JCRT.ORG

ISSN: 2320-2882

INTERNATIONAL JOURNAL OF CREATIVE **RESEARCH THOUGHTS (IJCRT)**

An International Open Access, Peer-reviewed, Refereed Journal

SOLAR PANEL FAULT DETECTION SYSTEM

Prof.B.A.Chaudhari, Prathmesh Salunke, Vaishnavi Banbare, Yash Bhombe, Yash Shirdhone Department of Information technology | PES Modern College of Engineering, Pune-05

ABSTRACT

Solar energy has emerged as one of the most reliable and eco-friendly sources of power generation. While photovoltaic (PV) systems are generally low-maintenance, performance issues can arise due to faults in individual panels, potentially leading to significant energy loss across the array. Early detection of such faults is essential to ensure consistent energy output and extend the system's operational life. This study presents a deep learning-based approach to identify internal faults in solar panels using sensor data and thermal imagery obtained from drones equipped with infrared cameras. The proposed system analyzes historical voltage and current values to predict faults and assess their impact on energy generation. In future developments, the model could be extended to identify visible panel defects from standard RGB images, making it a versatile solution for real-time PV system monitoring.

Keywords: Solar Energy, Fault Detection, Deep Learning, Photovoltaic Systems, UAV Monitoring, Infrared Imaging.

I. INTRODUCTION

The growing demand for clean and sustainable energy has positioned solar power as a leading alternative to conventional energy sources. Photovoltaic (PV) systems are widely adopted due to their low operating costs and minimal maintenance requirements. However, various factors such as environmental conditions, hardware degradation, and electrical anomalies can lead to faults that significantly impact system performance. Even a minor defect in one panel can reduce the efficiency of the entire solar array. Traditional methods of fault detection often involve manual inspections, which are labor-intensive, time-consuming, and less feasible for large or remote installations. To address these challenges, this research explores the application of deep learning techniques for automated fault detection in PV systems. By leveraging thermal imagery collected via UAVs (Unmanned Aerial Vehicles) and analyzing electrical parameters such as current and voltage, the system aims to detect anomalies accurately and provide early warnings. This intelligent approach not only reduces maintenance costs but also enhances the reliability and output of solar energy systems.

II. METHODOLOGY

- 1. Data Collection: We collected data from solar panels, such as voltage, current, and temperature readings. We also used drones with thermal cameras to take pictures that show heat differences on the panel surface.
- 2. Data Preparation: The collected data was cleaned by removing any errors, missing values, or extra noise. adjusted We also the data so that it could be easily used by our model.
- 3. Data Exploration: We looked at the data through graphs and charts to understand it better. This helped us find patterns that may show faults in the solar panels.

- **4.** Data Mining: We used techniques to find useful information in the data, such as recognizing patterns and separating faulty and normal panel behavior.
- **5.** Information Retrieval: The trained deep learning model used this data to check and detect if there was a fault. It could tell what kind of problem (if any) was in the solar panel.
- **6.** Evaluation: Finally, we tested how well the system worked by checking if it gave correct results. We measured things like accuracy and how often it detected faults correctly.

Deep Learning

Deep learning is an advanced area of machine learning that uses structures called artificial neural networks (ANNs), modeled after how the human brain processes information. These networks are especially powerful in identifying complex patterns from large sets of data without needing manual rule setting.

In solar panel fault detection, deep learning plays a vital role by analyzing data such as current and voltage readings, as well as thermal or visual images. By training models on a large dataset containing both normal and faulty panel behaviors, the system learns to automatically recognize and classify faults.

This technology offers several important advantages:

High Accuracy: Deep learning models can detect even minor or early-stage faults with great precision, even under varying environmental conditions.

Speed and Efficiency: Automated detection drastically reduces the time required for manual inspection and speeds up fault response.

Early Detection: The ability to identify faults before they become serious helps reduce energy loss and improves system longevity.

Scalability: These models can handle large-scale solar farms and can easily be expanded to monitor growing infrastructures.

The training process involves adjusting internal parameters (weights) in the neural network to reduce prediction errors. After successful training, the model can be deployed to evaluate new data and detect any issues in real-time.

Although still evolving, deep learning-based fault detection systems show great promise in improving the reliability and output of solar energy systems. They allow for smart, data-driven decisions in grid maintenance and monitoring, making solar power more efficient and sustainable.

Deep Learning in Solar Panel Fault Detection

Artificial Neural Networks (ANNs):

ANNs are computational models inspired by the human brain. They consist of layers of neurons that process input data and learn patterns over time. In solar panel fault detection, ANNs are trained using historical voltage, current, and temperature data to distinguish between normal and faulty operating conditions. The learning process involves adjusting the weights between neurons to minimize prediction errors.

Pooling Layers:

Pooling layers are used to reduce the dimensionality of feature maps generated by convolutional layers. This helps to lower computational load and prevent overfitting.

Max pooling selects the highest value in a region, highlighting prominent features.

Average pooling calculates the mean value, preserving general trends. These layers retain essential information while compressing the input.

Activation Functions:

Activation functions introduce non-linearity into the network, enabling it to learn complex patterns beyond simple linear relationships.

ReLU (**Rectified Linear Unit**) is commonly used due to its efficiency and simplicity. It outputs the input directly if positive; otherwise, it returns zero.

These functions help the model make better decisions based on diverse inputs.

Fully Connected Layers:

These layers come after convolution and pooling layers. They interpret the learned features and combine them to make predictions. Each neuron in a fully connected layer is linked to every neuron in the previous layer, enabling the integration of information across the entire input. This stage is crucial for classifying different types of solar panel faults.

Dropout:

Dropout is a regularization technique used during training to prevent overfitting. Random neurons are temporarily deactivated in each iteration, forcing the model to develop more robust and generalized features rather than relying on specific pathways. This improves performance on unseen data.

Batch Normalization:

Batch normalization helps stabilize and accelerate training by normalizing the input to each layer. It adjusts and scales the activations, reducing internal covariate shift. This allows the model to converge faster and reduces sensitivity to initialization.

Loss Function:

The loss function quantifies the difference between the predicted outputs and actual labels. In fault detection tasks, **categorical cross-entropy** is typically used, as it is suitable for multi-class classification problems. It provides feedback to the model, guiding it to make more accurate predictions.

Output Layer:

The output layer is responsible for delivering the final prediction. It contains neurons equal to the number of fault categories and uses the **softmax activation function** to produce a probability distribution. The category with the highest probability is selected as the detected fault type.

III. MODELING AND ANALYSIS

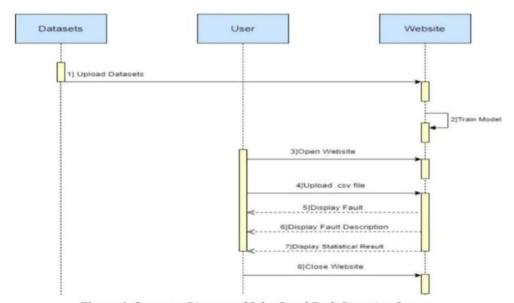


Figure 1: Sequence Diagram of Solar Panel Fault Detection System.

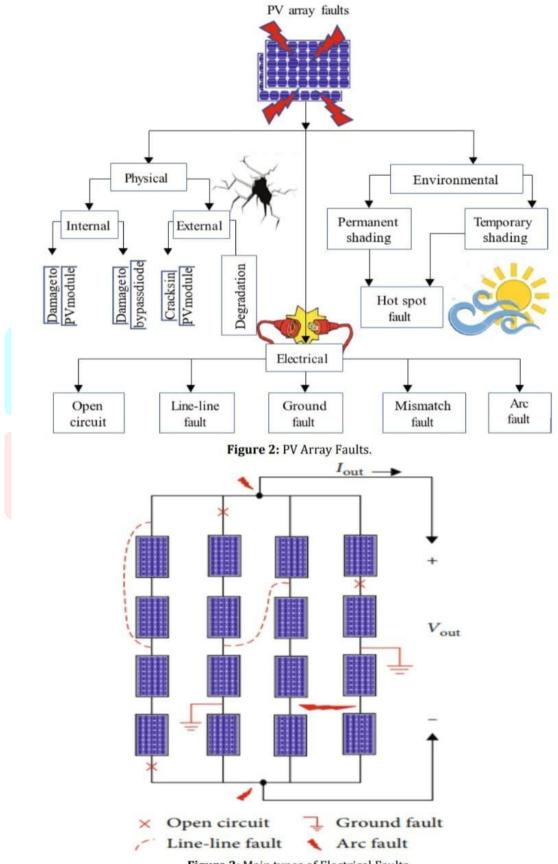


Figure 3: Main types of Electrical Faults.

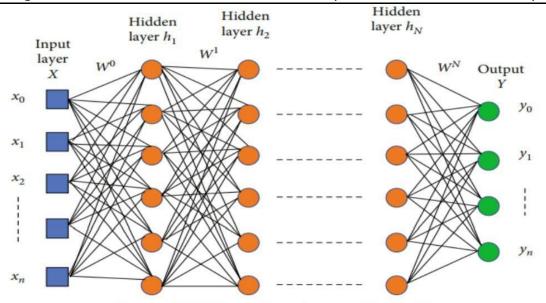


Figure 4: Multi-Layer Perceptron used for Model.

IV. RESULTS AND DISCUSSION

- 1. Experimental Results. To evaluate the effectiveness of the proposed system, data was collected from a real-world photovoltaic (PV) setup operating under normal and faulty conditions. For the "normal" dataset, readings were taken without making any changes to the circuit or hardware. In contrast, fault scenarios were simulated by deliberately introducing issues such as short circuits and line-to-line faults. The experimental setup was exposed to different environmental conditions, including both sunny and cloudy days during summer and winter. It was observed that data collected during the winter season exhibited higher variance, especially under cloudy weather, making it more challenging to train the model. In particular, the input features—denoted as x1 and x2—showed overlapping patterns between normal and fault data in some cases, especially during cloudy winter days. Among the various input parameters, solar irradiance showed the greatest fluctuation in absolute terms. However, current sensor readings (SI1/SI2) had the highest relative variation, making them highly valuable for identifying inconsistencies caused by faults. These observations helped in refining the model's training process to focus more on sensitive features.
- 2. Discussion. Machine learning-based approaches have recently become a popular solution for fault detection in PV systems due to their accuracy and adaptability. The effectiveness of these models largely depends on the diversity and quality of the training data. When trained on detailed PV datasets that capture a wide range of operational conditions, the models can deliver highly accurate predictions—often reaching near-perfect accuracy in controlled tests. In this study, different machine learning algorithms were evaluated using the same dataset, and each produced strong results. However, the key factor contributing to high performance was the careful selection of relevant input features during preprocessing. This highlights the importance of feature engineering and environmental diversity in the training data for building a robust fault detection model.

V. CONCLUSION

The implementation of deep learning techniques in solar panel fault detection has proven to be highly effective and reliable. By collecting data under various environmental conditions and simulating different fault scenarios, the system was able to identify complex patterns that distinguish faulty panels from healthy ones. The results demonstrated that deep learning models, when trained with well-prepared and diverse datasets, can achieve high accuracy in fault classification—even under challenging conditions like winter cloud cover. Furthermore, the study emphasizes the importance of selecting the right input features and accounting for environmental variability to improve model performance. As solar energy systems continue to grow in scale and complexity, automated fault detection using deep learning offers a scalable, accurate, and time-saving solution for enhancing the reliability and efficiency of photovoltaic power generation. Future work may

IJCR

involve integrating visual image-based detection, real-time alerts, and IoT-based deployment for fully autonomous solar panel monitoring systems.

ACKNOWLEDGEMENTS

We would like to express our sincere appreciation to everyone who contributed to the successful completion of our project titled "Solar Panel Fault Detection System Using Deep Learning." We are deeply thankful to Prof. Bhavna Chaudhari, our project coordinator, for his consistent encouragement and valuable guidance throughout the development of this project. We would also like to extend our special thanks to Dr.(Mrs.) K.R. Joshi Principal of PES Modern College of Engineering, for his valuable suggestions and strong support that helped us stay on the right path during this work.

VI. REFERENCES

- 1. Appiah, A.Y. et al. (2019). *Photovoltaic array fault detection and diagnosis techniques*. International Journal of Photoenergy.
- 2. Arani, M.S. & Hejazi, M.A. (2016). *Study of electrical faults in solar PV systems*. Journal of Electrical and Computer Engineering.
- 3. Triki-Lahiani, A. et al. (2018). *Monitoring systems for solar panel faults*. Renewable and Sustainable Energy Reviews.
- 4. Dong, J. et al. (2017). Detecting solar faults using system reconfiguration. Energies Journal.
- 5. Haque, A. et al. (2019). *Using machine learning to find faults in solar panels*. Energy Science & Engineering.
- 6. Ali, M.H. et al. (2017). Real-time fault detection in solar systems. Energy Procedia
- 7. Pillai, D.S. & Rajesekar, N. (2018). *Problems and solutions in PV system protection*. Renewable and Sustainable Energy Reviews.
- 8. Hu, Y. et al. (2014). Finding PV panel faults using temperature data. IEEE Transactions on Device and Materials Reliability.