IJCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE RESEARCH THOUGHTS (IJCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Design And Manufacturing Of Induction Motor

¹Mrs. Shaheena Khanum, ²Shreya Dayanand Havaldarmath, ³Sreeraksha R, ⁴Syeda Souda, ⁵Umme Sumiya, ¹Assistant Professor, ²Student, ³ Student, ⁴Student, ⁵Student Department of E&EE, Sri Siddhartha Institute of Technology, SSAHE, Tumkur.

Abstract: This paper proposes the study of design and manufacturing of 20MW induction motor. This paper aims to design, analyse, and optimize the performance of a 20MW induction motor, focusing on its electrical and thermal characteristics. The study will investigate the motor's design parameters, operating conditions, and performance metrics to identify areas for improvement.

Motor Design: Detailed design of the induction motor, including electromagnetic and thermal analysis.

Performance Analysis: Analysis of the motor's performance under various operating conditions.

Optimization: Application of optimization techniques to improve the motor's efficiency, power factor, and reliability.

Thermal Management: Investigation of thermal management strategies to ensure reliable operation.

The project is expected to provide:

- 1. A detailed design and analysis of a 20MW induction motor.
- 2. Optimized performance characteristics.
- 3. Effective thermal management strategies.

This project will contribute to the field of electrical engineering, providing valuable insights into the design and operation of large-scale induction motors.

Index Terms – Induction Motor, Efficiency, Power Factor.

I. Introduction

Induction motors, also known as asynchronous motors, are among the most widely used types of electric motors in both industrial and commercial environments. Their operation relies on electromagnetic induction, where current is induced in the rotor by the magnetic field of the stator without direct electrical contact. Induction motors are known for their simple construction, durability, cost-effectiveness, and ease of maintenance. They come in various types and sizes, with squirrel cage and wound rotor motors being the most common configurations used in a wide range of applications. Induction motors, based on the fundamental principles of electromagnetic induction discovered by Michael Faraday, have become indispensable in converting electrical energy into rotational mechanical power. Their ingenious design, featuring a stationary stator and a rotating rotor, facilitates a contactless transfer of energy, leading to robust and dependable operation. Spanning a vast range of power ratings, from fractional horsepower to multimegawatt giants, induction motors are the prime movers in a multitude of applications across domestic, commercial, and industrial sectors. At the higher end of this power spectrum lie the formidable 20 MW induction motors. These are not merely scaled-up versions of their smaller counterparts; they are sophisticated pieces of engineering designed to meet the rigorous demands of heavy industrial processes. Operating at this power level signifies a substantial energy throughput and the ability to drive exceptionally large mechanical loads. Consequently, their performance characteristics, efficiency, and reliability have a significant impact on the overall productivity and economic viability of the industrial facilities they serve. The importance of 20 MW induction motors is particularly pronounced in industries such as power generation, where they drive massive pumps for cooling water circulation and auxiliary equipment; in the

oil and gas sector, where they power compressors and large pumps for transportation and processing; and in heavy manufacturing industries like steel and cement production, where they drive rolling mills, crushers, and large conveyors. In these critical applications, the selection and efficient operation of these high-power motors are paramount for ensuring continuous operation, minimizing downtime, and optimizing energy consumption.

II IMPORTANCE OF 20 MW INDUCTION MOTORS IN INDUSTRIAL APPLICATIONS

Induction motors rated at 20 megawatts (MW) are essential for large-scale industrial operations that require high mechanical power. These motors are typically used to drive heavy-duty equipment such as compressors, pumps, mills, crushers, and blowers in sectors like oil and gas, power generation, mining, and heavy manufacturing. Their ability to deliver consistent high torque and operate efficiently under demanding conditions makes them critical to maintaining productivity and operational stability. The high-power capacity of 20 MW motors also necessitates advanced cooling systems, robust control mechanisms, and precise integration with electrical infrastructure.

III SCOPE OF THE REPORT

This report provides a comprehensive examination of 20 MW induction motors, focusing on their design, operational principles, performance metrics, and integration into industrial systems. It also explores key technological advancements, such as improvements in motor materials, smart diagnostics, and variable frequency drive (VFD) technology, that enhance the performance and reliability of these large motors. Additionally, the report includes real-world case studies demonstrating the deployment of 20 MW induction motors in critical applications, highlighting both challenges faced and innovative solutions implemented. The goal is to offer a well-rounded understanding of the role and future direction of high-power induction motors in modern industry.

IV BLOCK DIAGRAM

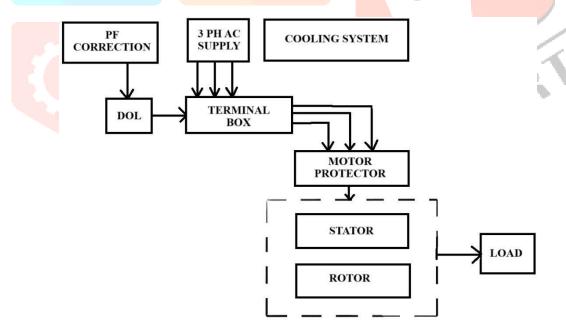


Fig: BLOCK DIAGRAM OF 20MW INDUCTION MOTOR

V POWER FACTOR CORRECTOR

In an AC (alternating current) system, **power factor (PF)** is the ratio of **real power (kW)**, which performs useful work, to **apparent power (kVA)**, which is the total power drawn from the source. It is expressed as:

Power Factor=Real Power (kW)/Apparent Power (kVA)

- A **PF of 1.0** (unity) means all the power is being used effectively.
- A **PF less than 1** indicates that some power is wasted in reactive components (magnetizing current).

Large induction motors like a **20 MW motor** typically operate at a **lagging power factor**, usually between 0.8 and 0.9, because of the reactive power drawn by the motor's magnetic field. In large- scale industrial setups, a poor power factor can lead to:

- **Higher electricity bills** due to increased demand charges.
- **Reduced capacity** of the electrical network due to excess current draw.
- Voltage drops across the system, affecting other connected equipment.
- Overloading of transformers, cables, and switchgear.

Thus, correcting the power factor becomes crucial to enhance energy efficiency and reduce operational costs.

Design Note: For a 20 MW motor operating at 0.85 PF, improving it to 0.95 PF may require **several** MVARs (Mega Volt-Ampere Reactive) of capacitor capacity.

VI OPERATION OF THE 20 MW INDUCTION MOTOR

An induction motor, including a 20 MW motor, operates based on the principles of **electromagnetic induction**. The motor converts electrical energy into mechanical energy through the interaction of magnetic fields in the stator and rotor. In a 20 MW motor, the scale of operation is large, involving significant power and torque production. To understand how it works, we must break down the operation into several steps and key interactions.

Step-by-Step Breakdown of Operation Cycle

Power Supply and Stator Excitation

- o **Power Supply:** A three-phase alternating current (AC) supply is connected to the motor's stator windings. The three-phase supply ensures that the current in the stator windings is continuously changing direction, which is essential for creating a rotating magnetic field.
- Stator Magnetic Field: When current flows through the stator windings, it generates a rotating magnetic field around the stator core. This field rotates at a speed known as the **synchronous speed**, which depends on the frequency of the AC supply and the number of poles in the motor. The synchronous speed Ns is calculated by:

Ns= $120 \times f/P$ where:

- F is the supply frequency (in Hz),
- PPP is the number of poles of the motor.

Rotor Induction and Current Generation

- Induced Current in Rotor: The rotating magnetic field produced by the stator interacts with the rotor. According to Faraday's Law of Induction, a changing magnetic flux through the rotor windings induces an electromotive force (EMF) in the rotor. Since the rotor is typically short-circuited (in the case of a squirrel-cage rotor), the induced EMF causes current to flow through the rotor conductors.
- **Relative Motion:** The rotor does not rotate at the synchronous speed; instead, it "lags" behind due to the nature of electromagnetic induction. The difference between the synchronous speed and the actual rotor speed is called the **slip**. The slip is essential for generating torque, as it indicates the relative speed between the stator's rotating magnetic field and the rotor itself.

VII LOSSES IN INDUCTION MOTORS

Losses in large induction motors can significantly affect their overall efficiency and operational costs. These losses are generally classified into four categories:

Copper losses: These occur in both the stator and rotor windings due to electrical resistance and are proportional to the square of the current (I²R losses).

Iron losses: Also known as core losses, they consist of hysteresis and eddy current losses in the stator core. These depend on the supply frequency and the magnetic properties of the core material.

Mechanical losses: These include friction and windage losses in bearings and other rotating components. Stray losses: These are miscellaneous losses caused by leakage flux, harmonic currents, and non- ideal ties in motor construction and operation. Though small individually, they can become significant in high-power machines.

VIII EFFICIENCY IMPROVEMENT METHODS

Improving the efficiency of a 20 MW induction motor is essential due to the high energy consumption involved. Several methods can be employed to enhance efficiency:

Optimizing Cooling Systems: Proper thermal management ensures the motor operates within safe temperature limits, reducing resistive losses and extending insulation life. Advanced cooling methods, such as closed-loop air-water heat exchangers or direct water-cooled stator windings, are often used in high-power motors.

Enhanced Insulation Systems: Using high-grade insulation materials with better thermal conductivity and dielectric strength reduces the risk of breakdown and minimizes dielectric losses.

Material Improvements: Employing high-quality laminated silicon steel in the stator core and copper in windings reduces iron and copper losses, respectively.

Precision Manufacturing and Assembly: Tight tolerances and high-precision construction reduce mechanical losses and improve magnetic circuit efficiency.

Use of Variable Frequency Drives (VFDs): VFDs optimize motor speed and torque according to load requirements, reducing unnecessary energy consumption during partial load conditions. Together, these strategies contribute to maintaining the high efficiency (typically above 95%) expected from a motor of this scale.

IX FUTURE DEVELOPMENTS IN MOTOR DESIGN

As global industries demand higher efficiency, reliability, and sustainability, the design of large induction motors such as 20 MW machine is rapidly evolving. Advances in materials, thermal management, and digital technologies are shaping the next generation of motor systems to meet both technical and environmental challenges.

X CONCLUSION

This report has explored the critical aspects of 20 MW induction motors, highlighting their design, performance, diagnostics, maintenance, and future developments. These high-power motors play a vital role in a wide range of industrial applications—from power plants and refineries to mining and manufacturing—where they provide reliable, continuous operation under demanding conditions.

REFRENCES

- 1. https://www.tdps.co.in
- 2. https://www.tdps.co.in/motors
- 3. D.C. Machines and Synchronous Machines. Uday A. Bakshi Mayuresh V. Bakshi
- 4. Electric Machines Ashfaq Hussian-2nd Edition, 2010, Dhanpat Rai Company
- 5. Electrical Machine I: Basics, Design, Function, Operation Kay Hameyer

