
www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 6 June 2025 | ISSN: 2320-2882

IJCRT2506236 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c26

Comparitive Evalution of Priority and Deadline

based Scheduling in RTOS

1st Rahul Rawat

M.Tech Student, Dept. of ECE

CVR College of Engineering

Hyderabad

2nd Dr. Dhruva R. Rinku

Dept. of ECE

CVR College of Engineering

Hyderabad,India

Abstract— This paper presents a comparative analysis of two

widely used real-time scheduling algorithms—Earliest Deadline

First (EDF) and Rate Monotonic (RM)—with the objective of

evaluating their performance and suitability for real-time

embedded applications on FreeRTOS. To simulate realistic

execution scenarios, synthetic task sets were generated. The

performance of each scheduler was assessed based on key

metrics such as average waiting time, number of context

switches, and CPU utilization.

The results indicate that EDF consistently outperforms RM

in terms of meeting deadlines, especially under high system

loads. EDF also tends to reduce average waiting time; however,

it incurs a higher number of context switches. In contrast, RM

scheduling leads to increased average wait times but generally

results in fewer context switches, which can be advantageous for

power-sensitive or resource-constrained systems.

Interestingly, for periodic tasks where deadlines are equal to

their periods, the performance gap between EDF and RM

narrows. In such cases, the efficiency of the scheduling strategy

becomes more dependent on the total number of tasks being

managed.

Overall, the study provides valuable insights to embedded

system designers, enabling them to make more informed

decisions when selecting the appropriate scheduling strategy

based on application-specific requirements.

Keywords— FreeRTOS, Kernel, EDF, RM, Scheduler

I. INTRODUCTION

Real-time systems play a critical role in various domains

such as aerospace, automotive, medical devices, and

industrial automation, where timely and predictable task

execution is fundamental to ensuring system reliability,

safety, and performance. In these systems, meeting task

deadlines is not optional—it is a core functional

requirement, especially in hard real-time systems that

demand deterministic behavior to avoid catastrophic

failures [1].

Determinism refers to a system's ability to exhibit

predictable and consistent behavior, particularly in terms

of timing and response. In hard real-time applications,

determinism ensures that tasks execute within well-

defined time bounds, thus enabling reliable scheduling

and accurate performance estimation.

Given the constraints of embedded platforms—such as

limited memory and processing power—a dedicated

Real-Time Operating System (RTOS) is essential. RTOSs

provide a lightweight, task-oriented environment with

fine-grained control over scheduling, resource

management, and system responsiveness. In contrast,

General-Purpose Operating Systems (GPOS) prioritize

fairness and multitasking by allocating processor time

equitably among processes, making them less suitable for

real-time applications [2].

At the heart of any operating system lies the scheduler,

which determines the sequence and timing of task

execution [3]–[6]. The scheduler's primary function in

real-time systems is to allocate computational resources

efficiently, ensuring that critical tasks meet their timing

constraints. Goals such as minimizing latency,

maximizing throughput, maintaining fairness, and

respecting task priorities often conflict, requiring the

scheduler to find a balance based on application-specific

requirements [7]–[9].

Schedulers for real-time systems assign priorities based

on timing characteristics like task periods, deadlines, and

response times. Traditional scheduling algorithms used in

generic operating systems, such as Cooperative

Scheduling and First-Come-First-Served (FCFS), do not

guarantee deadline adherence. In contrast, Rate

Monotonic (RM) and Earliest Deadline First (EDF) are

well-established algorithms designed to support real-time

guarantees on uniprocessor systems [3], [5], [7]–[10].

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 6 June 2025 | ISSN: 2320-2882

IJCRT2506236 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c27

This paper presents a comparative evaluation of EDF and

RM scheduling strategies implemented within the

FreeRTOS framework. FreeRTOS was chosen due to its

open-source nature, portability, and support for real-time

features such as task management, synchronization, and

memory allocation [14]. Its Windows port enables

simulation of scheduling behavior in a controlled

environment, and its modular design allows easy

extension and customization.

Although EDF is theoretically optimal for uniprocessor

task scheduling, it is less commonly used in resource-

constrained embedded systems due to perceived

overheads. However, recent studies have shown that EDF

can be efficiently implemented even on low-end

microcontrollers, particularly when task models and

deadlines are well-structured [15].

In this study, synthetic task sets were developed to

emulate realistic workloads, enabling controlled and

reproducible testing. The objective is to analyze the

performance of EDF and RM scheduling using key

metrics such as average wait time, context switch count,

CPU utilization, and deadline miss ratio. The findings aim

to guide embedded system designers in selecting the most

appropriate scheduling algorithm for their specific real-

time application needs.

 II. IMPLEMENTATION

 2.1 Earliest Deadline First (EDF)

2.1.1 – user level implementation

A significant contribution of this work is the

implementation of the Earliest Deadline First (EDF)

scheduling algorithm within the FreeRTOS environment.

The objective is to evaluate the feasibility and effectiveness

of EDF in meeting task deadlines while optimizing

performance metrics such as average waiting time and

CPU utilization.

Two approaches were employed to integrate the EDF

scheduler into FreeRTOS. The first approach involves

implementing EDF at the user level, using standard

FreeRTOS APIs to manually control task prioritization

based on deadlines. The second approach entails

modifying the FreeRTOS kernel itself, by introducing new

data structures and function prototypes to support native

EDF scheduling. This kernel-level modification allows

EDF to operate as a core scheduling mechanism within the

RTOS.

The logic for the EDF implementation is illustrated

through a flowchart shown in Fig. 1, which outlines the

decision-making process used to assign and manage task

priorities based on their respective deadlines.

Figure 1. Implementation of EDF Scheduling for Tasks A and B

Maintaining the Integrity of the Specifications

2.1.2 EDF – kernel level implementation

In contrast to the user-level implementation of the

EDF scheduler, the kernel-level integration necessitates

structural modifications within the FreeRTOS kernel.

The primary objective is to construct a customized Ready

List capable of supporting dynamic priority scheduling

based on task deadlines. This new Ready List maintains

tasks in ascending order of their absolute deadlines, such

that the task at the top of the list—i.e., with the earliest

deadline—receives the highest scheduling priority.

The remainder of the FreeRTOS architecture,

including components such as the Waiting List and

system clock mechanism, remains largely intact with only

minimal adjustments. All kernel-level changes are

encapsulated within the task.c file, and are conditionally

compiled using the configuration macro

configUSE_EDF_SCHEDULER. When this macro is set

to 1, the EDF scheduling functionality is enabled;

otherwise, the system defaults to the standard FreeRTOS

scheduler.

Prior to adding a task to the Ready List, its absolute

deadline must be computed based on the current system

tick and the task's relative deadline. Additionally, a

context switch is triggered each time a new task is inserted

into the Ready List, ensuring that the task with the

earliest deadline is always selected for execution.

The EDF scheduling algorithm demonstrates optimal

performance under the following assumptions:

Periodic Task Releases: All task requests occur at fixed

intervals, with each task having a known and constant

period.

Deadline Constraints: Deadlines serve as hard

constraints, requiring each task to complete execution

before the next activation of the same task.

Task Independence: Each task is self-contained,

meaning that its execution is independent of the state,

execution, or completion of other tasks in the system.

Constant Execution Time: Each task has a fixed worst-

case execution time (WCET), which remains consistent

across all instances.

These assumptions help maintain the predictability

and schedulability of the system, allowing the EDF

algorithm to provide optimal CPU utilization and

guarantee deadline adherence in real-time applications.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 6 June 2025 | ISSN: 2320-2882

IJCRT2506236 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c28

2.2. RATE MONOTONIC SCHEDULING (RMS)

Rate Monotonic (RM) is a widely adopted pre-emptive,

fixed-priority scheduling algorithm used in real-time

systems to schedule periodic tasks. In RM scheduling,

priorities are statically assigned to tasks based solely on

their periods: tasks with shorter periods are given higher

priorities, while those with longer periods are assigned

lower priorities. This deterministic nature makes RM

both analyzable and predictable, making it ideal for

safety-critical applications.

RM scheduling assumes a set of independent periodic

tasks, each defined by its period (i.e., the time between

successive releases) and worst-case execution time

(WCET). These tasks are expected to execute repeatedly,

maintaining the same timing parameters throughout

system operation. The fundamental scheduling principle

in RM ensures that when multiple tasks are ready, the one

with the highest priority (shortest period) pre-empts the

others and executes first. This pre-emptive behavior

allows the system to respond quickly to high-frequency

tasks.

In this work, the RM scheduling algorithm was

implemented at the user level using FreeRTOS

primitives. The following pseudocode outlines the core

logic of the RM scheduler:

__

Pseudocode: Rate Monotonic Scheduling

Initialize System Parameters:

Define the number of tasks NUM_TASKS.

Assign periods and capacities (WCETs) to each task.

Calculate Hyperperiod:

Compute the Least Common Multiple (LCM) of all task

periods to determine the hyperperiod of the task set.

Sort Tasks by Period:

Apply Rate Monotonic logic: order tasks in ascending

order of periods.

Assign Priorities:

Create task handles.

Assign priorities inversely proportional to the periods

(shortest period → highest priority).

Define Task Function (TaskFunction):

Simulate task execution within the real-time

environment.

Task Execution Loop:

For each task:

Retrieve task index, period, and capacity.

Initialize xLastWakeTime with the current system tick.

Loop indefinitely:

Print tick count, task ID, and remaining execution

capacity.

Decrement capacity counter.

If capacity reaches zero, reset it to its initial value.

Use vTaskDelayUntil() to delay until the start of the next

period.

Start Scheduler:

Initialize and create all tasks using FreeRTOS APIs.

Start the scheduler with vTaskStartScheduler().

Main Program Loop:

The application enters a continuous execution state,

simulating real-time behavior indefinitely.

The RM implementation provides a benchmark for

comparison with dynamic scheduling strategies like

Earliest Deadline First (EDF). While RM offers simplicity

and predictability, its schedulability is limited by Liu and

Layland’s utilization bound, which may result in

suboptimal processor usage in certain task sets.

III RESULTS AND DISCUSSION

3.1 EDF Implementation in FreeRTOS Results

To validate the developed EDF scheduler, we run two

tasks with known EDF scheduling sequences and compare
the run-time scheduling sequence to the expected one.

Consider two Task 1 and Task 2 with the following
parameters as seen in Table 1.

Table 1. Task Parameters for testing EDF Kernel
Implementation

Task Name Time Period Capacity

Task 1 5 3

Task 2 8 3

EDF guarantees the tasks are schedulable if the
following condition is satisfied:

 Σ(Ci / Ti) ≤ 1 (1)

Where Σ denotes summation, Ci is the capacity (or)
more specifically, worst-case execution time (WCET) of
task `i`, and Ti is the task period. The proof involves the
concept of demand bound function (DBF). DBF is the
cumulative demand imposed by the tasks on the system's
resources within a given interval. For EDF scheduling,
the DBF can be calculated as follows:

 DBF(t) = Σ(Ci * ceil(t / Ti)) (2)

where ceil() is the ceiling function and `t` represents
the time duration.

The set of tasks are guaranteed to be schedulable, if
the DBF never exceeds the available resources, i.e.,
DBF(t) ≤ t for all t. By using the above inequality and
applying the EDF scheduling algorithm, it can be proven
that the tasks will meet their deadlines and the system will
be schedulable.

According to the utilization formula as in equation (1),
for the tasks defined in the table 1, the utilization factor
for this task set is calculated to be:

Utilization Factor = 3/5 + 3/8 = 0.6+0.375 = 0.975 (3)

The hyper period is defined as the least common
multiple (LCM) of the periods of all periodic tasks in the
task set. It represents the interval after which all periodic
tasks simultaneously return to their initial states,
effectively repeating their execution patterns.

The concept of the hyperperiod is crucial in EDF
scheduling because it defines the maximum scheduling
interval over which the entire set of tasks completes a full
cycle of executions. Denoted by 𝐻

H, the hyperperiod establishes the timeframe within
which the EDF scheduler guarantees that each task meets
its deadline at least once. The scheduler then repeats this
process for every hyperperiod, ensuring all jobs are
completed timely and predictably across the entire
execution timeline.

 H = LCM(8,5) = 40 (4)

Since the Utilization factor was 0.975 as in equation
(3), the tasks are guaranteed to be schedulable. Over the
hyper period of 40, there are multiple instances of pre-
emption. At t=0, the deadline of task 1 is earlier than the
deadline of task B and hence, task 1 gets the higher
priority and is executed. At t=3, task 1 has been executed
for its entirety and task B can start execution. Task 1 now
only enters the Running state after t=5. Even at t=5, task
2 has the higher priority because its deadline is at t=8,
compared to t=10 for the second instance of task 1. Task
1 is scheduled to run at t=6 and completes execution at
t=9. At t=9, task B runs for 1 unit of capacity and then
gets pre-empted by task 1. This is because the deadline of

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 6 June 2025 | ISSN: 2320-2882

IJCRT2506236 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c29

task 1 is t=15 while for task B its t=16. After task 1
executed from t=10 to t=13 and now the remaining
capacity of the task 2 is scheduled to run from t=13 to
t=15. Another instance of pre-emption is seen at t=25, as
seen in figure 2.

Figure 2: Gantt Chart created from the schedule data
returned by the EDF Kernel Implementation

Figure 3. Output of the test application for the EDF
implementation in FreeRTOS

 III ANALYSIS

Both EDF and RM implementation were tested for

number of iterations ranging from one to ten.

Synthetic data have been taken as per table 3.

Table 3 :Task Parameters for testing EDF and RM

Implementation
Task Name Arrival Time Execution

Time
Deadline

T1 0 12 33

T2 4 2 28

T3 9 10 29

T4 16 5 29

research results, Arrival Time is defined as the instant
when the task state is ready. Execution Time defines the
period for which the task must run to completely
executed. Deadline is the absolute instant of time before
which the task must be executed completely. This paper
assumes Deadline is equal to Periodicity for all the tasks.

From Figure 4(a) and 4(b), it is evident that EDF is

better for this particular task set because the context

switches are lower, and the waiting time is also less when

compared to RM. Waiting Time is defined as the duration

between the task arrival time and executing instant.

Figure 4. Comparison between RM vs EDF for the task

parameters mentioned in Table 3. (a) Compares Number of

context switches vs iterations (b) Compares Waiting Time vs

iterations

CONCLUSION

This paper conducted a thorough comparison of two key

real-time scheduling algorithms, Earliest Deadline First

(EDF) and Rate Monotonic (RM), within the FreeRTOS

environment. The effectiveness and applicability of these

algorithms for real-time applications were determined

using synthetic task set and performance was analyzed.

The basic yet crucial implementations of EDF at the

kernel level and RM at the user level in FreeRTOS

represent valuable additions to the real-time embedded

systems toolkit. They cater to specific needs and simplify

task management, but it is imperative to recognize their

inherent limitations and the need for further development

to handle more intricate real-world scenarios. These

implementations serve as stepping stones towards

building more robust and capable real-time systems. The

kernel-level integration of EDF, while powerful, can

introduce complexity to the system, potentially impacting

resource usage and context switching overhead. RM

scheduling at the user level, while lightweight, lacks the

centralized control that kernel-level scheduling offers.

Furthermore, both implementations are rudimentary in

their current form and may not cover the full spectrum of

features found in dedicated real-time operating systems.

They may not address advanced scenarios involving

resource sharing, synchronization, or dynamic task

creation, which are critical in complex real-time systems.

REFERENCES

[1] L. B. Das, Embedded Systems: An Integrated Approach.

2013.

[2] A. B. Tucker, Computer Science Handbook, Second

Edition. 2004.

[3] C. L. Liu and W. Layland, “Scheduling Algorithms for

Multiprogramming in a Hard Real-Time Environment”,

Journal of the ACM, vol. 20, number 1,pp-46-61, January

1973.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 6 June 2025 | ISSN: 2320-2882

IJCRT2506236 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org c30

[4] Dhruva R. Rinku, Dr. M. Asha Rani “Evaluation of

Scheduling Algorithms on Linux OS”-ICETE 2019, LAIS

4, pp.210 – 217, 2020.https://doi.org/10.1007/978-3-030-

24318-0_25.(Springer Book).

[5] J. Cho, Ravindran, “An optimal real-time scheduling

algorithm for multiprocessors,” IEEE Computer Society,

2007.

[6] Dhruva R. Rinku, Dr. M. AshaRani,Y. Krishna Suhruth

“Exploring the Scheduling Techniques for the RTOS” ICT

Infrastructure and Computing, Lecture Notes in Networks

and Systems 520,pp-11-18. https://doi.org/10.1007/978-

981-19-5331-6_2

[7] Y. Oh and S. H. Son, “Preemptive Scheduling of Periodic

Tasks on Multiprocessor: Dynamic Algorithms and Their

Performance”, Tech. Report CS-93-26 Univ. Of Virginia.

CS Dept. May 1993.

[8] Dhruva R. Rinku, Dr. M. AshaRani "Reinforcement

Learning Based Multi Core Scheduling (RLBMCS)For

Real Time Systems", IJECE, Vol 10, Issue 2 April

2020.pages:1805 -1813.

[9] Dhruva R. Rinku, M. Asha Rani, Y. Krishna Suhruth

“RTOS schedulers for periodic and aperiodic taskset”
Lecture Notes in Networks and Systems 765, pp. 247-257,
https://doi.org/10.1007/978-981-99-5652-4

[10] Jiwen Dong, Yang Zhang “A modified Rate Monotonic

algorithm for scheduling periodic tasks with different

importance in Embedded Systems” International

Conference on Electronic Measurement & Instruments,

IEEE Xplore,pp.4-606 - 4-609, September 2009.

[11] T. P. Baker, “Multiprocessor EDF and Deadline

Monotonic Schedulability Analysis”, IEEE Real-Time

Systems Symposium, Dec, 2003.

[12] S. Baruah, “Robustness Results Concerning EDF

Scheduling upon Uniform Multiprocessor”, Euromicro

Conf. on Real-Time Systems 2002.

[13] T. P. Baker, “Multiprocessor EDF and Deadline

Monotonic Schedulability Analysis”, IEEE Real-Time

Systems Symposium, Dec, 2003.

[14] F. ltd., “Freertos official website.”

http://www.freertos.org/RTOS.html, Feb. 2016.

[15] Oliveira, G., & Lima, G. (2020). Evaluation of

Scheduling Algorithms for Embedded FreeRTOS-based

Systems. Brazilian Symposium on Computing System

Engineering, SBESC,2020-November.

https://doi.org/10.1109/SBESC51047.2020.9277851

http://www.ijcrt.org/
https://doi.org/10.1007/978-981-99-5652-4
http://www.freertos.org/RTOS.html

