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Abstract—The rise of autonomous and semi-autonomous
machinery in industrial settings necessitates advanced safety
mechanisms to ensure smooth operation while preventing
collisions and protecting nearby workers [1]. This project
proposes an Al-based Extreme-Edge Collision-Avoidance
System utilizing a Temporal Convolutional Network (TCN)
deployed on a Raspberry Pi microcontroller. The system
integrates multiple sensing technologies, including LIDAR,
Camera Modules, Ultrasonic Sensors, and Infrared Sensors, to
comprehensively monitor the machine’s surroundings [2]. At
the system’s core, the STM32 microcontroller processes real-
time data from the sensors via a driver circuit, ensuring ultra-
low-latency response. Al-based monitoring runs on a Raspberry
Pi, analyzing time-series sensor data using the TCN model to
detect potential hazards in real-time [3]. The Al algorithm
predicts collision risks and enhances situational awareness,
ensuring timely interventions critical for industrial safety [4].
Upon detecting an obstacle, the Raspberry Pi triggers
immediate corrective actions, controlling machinery operations
while engaging an alarm and alert system to notify nearby
workers. The integration of Raspberry Pi extends
computational flexibility, supporting data logging, visualization,
and remote monitoring, while enabling machine learning model
updates [4]. The system ensures robust performance in noisy
and dynamic industrial environments by leveraging sensor
fusion and Al. Extreme-edge processing minimizes latency,
optimizes energy consumption, and maintains a compact
memory footprint. Designed for seamless integration into
industrial applications, this real-time collision avoidance system
significantly enhances workplace safety, reduces accidents, and
improves operational efficiency [5].

Keywords— Collision avoidance, Industrial safety, Edge
computing, Ultrasound sensors, Temporal Convolutional
Network (TCN), Machine learning, Low-power MCU,
Raspberry Pi, Real-time processing, Sensor fusion, Acoustic
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I. INTRODUCTION

In industrial environments, the increasing complexity and
automation of machinery present new challenges for worker
safety and operational efficiency [6]. The rise of smart
manufacturing and Industry 4.0 has led to the development of
interconnected and autonomous systems,; where machines
perform tasks with minimal human intervention. However, as
industrial machinery operates in dynamic environments,
ensuring robust, low-latency collision avoidance becomes
crucial to safeguarding workers and preventing costly equipment
damage [7]. Traditional collision-avoidance systems often rely
on centralized processing; where sensor data is transmitted to
cloud-based platforms for decision-making. While effective in
some scenarios, this approach introduces higher latencies that
may compromise safety in industrial settings, where split-second
responses are required [8]. Additionally, industrial environments
are characterized by high levels of acoustic and electromagnetic
noise, vibrations, and variable lighting conditions, which can
degrade the accuracy of many sensing technologies [9]. Existing
solutions must address these challenges while adhering to strict
constraints related to power, memory, and processing
capabilities, particularly when deployed on resource-limited
embedded devices [10]. To overcome these challenges, Edge Al
offers a promising solution by enabling real-time computation
directly at the machine level, reducing communication delays
and dependency on external cloud infrastructure. Edge Al
systems must be low-power, compact, and efficient, particularly
in environments where energy efficiency and real-time
performance are critical, such as in battery-powered or
autonomous systems [11].
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Il. PROPOSED WORK

In this proposed work, Temporal Convolutional Networks (TCNs)
emerge as an ideal solution for processing time-series data generated
by industrial sensors. Unlike traditional machine learning models or
Recurrent Neural Networks (RNNs), TCNs provide several
advantages: they maintain long memory, efficiently learn temporal
dependencies, and process sequences in parallel, enabling faster
inference [9]. These features make TCNs highly suitable for real-
time prediction tasks, such as collision avoidance, where rapid
decision-making is essential. Furthermore, TCNs' ability to handle
noise and their efficient use of computational resources make them
ideal for deployment in industrial environments [11]. This work
proposes an Al-based extreme-edge collision-avoidance system
utilizing a TCN model, deployed on a Raspberry Pi, with additional
computational support from a Raspberry Pi. The system integrates
Ultrasonic (US) sensors, LIDAR, camera modules, and infrared
sensors to detect potential collisions or obstacles in real-time.
Ultrasonic sensors, in particular, are well-suited for industrial
applications due to their ability to measure proximity accurately,
even in conditions of low visibility or excessive noise, making them
more reliable than vision-based systems in certain scenarios [12].

The Raspberry Pi serves as the primary real-time processing unit,
efficiently handling sensor data and executing the TCN model with
ultra-low latency [13]. Meanwhile, the Raspberry Pi plays a
complementary role, offering additional computational capabilities
for Al model execution, data logging, and remote monitoring [11].
This hybrid approach balances energy efficiency with high-
performance processing, ensuring that the system operates
autonomously while remaining capable of incremental learning and
future updates [10].A sensor-fusion dataset, collected from
Ultrasonic sensors mounted on an industrial woodworking machine,
forms the basis for training and refining the TCN model. By
leveraging incremental learning, the system continuously adapts to
evolving environmental conditions and operational nuances,
improving its accuracy over time. This adaptability is particularly
advantageous in industrial settings, where machinery behaviour and
surrounding environments fluctuate due to factors such as wear and
tear, workload variations, acoustic noise, and vibrations.

I11. Problem statement

Design and Development of an Al-driven low-latency Extreme-
Edge Collision Avoidance Safety System for Industrial Machinery
Using TCN, Sensor Fusion, and Embedded Controllers. Industrial
machinery operates in complex and dynamic environments where
the risk of collisions poses significant threats to worker safety,
equipment longevity, and operational efficiency. Traditional safety
approaches, such as manual monitoring and reactive safety
measures, are often slow, inconsistent, and prone to human error.
These limitations result in delayed responses to potential hazards,
leading to accidents, costly downtime, and damage to both personnel
and machinery.

The primary challenge is to develop a real-time, intelligent collision-
avoidance system that can reliably detect and prevent collisions with
minimal human intervention. Existing solutions struggle in high-
noise environments, have limited adaptability to rapidly changing
industrial conditions, and often suffer from high latency. As
manufacturing processes become increasingly automated and high-
speed machinery dominates industrial workflows, there is an urgent
need for low-latency, Al-powered safety solutions capable of instant
hazard detection and prevention without disrupting operations.
This project aims to leverage Artificial Intelligence (Al), Temporal
Convolutional Networks (TCN), and sensor fusion techniques to
create an advanced safety system that ensures continuous real-time
monitoring and precise decision-making. By deploying Al inference
directly at the edge using embedded controllers, the system
minimizes processing delays, making it highly suitable for high-
speed industrial environments. This innovation enables rapid hazard
detection, proactive collision prevention, and seamless adaptability

to diverse industrial settings.

Significance of the Problem Statement:
1. Clear Focus: Addresses the inefficiencies of traditional
safety systems and emphasizes the need for Al-driven
automation.
2. Technology Integration: Highlights the role of Al, sensor
fusion, and embedded controllers in achieving real-time safety
monitoring and response.
3. Impact & Justification: Demonstrates the necessity of
improved worker protection, enhanced machine efficiency, and
reduced industrial hazards.
4. Success Metrics: Defines performance expectations,
including real-time detection, ultra-low latency response,
environmental adaptability, and robust industrial safety
enhancements.

Obijective:

1. Designing a retractor mechanism that can be controlled
automatically with the help of the application.

2. Integrating Al to adjust retraction pressure and positioning
dynamically based on real-time feedback.

3. Utilizing 10T to monitor and control the retractor remotely,
ensuring precise and consistent retraction.

4. Testing and validating the design through simulations and
practical trials to ensure its effectiveness and safety.

5. Evaluating the performance of the automatic retractor in
comparison to traditional manual methods in terms of precision,
efficiency, and user satisfaction.

Scope of the project:

d. Designing a multi-sensor collision-avoidance system that
integrates various sensors such as LIDAR, ultrasonic, IR, and
camera modules for real-time monitoring and detection of
obstacles in industrial environments. The system will be
controlled automatically through embedded algorithms running
on a microcontroller.

b. Integrating Al (Temporal Convolutional Network - TCN) to
analyze sensor data and dynamically adjust the machinery's
response to potential hazards. The Al.will help in predicting and
preventing collisions by adapting to real-time environmental
changes and providing low-latency responses.

c. Utilizing 10T technology to monitor the system remotely,
allowing for remote alerts, diagnostics, and control of the safety
system. This will ensure continuous operation, even in complex
industrial settings, by providing live feedback to operators and
remote monitoring units.

d. Testing and validating the collision-avoidance system
through simulations and practical trials in industrial
environments to ensure its accuracy, reliability, and safety.
Validation will include testing in various noise and lighting
conditions to confirm robustness.

e. Evaluating the performance of the automated collision-
avoidance system against traditional safety mechanisms in terms
of precision, latency, energy efficiency, and overall
improvement in operator safety. The evaluation will focus on
improvements in real-time adaptability, reduction of human
error, and overall system efficiency.

Literature Review

Functional safety of electrical/electronic/programmable
electronic safety-related systems - Part 1: General
requirements (see Functional Safety and IEC 61508): IEC
61508-1:2010 covers those aspects to be considered when
electrical/electronic/programmable electronic (E/E/PE) systems
are used to carry out safety functions. A major objective of this
standard is to facilitate the development of product and
application sector international standards by the technical
committees responsible for the product or application sector.
This will allow all the relevant factors, associated with the
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product or application, to be fully taken into account and thereby
meet the specific needs of users of the product and the application
sector. A second objective of this standard is to enable the
development of E/E/PE safety-related systems where product or
application sector international standards do not exist. This second
edition cancels and replaces the first edition published in 1998. This
edition constitutes a technical revision. It has been subject to a
thorough review and incorporates many comments received at the
various revision stages. It has the status of a basic safety publication
according to IEC Guide 104. This publication is of high relevance
for Smart Grid.

K. Cao, Y. Liu, G. Meng, and Q. Sun, ‘‘An overview on edge

computing research,”” IEEE Access, vol. 8, pp. 85714-85728,
2020: Edge computing is a novel computing paradigm designed to
address the limitations of traditional cloud computing in the era of
the Internet of Everything (IoE). As the number of smart devices
increases, generating vast amounts of data, issues like bandwidth
load, slow response times, security, and privacy concerns become
more prominent. Edge computing addresses these challenges by
performing data processing closer to the data source, providing
faster, real-time, and secure services.

F. Wang, M. Zhang, X. Wang, X. Ma, and J. Liu, ‘‘Deep learning for

edge computing applications: A state-of-the-art survey,”” IEEE
Access, vol. 8, pp. 58322-58336, 2020: With the booming
development of Internet-of-Things (loT) and communication
technologies such as 5G, our future world is envisioned as an
interconnected entity where billions of devices will provide
uninterrupted service to our daily lives and the industry. Meanwhile,
these devices will generate massive amounts of valuable data at the
network edge, calling for not only instant data processing but also
intelligent data analysis to fully unleash the potential of the edge big
data. Both traditional cloud computing and on-device computing
cannot sufficiently address this problem due to the high latency and
the limited computation capacity, respectively. Fortunately,
emerging edge computing sheds light on the issue by pushing the
data processing from the remote network core to the local network
edge, remarkably reducing the latency and improving the efficiency.
Besides, the recent breakthroughs in deep learning have greatly
facilitated the data processing capacity, enabling a thrilling
development of novel applications, such as video surveillance and
autonomous driving.

D. L. Dutta and S. Bharali, ‘‘Tiny ML meets IoT: A comprehensive

survey,”” Internet Things, vol. 16, Dec. 2021, Art. no. 100461:
The rapid growth in miniaturization of low-power embedded
devices and advancement in the optimization of machine learning
(ML) algorithms have opened up a new prospect of the Internet of
Things (loT), tiny machine learning (Tiny ML), which calls for
implementing the ML algorithm within the 10T device. Tiny ML
framework in loT is aimed to provide low latency, effective
bandwidth utilization, strengthen data safety, enhance privacy, and
reduce cost. Its ability to empower the IoT device to reliably
function without consistent access to the cloud services while
delivering accurate ML services makes it a promising option for 10T
applications seeking cost-effective solutions. Especially in settings
where inadequate connectivity is common, Tiny ML aims to provide
on-premise analytics that will add substantial benefit to 10T services.
In this article, we introduce the definition of Tiny ML and provide
background information on diverse related technologies stating their
strengths and weaknesses. We then show how Tiny ML-as-a-service
is implemented through efficient hardware-software co-design. This
article also introduces the role of 5G in the Tiny ML-IoT scenario.
Furthermore, it touches on the recent progress in Tiny ML research
in both academia and industry along with future challenges and
opportunities. We believe that this review will serve as an
information cornerstone for the 10T research community and pave
the way for further research in this direction.

P. P. Ray, *‘A review on Tiny ML: State-of-the-art and prospects,”’

J. King Saud Univ. Comput. Inf. Sci., vol. 34, no. 4, pp. 1595—
1623, Apr. 2022: Machine learning has become an indispensable
part of the existing technological domain. Edge computing and the

Internet of Things (IoT) together present a new opportunity to
imply machine learning techniques at the resource-constrained
embedded devices at the edge of the network. Conventional
machine learning requires an enormous amount of power to
predict a scenario. Embedded machine learning — The tiny ML
paradigm aims to shift such a plethora from traditional high-end
systems to low-end clients. Several challenges are paved while
doing such a transition such as maintaining the accuracy of
learning models, providing a train-to-deploy facility in resource-
frugal tiny edge devices, optimizing processing capacity, and
improving reliability. In this paper, we present an intuitive
review of such possibilities for Tiny ML. We first present the
background of Tiny ML. Secondly, we list the tool sets for
supporting Tiny ML. Thirdly, we present key enablers for the
improvement of Tiny ML systems. Fourthly, we present state-
of-the-art frameworks for Tiny ML. Finally, we identify key
challenges and prescribe a future roadmap for mitigating several
research issues of Tiny ML.

Methodology
To develop an Al-based Extreme-Edge TCN-Based Low-
Latency Collision-Avoidance Safety System, a systematic
approach is necessary to ensure efficiency, real-time
responsiveness, and safety in industrial environments. The
methodology follows a structured framework encompassing
system architecture, sensor integration, Al model development,
edge computing deployment, testing, and optimization to
enhance collision avoidance capabilities.
System Architecture Design
The system architecture is designed to integrate Al algorithms,
real-time sensors, and edge computing to detect and prevent
collisions. The essential components of the system include:
1. Embedded Microcontroller: A low-power Al-compatible
microcontroller (e.g., STM32, ESP32, or an ARM Cortex-based
MCU) to perform Al inference at the edge.
2. Sensors: A combination of LIDAR, ultrasonic sensors,
infrared sensors, and cameras to detect objects, movements, and
distances in industrial environments.
3. Actuators and Alarms: Emergency braking mechanisms,
visual indicators, and sound alarms that activate in case of a
predicted collision.
To enhance the accuracy and reliability of collision detection,
multi-sensor fusion is implemented. Each sensor provides a
different perspective of the environment, improving the system's
ability to detect obstacles effectively. The steps involved
include:
1. Data Collection: Continuous acquisition of
environmental data from multiple sensors.
2. Noise Reduction: Filtering out erroneous readings
using signal-processing techniques.
3. Data Synchronization: Aligning sensor inputs in a
unified format for accurate analysis.
4. Feature Extraction: Identifying critical parameters
such as object proximity, velocity, and movement
direction.

POWER
SUPPLY

LIDAR
SENSOR
ll 10T
TRANSMITTER
CAMERA

T0
MODULE —l :> MONITORING

DEVICE
DRIVER MICRO-

CIRCUIT FOR $ CONTROLLER
SENSOR'S CIRCUIT

1l

ALARM
INDECATION
& ALERT
SYSTEM

MACHINE
)| cowmor

Fig 1. Block Diagram of collision avoidance system
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Al Model Development Using Temporal Convolutional
Networks (TCN): The Al model is developed using a Temporal
Convolutional Network (TCN), which processes time-series sensor
data to predict potential collisions. TCN is preferred over
conventional Recurrent Neural Networks (RNNs) or Long Short-
Term Memory (LSTM) models due to its advantages in low-latency
processing, ability to capture long-range dependencies, and efficiency
in time-series prediction.

Al Model Development Steps:

Dataset Collection: Gathering real-world collision scenarios using
industrial sensor data. Preprocessing: Normalizing sensor values,
eliminating outliers, and labeling collision events. Feature
Engineering: Extracting key indicators like object trajectory,
acceleration, and risk factors. Model Training: Training the TCN
model with supervised learning techniques on time-series data.
Optimization: Applying quantization and pruning to minimize the
model size for embedded system deployment.

Edge Computing Implementation

To ensure ultra-low latency, the Al model is deployed on an edge
computing device, enabling real-time processing without reliance on
external servers. This step ensures: Faster decision-making: Al
inference is executed directly on the microcontroller, avoiding delays
from cloud-based processing. Energy efficiency: Optimized
algorithms reduce power consumption for prolonged operation.
Offline functionality: The system remains fully operational even in
network-constrained environments.

Collision Prediction and Preventive Actions

Once deployed, the system operates in real-time, continuously
monitoring the surroundings and predicting possible collisions. The
execution process follows these steps: Real-Time Data Acquisition:
Sensors collect and transmit data at high frequency. Data Processing:
The microcontroller preprocesses sensor inputs and runs Al
inference. Collision Prediction: The Al model assesses time-series
data and identifies potential obstacles. Preventive Actions: If a
collision is predicted, the system triggers: Emergency braking
mechanisms for machinery. Visual and audio alarms to alert
nearby personnel. Vibration feedback systems for operator
notification.

Block diagram explanation:
1. LIDAR Sensor, Camera Module:

The LIDAR Sensor, Camera Module play a crucial role in
detecting obstacles and monitoring the environment in real time.
The LIDAR sensor provides precise distance measurements, the
camera module captures visual data, and the ultrasonic sensor
detects nearby objects. These sensors collect environmental data
and send it as raw signals to the Driver Circuit for Sensors for
further processing.

2. Driver Circuit for Sensors:

The Driver Circuit for Sensors is an intermediary between the
sensors and the microcontroller. It processes the raw signals from
the LIDAR, camera, ensuring proper voltage levels and signal
conditioning. Once processed, the refined sensor data is sent to the
Microcontroller Circuit, which serves as the system’s central
processing unit.

3. Microcontroller Circuit:

The Microcontroller Circuit is responsible for analyzing sensor
data and making real-time decisions to prevent collisions. It
receives inputs from the driver circuit and determines whether an
obstacle is present. Based on the detected risk, the microcontroller
sends control signals to the Machine Control system to adjust
movement and avoid accidents. Additionally, it activates the Alarm
Indication & Alert System to warn nearby workers and transmits
real-time data to the 10T Transmitter for remote monitoring.

4. Power Supply:

The Power Supply is essential for the proper functioning of the

entire system. It provides electrical energy to all components,
including the sensors, driver circuit, microcontroller, alarm
system, and loT transmitter. This ensures stable operation and
reliable performance. It is battery operated; a 12V dc power
supply is used here to provide power to the entire circuit.

5. Alarm Indication & Alert System:

The Alarm Indication & Alert System is designed to notify
workers of potential hazards. It receives activation signals from
the microcontroller whenever an obstacle is detected. Upon
receiving the signal, the system triggers warning mechanisms
such as buzzers, flashing lights, or voice alerts to ensure worker
safety.

6. Monitoring Device:

The loT Transmitter to Monitoring Device enables remote
supervision and real-time data transmission. It receives
processed information from the microcontroller and transmits
it wirelessly to a cloud-based dashboard, computer, or mobile
application. This allows industrial supervisors to monitor
machine operations and safety status remotely.

7. Machine Control:

The Machine Control system is responsible for adjusting the
machine’s movements in response to potential collision risks.
It receives control signals from the microcontroller and
executes corrective actions, such as stopping, slowing down, or
changing direction. This ensures that the machine operates
safely without causing accidents.

SIMULATION OF THE CIRCUIT:
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Fig 2. Machine control i.e. motors driving simulation
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VI.CONCLUSION

The Al-based Extreme-Edge TCN Low-Latency Collision-
Avoidance System effectively enhances industrial safety by
integrating real-time sensor fusion, Al-driven time-series analysis,
and edge computing. The system ensures ultra-fast collision
prediction and response, minimizing accidents and improving
operational efficiency. By leveraging low-power microcontrollers
and optimized Al models, it operates with high accuracy and
reliability. Continuous monitoring and adaptive learning further
enhance its effectiveness, making it a robust and scalable solution
for industrial environments.
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