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Abstract— This paper presents a comparative analysis of two 

widely used real-time scheduling algorithms—Earliest Deadline 

First (EDF) and Rate Monotonic (RM)—with the objective of 

evaluating their performance and suitability for real-time 

embedded applications on FreeRTOS. To simulate realistic 

execution scenarios, synthetic task sets were generated. The 

performance of each scheduler was assessed based on key 

metrics such as average waiting time, number of context 

switches, and CPU utilization. 

The results indicate that EDF consistently outperforms RM 

in terms of meeting deadlines, especially under high system 

loads. EDF also tends to reduce average waiting time; however, 

it incurs a higher number of context switches. In contrast, RM 

scheduling leads to increased average wait times but generally 

results in fewer context switches, which can be advantageous for 

power-sensitive or resource-constrained systems. 

Interestingly, for periodic tasks where deadlines are equal to 

their periods, the performance gap between EDF and RM 

narrows. In such cases, the efficiency of the scheduling strategy 

becomes more dependent on the total number of tasks being 

managed. 

Overall, the study provides valuable insights to embedded 

system designers, enabling them to make more informed 

decisions when selecting the appropriate scheduling strategy 

based on application-specific requirements. 
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I. INTRODUCTION  

Real-time systems play a critical role in various domains 

such as aerospace, automotive, medical devices, and 

industrial automation, where timely and predictable task 

execution is fundamental to ensuring system reliability, 

safety, and performance. In these systems, meeting task 

deadlines is not optional—it is a core functional 

requirement, especially in hard real-time systems that 

demand deterministic behavior to avoid catastrophic 

failures [1]. 

Determinism refers to a system's ability to exhibit 

predictable and consistent behavior, particularly in terms 

of timing and response. In hard real-time applications, 

determinism ensures that tasks execute within well-

defined time bounds, thus enabling reliable scheduling 

and accurate performance estimation. 

Given the constraints of embedded platforms—such as 

limited memory and processing power—a dedicated 

Real-Time Operating System (RTOS) is essential. RTOSs 

provide a lightweight, task-oriented environment with 

fine-grained control over scheduling, resource 

management, and system responsiveness. In contrast, 

General-Purpose Operating Systems (GPOS) prioritize 

fairness and multitasking by allocating processor time 

equitably among processes, making them less suitable for 

real-time applications [2]. 

At the heart of any operating system lies the scheduler, 

which determines the sequence and timing of task 

execution [3]–[6]. The scheduler's primary function in 

real-time systems is to allocate computational resources 

efficiently, ensuring that critical tasks meet their timing 

constraints. Goals such as minimizing latency, 

maximizing throughput, maintaining fairness, and 

respecting task priorities often conflict, requiring the 

scheduler to find a balance based on application-specific 

requirements [7]–[9]. 

Schedulers for real-time systems assign priorities based 

on timing characteristics like task periods, deadlines, and 

response times. Traditional scheduling algorithms used in 

generic operating systems, such as Cooperative 

Scheduling and First-Come-First-Served (FCFS), do not 

guarantee deadline adherence. In contrast, Rate 

Monotonic (RM) and Earliest Deadline First (EDF) are 

well-established algorithms designed to support real-time 

guarantees on uniprocessor systems [3], [5], [7]–[10]. 
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This paper presents a comparative evaluation of EDF and 

RM scheduling strategies implemented within the 

FreeRTOS framework. FreeRTOS was chosen due to its 

open-source nature, portability, and support for real-time 

features such as task management, synchronization, and 

memory allocation [14]. Its Windows port enables 

simulation of scheduling behavior in a controlled 

environment, and its modular design allows easy 

extension and customization. 

Although EDF is theoretically optimal for uniprocessor 

task scheduling, it is less commonly used in resource-

constrained embedded systems due to perceived 

overheads. However, recent studies have shown that EDF 

can be efficiently implemented even on low-end 

microcontrollers, particularly when task models and 

deadlines are well-structured [15]. 

In this study, synthetic task sets were developed to 

emulate realistic workloads, enabling controlled and 

reproducible testing. The objective is to analyze the 

performance of EDF and RM scheduling using key 

metrics such as average wait time, context switch count, 

CPU utilization, and deadline miss ratio. The findings aim 

to guide embedded system designers in selecting the most 

appropriate scheduling algorithm for their specific real-

time application needs. 

 II. IMPLEMENTATION 

 2.1 Earliest Deadline First (EDF) 

2.1.1 – user level implementation 

A significant contribution of this work is the 

implementation of the Earliest Deadline First (EDF) 

scheduling algorithm within the FreeRTOS environment. 

The objective is to evaluate the feasibility and effectiveness 

of EDF in meeting task deadlines while optimizing 

performance metrics such as average waiting time and 

CPU utilization. 

Two approaches were employed to integrate the EDF 

scheduler into FreeRTOS. The first approach involves 

implementing EDF at the user level, using standard 

FreeRTOS APIs to manually control task prioritization 

based on deadlines. The second approach entails 

modifying the FreeRTOS kernel itself, by introducing new 

data structures and function prototypes to support native 

EDF scheduling. This kernel-level modification allows 

EDF to operate as a core scheduling mechanism within the 

RTOS. 

The logic for the EDF implementation is illustrated 

through a flowchart shown in Fig. 1, which outlines the 

decision-making process used to assign and manage task 

priorities based on their respective deadlines. 

 
 
Figure 1. Implementation of EDF Scheduling for Tasks A and B 

Maintaining the Integrity of the Specifications 

 

2.1.2 EDF – kernel level implementation 

 

In contrast to the user-level implementation of the 

EDF scheduler, the kernel-level integration necessitates 

structural modifications within the FreeRTOS kernel. 

The primary objective is to construct a customized Ready 

List capable of supporting dynamic priority scheduling 

based on task deadlines. This new Ready List maintains 

tasks in ascending order of their absolute deadlines, such 

that the task at the top of the list—i.e., with the earliest 

deadline—receives the highest scheduling priority. 

 

The remainder of the FreeRTOS architecture, 

including components such as the Waiting List and 

system clock mechanism, remains largely intact with only 

minimal adjustments. All kernel-level changes are 

encapsulated within the task.c file, and are conditionally 

compiled using the configuration macro 

configUSE_EDF_SCHEDULER. When this macro is set 

to 1, the EDF scheduling functionality is enabled; 

otherwise, the system defaults to the standard FreeRTOS 

scheduler. 

Prior to adding a task to the Ready List, its absolute 

deadline must be computed based on the current system 

tick and the task's relative deadline. Additionally, a 

context switch is triggered each time a new task is inserted 

into the Ready List, ensuring that the task with the 

earliest deadline is always selected for execution. 

The EDF scheduling algorithm demonstrates optimal 

performance under the following assumptions: 

Periodic Task Releases: All task requests occur at fixed 

intervals, with each task having a known and constant 

period. 

Deadline Constraints: Deadlines serve as hard 

constraints, requiring each task to complete execution 

before the next activation of the same task. 

Task Independence: Each task is self-contained, 

meaning that its execution is independent of the state, 

execution, or completion of other tasks in the system. 

Constant Execution Time: Each task has a fixed worst-

case execution time (WCET), which remains consistent 

across all instances. 

These assumptions help maintain the predictability 

and schedulability of the system, allowing the EDF 

algorithm to provide optimal CPU utilization and 

guarantee deadline adherence in real-time applications. 
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2.2. RATE MONOTONIC SCHEDULING (RMS) 

Rate Monotonic (RM) is a widely adopted pre-emptive, 

fixed-priority scheduling algorithm used in real-time 

systems to schedule periodic tasks. In RM scheduling, 

priorities are statically assigned to tasks based solely on 

their periods: tasks with shorter periods are given higher 

priorities, while those with longer periods are assigned 

lower priorities. This deterministic nature makes RM 

both analyzable and predictable, making it ideal for 

safety-critical applications. 

RM scheduling assumes a set of independent periodic 

tasks, each defined by its period (i.e., the time between 

successive releases) and worst-case execution time 

(WCET). These tasks are expected to execute repeatedly, 

maintaining the same timing parameters throughout 

system operation. The fundamental scheduling principle 

in RM ensures that when multiple tasks are ready, the one 

with the highest priority (shortest period) pre-empts the 

others and executes first. This pre-emptive behavior 

allows the system to respond quickly to high-frequency 

tasks. 

In this work, the RM scheduling algorithm was 

implemented at the user level using FreeRTOS 

primitives. The following pseudocode outlines the core 

logic of the RM scheduler: 

________________________________________ 

Pseudocode: Rate Monotonic Scheduling 

Initialize System Parameters: 

Define the number of tasks NUM_TASKS. 

Assign periods and capacities (WCETs) to each task. 

Calculate Hyperperiod: 

Compute the Least Common Multiple (LCM) of all task 

periods to determine the hyperperiod of the task set. 

Sort Tasks by Period: 

Apply Rate Monotonic logic: order tasks in ascending 

order of periods. 

Assign Priorities: 

Create task handles. 

Assign priorities inversely proportional to the periods 

(shortest period → highest priority). 

Define Task Function (TaskFunction): 

Simulate task execution within the real-time 

environment. 

Task Execution Loop: 

For each task: 

Retrieve task index, period, and capacity. 

Initialize xLastWakeTime with the current system tick. 

Loop indefinitely: 

Print tick count, task ID, and remaining execution 

capacity. 

Decrement capacity counter. 

If capacity reaches zero, reset it to its initial value. 

Use vTaskDelayUntil() to delay until the start of the next 

period. 

Start Scheduler: 

Initialize and create all tasks using FreeRTOS APIs. 

Start the scheduler with vTaskStartScheduler(). 

Main Program Loop: 

The application enters a continuous execution state, 

simulating real-time behavior indefinitely. 

The RM implementation provides a benchmark for 

comparison with dynamic scheduling strategies like 

Earliest Deadline First (EDF). While RM offers simplicity 

and predictability, its schedulability is limited by Liu and 

Layland’s utilization bound, which may result in 

suboptimal processor usage in certain task sets. 

 

III RESULTS AND DISCUSSION 

3.1 EDF Implementation in FreeRTOS Results 

 
To validate the developed EDF scheduler, we run two 

tasks with known EDF scheduling sequences and compare 
the run-time scheduling sequence to the expected one. 

Consider two Task 1 and Task 2 with the following 
parameters as seen in Table 1. 

Table 1. Task Parameters for testing EDF Kernel 
Implementation 

Task Name  Time Period Capacity 

Task 1 5 3 

Task 2 8 3 

EDF guarantees the tasks are schedulable if the 
following condition is satisfied: 

               Σ(Ci / Ti) ≤ 1                                      (1) 

Where Σ denotes summation, Ci is the capacity (or) 
more specifically, worst-case execution time (WCET) of 
task `i`, and Ti is the task period. The proof involves the 
concept of demand bound function (DBF). DBF is the 
cumulative demand imposed by the tasks on the system's 
resources within a given interval. For EDF scheduling, 
the DBF can be calculated as follows: 

                          DBF(t) = Σ(Ci * ceil(t / Ti))              (2) 

where ceil() is the ceiling function and `t` represents 
the time duration. 

The set of tasks are guaranteed to be schedulable, if 
the DBF never exceeds the available resources, i.e., 
DBF(t) ≤ t for all t. By using the above inequality and 
applying the EDF scheduling algorithm, it can be proven 
that the tasks will meet their deadlines and the system will 
be schedulable.  

According to the utilization formula as in equation (1), 
for the tasks defined in the table 1, the utilization factor 
for this task set is calculated to be: 

Utilization Factor = 3/5 + 3/8 = 0.6+0.375 = 0.975 (3) 

The hyper period is defined as the least common 
multiple (LCM) of the periods of all periodic tasks in the 
task set. It represents the interval after which all periodic 
tasks simultaneously return to their initial states, 
effectively repeating their execution patterns. 

The concept of the hyperperiod is crucial in EDF 
scheduling because it defines the maximum scheduling 
interval over which the entire set of tasks completes a full 
cycle of executions. Denoted by 𝐻 

H, the hyperperiod establishes the timeframe within 
which the EDF scheduler guarantees that each task meets 
its deadline at least once. The scheduler then repeats this 
process for every hyperperiod, ensuring all jobs are 
completed timely and predictably across the entire 
execution timeline.    

        H = LCM(8,5) = 40                               (4) 

Since the Utilization factor was 0.975 as in equation 
(3), the tasks are guaranteed to be schedulable. Over the 
hyper period of 40, there are multiple instances of pre-
emption. At t=0, the deadline of task 1 is earlier than the 
deadline of task B and hence, task 1 gets the higher 
priority and is executed. At t=3, task 1 has been executed 
for its entirety and task B can start execution. Task 1 now 
only enters the Running state after t=5. Even at t=5, task 
2 has the higher priority because its deadline is at t=8, 
compared to t=10 for the second instance of task 1. Task 
1 is scheduled to run at t=6 and completes execution at 
t=9. At t=9, task B runs for 1 unit of capacity and then 
gets pre-empted by task 1. This is because the deadline of 
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task 1 is t=15 while for task B its t=16. After task 1 
executed from t=10 to t=13 and now the remaining 
capacity of the task 2 is scheduled to run from t=13 to 
t=15. Another instance of pre-emption is seen at t=25, as 
seen in figure 2. 

 

Figure 2: Gantt Chart created from the schedule data 
returned by the EDF Kernel Implementation 

 

Figure 3. Output of the test application for the EDF 
implementation in FreeRTOS 

      III  ANALYSIS 

 

Both EDF and RM implementation were tested for 

number of iterations ranging from one to ten. 

Synthetic data have been taken as per table 3. 

 
Table 3 :Task Parameters for testing EDF and RM 

Implementation 
Task Name Arrival Time Execution 

Time 
Deadline 

T1 0 12 33 

T2 4 2 28 

T3 9 10 29 

T4 16 5 29 

 

research results, Arrival Time is defined as the instant 
when the task state is ready. Execution Time defines the 
period for which the task must run to completely 
executed. Deadline is the absolute instant of time before 
which the task must be executed completely. This paper 
assumes Deadline is equal to Periodicity for all the tasks. 

From Figure 4(a) and 4(b), it is evident that EDF is 

better for this particular task set because the context 

switches are lower, and the waiting time is also less when 

compared to RM. Waiting Time is defined as the duration 

between the task arrival time and executing instant. 

 

 

 

Figure 4. Comparison between RM vs EDF for the task 

parameters mentioned in Table 3. (a) Compares Number of 

context switches vs iterations (b) Compares Waiting Time vs 

iterations 

 

CONCLUSION 

This paper conducted a thorough comparison of two key 

real-time scheduling algorithms, Earliest Deadline First 

(EDF) and Rate Monotonic (RM), within the FreeRTOS 

environment. The effectiveness and applicability of these 

algorithms for real-time applications were determined 

using synthetic task set and performance was analyzed. 

The basic yet crucial implementations of EDF at the 

kernel level and RM at the user level in FreeRTOS 

represent valuable additions to the real-time embedded 

systems toolkit. They cater to specific needs and simplify 

task management, but it is imperative to recognize their 

inherent limitations and the need for further development 

to handle more intricate real-world scenarios. These 

implementations serve as stepping stones towards 

building more robust and capable real-time systems. The 

kernel-level integration of EDF, while powerful, can 

introduce complexity to the system, potentially impacting 

resource usage and context switching overhead. RM 

scheduling at the user level, while lightweight, lacks the 

centralized control that kernel-level scheduling offers. 

Furthermore, both implementations are rudimentary in 

their current form and may not cover the full spectrum of 

features found in dedicated real-time operating systems. 

They may not address advanced scenarios involving 

resource sharing, synchronization, or dynamic task 

creation, which are critical in complex real-time systems. 
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