www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 6 June 2025 | ISSN: 2320-2882

IJCRT.ORG

éh INTERNATIONAL JOURNAL OF CREATIVE
@a% RESEARCH THOUGHTS (1JCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Comparitive Evalution of Priority and Deadline
based Scheduling in RTOS

1t Rahul Rawat
M.Tech Student, Dept. of ECE
CVR College of Engineering
Hyderabad

2" Dr. Dhruva R. Rinku
Dept. of ECE
CVR College of Engineering
Hyderabad,India

Abstract— This paper presents a comparative analysis of two
widely used real-time scheduling algorithms—Earliest Deadline
First (EDF) and Rate Monotonic (RM)—with the objective of
evaluating their performance and suitability for real-time
embedded applications on FreeRTOS. To simulate realistic
execution scenarios, synthetic task sets were generated. The
performance of each scheduler was assessed based on key
metrics such as average waiting time, number of context
switches, and CPU utilization.

The results indicate that EDF consistently outperforms RM
in terms of meeting deadlines, especially under high system
loads. EDF also tends to reduce average waiting time; however,
it incurs a higher number of context switches. In contrast, RM
scheduling leads to increased average wait times but generally
results in fewer context switches, which can be advantageous for
power-sensitive or resource-constrained systems.

Interestingly, for periodic tasks where deadlines are equal to
their periods, the performance gap between EDF and RM
narrows. In such cases, the efficiency of the scheduling strategy
becomes more dependent on the total number of tasks being
managed.

Overall, the study provides valuable insights to embedded
system designers, enabling them to make more informed
decisions when selecting the appropriate scheduling strategy
based on application-specific requirements.

Keywords— FreeRTOS, Kernel, EDF, RM, Scheduler

l. INTRODUCTION

Real-time systems play a critical role in various domains
such as aerospace, automotive, medical devices, and
industrial automation, where timely and predictable task
execution is fundamental to ensuring system reliability,
safety, and performance. In these systems, meeting task
deadlines is not optional—it is a core functional
requirement, especially in hard real-time systems that
demand deterministic behavior to avoid catastrophic
failures [1].

Determinism refers to a system's ability to exhibit
predictable and consistent behavior, particularly in terms

of timing and response. In hard real-time applications,
determinism ensures that tasks execute within well-
defined time bounds, thus enabling reliable scheduling
and accurate performance estimation.

Given the constraints of embedded platforms—such as
limited memory and processing power—a dedicated
Real-Time Operating System (RTQS) is essential. RTOSs
provide a lightweight, task-oriented environment with
fine-grained ~ control . over . scheduling, resource
management, and system responsiveness. In contrast,
General-Purpose Operating Systems (GPOS) prioritize
fairness and multitasking by allocating processor time
equitably among processes, making them less suitable for
real-time applications [2].

At the heart of any operating system lies the scheduler,
which determines the sequence and timing of task
execution [3]-[6]. The scheduler's primary function in
real-time systems is to allocate computational resources
efficiently, ensuring that critical tasks meet their timing
constraints. Goals such as minimizing latency,
maximizing throughput, maintaining fairness, and
respecting task priorities often conflict, requiring the
scheduler to find a balance based on application-specific
requirements [7]-[9].

Schedulers for real-time systems assign priorities based
on timing characteristics like task periods, deadlines, and
response times. Traditional scheduling algorithms used in
generic operating systems, such as Cooperative
Scheduling and First-Come-First-Served (FCFS), do not
guarantee deadline adherence. In contrast, Rate
Monotonic (RM) and Earliest Deadline First (EDF) are
well-established algorithms designed to support real-time
guarantees on uniprocessor systems [3], [5], [7]-[10].

IJCRT2506236 |

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org ‘ c26

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 6 June 2025 | ISSN: 2320-2882

This paper presents a comparative evaluation of EDF and
RM scheduling strategies implemented within the
FreeRTOS framework. FreeRTOS was chosen due to its
open-source nature, portability, and support for real-time
features such as task management, synchronization, and
memory allocation [14]. Its Windows port enables
simulation of scheduling behavior in a controlled
environment, and its modular design allows -easy
extension and customization.

Although EDF is theoretically optimal for uniprocessor
task scheduling, it is less commonly used in resource-
constrained embedded systems due to perceived
overheads. However, recent studies have shown that EDF
can be efficiently implemented even on low-end
microcontrollers, particularly when task models and
deadlines are well-structured [15].

In this study, synthetic task sets were developed to
emulate realistic workloads, enabling controlled and
reproducible testing. The objective is to analyze the
performance of EDF and RM scheduling using key
metrics such as average wait time, context switch count,
CPU utilization, and deadline miss ratio. The findings aim
to guide embedded system designers in selecting the most
appropriate scheduling algorithm for their specific real-
time application needs.

Il. IMPLEMENTATION
2.1 Earliest Deadline First (EDF)

2.1.1 — user level implementation

A significant contribution of this work is the
implementation of the Earliest Deadline First (EDF)
scheduling algorithm within the FreeRTOS environment.
The objective is to evaluate the feasibility and effectiveness
of EDF in meeting task deadlines while optimizing
performance metrics such as average waiting time and
CPU utilization.

Two approaches were employed to integrate the EDF
scheduler into FreeRTOS. The first approach involves
implementing EDF at the user level, using standard
FreeRTOS APIs to manually control task prioritization
based on deadlines. The second approach entails
modifying the FreeRTOS kernel itself, by introducing new
data structures and function prototypes to support native
EDF scheduling. This kernel-level modification allows
EDF to operate as a core scheduling mechanism within the
RTOS.

The logic for the EDF implementation is illustrated
through a flowchart shown in Fig. 1, which outlines the
decision-making process used to assign and manage task
priorities based on their respective deadlines.

nitialise Task B fe—— > Initialise Task A

Y

Modify the Task B
execution loop

Modify the Task A
execution loop

2 EDF Scheduler
riority

Start the vTaskstartScheduler()

Figure 1. Implementation of EDF Scheduling for Tasks A and B
Maintaining the Integrity of the Specifications

2.1.2 EDF — kernel level implementation

In contrast to the user-level implementation of the
EDF scheduler, the kernel-level integration necessitates
structural modifications within the FreeRTOS kernel.
The primary objective is to construct a customized Ready
List capable of supporting dynamic priority scheduling
based on task deadlines. This new Ready List maintains
tasks in ascending order of their absolute deadlines, such
that the task at the top of the list—i.e., with the earliest
deadline—receives the highest scheduling priority.

The remainder of the FreeRTOS architecture,
including components such as the Waiting List and
system clock mechanism, remains largely intact with only
minimal adjustments. All kernel-level changes are
encapsulated within the task.c file, and are conditionally
compiled using the configuration macro
configUSE_EDF_SCHEDULER. When this macro is set
to 1, the EDF scheduling functionality is enabled;
otherwise, the system defaults to the standard FreeRTOS
scheduler.

Prior to adding a task to the Ready List, its absolute
deadline must be computed based on the current system
tick and the task's relative deadline. Additionally, a
context switch is triggered each time a new task is inserted
into the Ready List, ensuring that the task with the
earliest deadline is always selected for execution.

The EDF scheduling algorithm demonstrates optimal
performance under the following assumptions:

Periodic Task Releases: All task requests occur at fixed
intervals, with each task having a known and constant
period.

Deadline Constraints: Deadlines serve as hard
constraints, requiring each task to complete execution
before the next activation of the same task.

Task Independence: Each task is self-contained,
meaning that its execution is independent of the state,
execution, or completion of other tasks in the system.

Constant Execution Time: Each task has a fixed worst-
case execution time (WCET), which remains consistent
across all instances.

These assumptions help maintain the predictability
and schedulability of the system, allowing the EDF
algorithm to provide optimal CPU utilization and
guarantee deadline adherence in real-time applications.

IJCRT2506236

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c27

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 6 June 2025 | ISSN: 2320-2882

2.2. RATE MONOTONIC SCHEDULING (RMS)

Rate Monotonic (RM) is a widely adopted pre-emptive,
fixed-priority scheduling algorithm used in real-time
systems to schedule periodic tasks. In RM scheduling,
priorities are statically assigned to tasks based solely on
their periods: tasks with shorter periods are given higher
priorities, while those with longer periods are assigned
lower priorities. This deterministic nature makes RM
both analyzable and predictable, making it ideal for
safety-critical applications.

RM scheduling assumes a set of independent periodic
tasks, each defined by its period (i.e., the time between
successive releases) and worst-case execution time
(WCET). These tasks are expected to execute repeatedly,
maintaining the same timing parameters throughout
system operation. The fundamental scheduling principle
in RM ensures that when multiple tasks are ready, the one
with the highest priority (shortest period) pre-empts the
others and executes first. This pre-emptive behavior
allows the system to respond quickly to high-frequency
tasks.

In this work, the RM scheduling algorithm was
implemented at the wuser level using FreeRTOS
primitives. The following pseudocode outlines the core
logic of the RM scheduler:

Pseudocode: Rate Monotonic Scheduling

Initialize System Parameters:

Define the number of tasks NUM_TASKS.

Assign periods and capacities (WCETS) to each task.
Calculate Hyperperiod:

Compute the Least Common Multiple (LCM) of all task
periods to determine the hyperperiod of the task set.
Sort Tasks by Period:

Apply Rate Monotonic logic: order tasks in ascending
order of periods.

Assign Priorities:

Create task handles.

Assign priorities inversely proportional to the periods
(shortest period — highest priority).

Define Task Function (TaskFunction):
Simulate task execution within the
environment.

Task Execution Loop:

For each task:

Retrieve task index, period, and capacity.
Initialize xLastWakeTime with the current system tick.
Loop indefinitely:

Print tick count, task ID, and remaining execution
capacity.

Decrement capacity counter.

If capacity reaches zero, reset it to its initial value.

Use vTaskDelayUntil() to delay until the start of the next
period.

Start Scheduler:

Initialize and create all tasks using FreeRTOS APIs.
Start the scheduler with vTaskStartScheduler().

Main Program Loop:

The application enters a continuous execution state,
simulating real-time behavior indefinitely.

The RM implementation provides a benchmark for
comparison with dynamic scheduling strategies like
Earliest Deadline First (EDF). While RM offers simplicity
and predictability, its schedulability is limited by Liu and
Layland’s utilization bound, which may result in
suboptimal processor usage in certain task sets.

real-time

111 RESULTS AND DISCUSSION
3.1 EDF Implementation in FreeRTOS Results

To validate the developed EDF scheduler, we run two
tasks with known EDF scheduling sequences and compare
the run-time scheduling sequence to the expected one.

Consider two Task 1 and Task 2 with the following
parameters as seen in Table 1.

Table 1. Task Parameters for testing EDF Kernel
Implementation

Task Name Time Period Capacity
Task 1 5 3
Task 2 8 3

EDF guarantees the tasks are schedulable if the
following condition is satisfied:

X(Ci/Ti<1 1)

Where X denotes summation, Ci is the capacity (or)
more specifically, worst-case execution time (WCET) of
task “i", and Ti is the task period. The proof involves the
concept of demand bound function (DBF). DBF is the
cumulative demand imposed by the tasks on the system's
resources within a given interval. For EDF scheduling,
the DBF can be calculated as follows:

DBF(t) = X(Ci * ceil(t / Ti)) @)

where ceil() is the ceiling function and “t" represents
the time duration.

The set of tasks are guaranteed to be schedulable, if
the DBF never exceeds the available resources, i.e.,
DBF(t) < t for all t. By using the above inequality and
applying the EDF scheduling algorithm, it can be proven
that the tasks will meet their deadlines and the system will
be schedulable.

According to the utilization formula as in equation (1),
for the tasks defined in the table 1, the utilization factor
for this task set is calculated to be:

Utilization Factor = 3/5 +3/8 = 0.6+0.375 = 0.975 ?3)

The hyper period is defined as the least common
multiple (LCM) of the periods of all periodic tasks in the
task set. It represents the interval after which all periodic
tasks simultaneously return to their initial states,
effectively repeating their execution patterns.

The concept of the hyperperiod is crucial in EDF
scheduling because it defines the maximum scheduling
interval over which the entire set of tasks completes a full
cycle of executions. Denoted by H

H, the hyperperiod establishes the timeframe within
which the EDF scheduler guarantees that each task meets
its deadline at least once. The scheduler then repeats this
process for every hyperperiod, ensuring all jobs are
completed timely and predictably across the entire
execution timeline.

H = LCM(8,5) = 40 ()

Since the Utilization factor was 0.975 as in equation
(3), the tasks are guaranteed to be schedulable. Over the
hyper period of 40, there are multiple instances of pre-
emption. At t=0, the deadline of task 1 is earlier than the
deadline of task B and hence, task 1 gets the higher
priority and is executed. At t=3, task 1 has been executed
for its entirety and task B can start execution. Task 1 now
only enters the Running state after t=5. Even at t=5, task
2 has the higher priority because its deadline is at t=8,
compared to t=10 for the second instance of task 1. Task
1 is scheduled to run at t=6 and completes execution at
t=9. At t=9, task B runs for 1 unit of capacity and then
gets pre-empted by task 1. This is because the deadline of

IJCRT2506236

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c28

http://www.ijcrt.org/

www.ijcrt.org

© 2025 IJCRT | Volume 13, Issue 6 June 2025 | ISSN: 2320-2882

task 1 is t=15 while for task B its t=16. After task 1
executed from t=10 to t=13 and now the remaining
capacity of the task 2 is scheduled to run from t=13 to
t=15. Another instance of pre-emption is seen at t=25, as
seen in figure 2.

CFU 1

TASK 1

TASK 2
o

Figure 2: Gantt Chart created from the schedule data
returned by the EDF Kernel Implementation

(2] Problems Z| Tasks [Console [T] Properties (8 Terminal X

2 CAWINDOWS\system32\cmd.exe X
Tasks can be scheduled

Task 1
Task 1
Task 1
Task 2
Task 2
Task 2
Task 1
Task 1
Task 1
Task 2
1@ Task
21 Task
22 Task
23 Task
24 Task
25 Task
26 Task
27 Task
28 Task
29 Task
30 Task
31 Task
32 Task
33 Task
34 Task
35 Task
36 Task
37 Task
38 Task
39 Idle
49 Task

WoOoNOWVEWNES

R R R NRNERREROR R RN RS

[

Figure 3. Output of the test application for the EDF
implementation in FreeRTOS

111 ANALYSIS

Both EDF and RM implementation were tested for
number of iterations ranging from one to ten.
Synthetic data have been taken as per table 3.

Table 3 :Task Parameters for testing EDF and RM
Implementation

Task Name Arrival Time Execution Deadline
Time
T1 0 12 33
T2 4 2 28
T3 9 10 29
T4 16 5 29

research results, Arrival Time is defined as the instant
when the task state is ready. Execution Time defines the
period for which the task must run to completely
executed. Deadline is the absolute instant of time before
which the task must be executed completely. This paper
assumes Deadline is equal to Periodicity for all the tasks.

From Figure 4(a) and 4(b), it is evident that EDF is
better for this particular task set because the context

switches are lower, and the waiting time is also less when
compared to RM. Waiting Time is defined as the duration
between the task arrival time and executing instant.

Context Switch vs Number of Iterations
B RateMonotonic [l EOF

Number of Context Switch

2 3 B 5 6 7 8 9 10
Number of Iterations

Waiting Time vs Number of Iterations

M Rate Monotonic [l EOF

Waiting Time

0
1 2 3 4 5 & 7 8 9 10

Number of Iterations

Figure 4. Comparison between RM vs EDF for the task
parameters mentioned in Table 3. (a) Compares Number of
context switches vs iterations (b) Compares Waiting Time vs
iterations

CONCLUSION

This paper conducted a thorough comparison of two key
real-time scheduling algorithms, Earliest Deadline First
(EDF) and Rate Monotonic (RM), within the FreeRTOS
environment. The effectiveness and applicability of these
algorithms for real-time applications were determined
using synthetic task set and performance was analyzed.
The basic yet crucial implementations of EDF at the
kernel level and RM at the user level in FreeRTOS
represent valuable additions to the real-time embedded
systems toolkit. They cater to specific needs and simplify
task management, but it is imperative to recognize their
inherent limitations and the need for further development
to handle more intricate real-world scenarios. These
implementations serve as stepping stones towards
building more robust and capable real-time systems. The
kernel-level integration of EDF, while powerful, can
introduce complexity to the system, potentially impacting
resource usage and context switching overhead. RM
scheduling at the user level, while lightweight, lacks the
centralized control that kernel-level scheduling offers.
Furthermore, both implementations are rudimentary in
their current form and may not cover the full spectrum of
features found in dedicated real-time operating systems.
They may not address advanced scenarios involving
resource sharing, synchronization, or dynamic task
creation, which are critical in complex real-time systems.

REFERENCES
[1] L. B. Das, Embedded Systems: An Integrated Approach.
2013.
[2] A. B. Tucker, Computer Science Handbook, Second
Edition. 2004.

[3]1C. L. Liu and W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment”,
Journal of the ACM, vol. 20, number 1,pp-46-61, January
1973.

IJCRT2506236 |

International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c29

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 6 June 2025 | ISSN: 2320-2882

[4] Dhruva R. Rinku, Dr. M. Asha Rani “Evaluation of
Scheduling Algorithms on Linux OS”-ICETE 2019, LAIS
4, pp.210 - 217, 2020.https://doi.org/10.1007/978-3-030-
24318-0_25.(Springer Book).

[5]J. Cho, Ravindran, “An optimal real-time scheduling
algorithm for multiprocessors,” IEEE Computer Society,
2007.

[6] Dhruva R. Rinku, Dr. M. AshaRani,Y. Krishna Suhruth
“Exploring the Scheduling Techniques for the RTOS” ICT
Infrastructure and Computing, Lecture Notes in Networks
and Systems 520,pp-11-18. https://doi.org/10.1007/978-
981-19-5331-6_2

[71Y. Oh and S. H. Son, “Preemptive Scheduling of Periodic
Tasks on Multiprocessor: Dynamic Algorithms and Their
Performance”, Tech. Report CS-93-26 Univ. Of Virginia.
CS Dept. May 1993.

[8] Dhruva R. Rinku, Dr. M. AshaRani "Reinforcement
Learning Based Multi Core Scheduling (RLBMCS)For
Real Time Systems'", IJECE, Vol 10, Issue 2 April
2020.pages:1805 -1813.

[9] Dhruva R. Rinku, M. Asha Rani, Y. Krishna Suhruth
“RTOS schedulers for periodic and aperiodic taskset”
Lecture Notes in Networks and Systems 765, pp. 247-257,
https://doi.org/10.1007/978-981-99-5652-4

[10] Jiwen Dong, Yang Zhang “A modified Rate Monotonic
algorithm for scheduling periodic tasks with different
importance in Embedded Systems” International
Conference on Electronic Measurement & Instruments,
IEEE Xplore,pp.4-606 - 4-609, September 2009.

[11] T. P. Baker, “Multiprocessor EDF and Deadline
Monotonic Schedulability Analysis”, IEEE Real-Time
Systems Symposium, Dec, 2003.

[12] S. Baruah, “Robustness Results Concerning EDF
Scheduling upon Uniform Multiprocessor”, Euromicro
Conf. on Real-Time Systems 2002.

[13] T. P. Baker, “Multiprocessor EDF and Deadline
Monotonic Schedulability Analysis”, IEEE Real-Time
Systems Symposium, Dec, 2003.

[14] F. Itd., “Freertos official website.”
http://www.freertos.org/RTOS.html, Feb. 2016.

[15] Oliveira, G., & Lima, G. (2020). Evaluation of
Scheduling Algorithms for Embedded FreeRTOS-based
Systems. Brazilian Symposium on Computing System
Engineering, SBESC,2020-November.
https://doi.org/10.1109/SBESC51047.2020.9277851

IJCRT2506236 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c30

http://www.ijcrt.org/
https://doi.org/10.1007/978-981-99-5652-4
http://www.freertos.org/RTOS.html

