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Abstract: This project focuses on the application of MLOps principles in developing a sentiment analysis 

system for YouTube comments, delivered through a Chrome Extension interface. The objective is to automate 

the process of collecting, analysing, and visualizing user sentiments from YouTube videos using a machine 

learning pipeline that integrates seamlessly with a real-world deployment setup. At the core, a pre-trained 

machine learning model is employed to classify comments into positive, negative, or neutral categories. The 

model, along with the TF-IDF vectorizer and preprocessing logic, is versioned and tracked using ML Flow, 

ensuring reproducibility and traceability throughout the development lifecycle. The dataset and model 

artifacts are managed using DVC (Data Version Control), enabling efficient storage and collaboration. For 

storage and deployment readiness, the model and metadata are synced to an AWS S3 bucket, allowing easy 

integration during inference, the backend is built using Flask, exposing RESTful API endpoints to receive 

comments, perform predictions, and return analytical insights including a sentiment pie chart, word cloud, 

and trend graph. These endpoints are consumed by the frontend Chrome Extension, which acts as a 

lightweight client to display insights in real time, While deployment is pending, the planned strategy involves 

containerizing the backend using Docker and deploying it on an EC2 instance, enabling scalable and 

accessible access to the model via API, this project is a practical demonstration of applying the MLOps 

lifecycle in a real-world application, covering model training, versioning, pipeline management, artifact 

tracking, and deployment preparation.  It offers a blueprint for integrating machine learning models into 

production environments with reliability and scalability. 

Key Words – Data versioning, Natural Language Processing, Sentiment Analysis, MLOps, Browser 

Extension, Flask.  

 

1. INTRODUCTION 

YouTube is one of the largest content-sharing platforms globally, engaging millions of users who actively 

participate through likes, shares, and especially comments on videos. These comments often contain a wealth 

of unstructured information that reflects the audience's sentiments, preferences, and reactions to the content. 

For content creators, businesses, and researchers, analyzing this data can offer significant insights that inform 

decision-making, strategy development, and content improvement. However, the volume of comments on 

popular videos can reach thousands or even millions, making manual analysis not only impractical but also 

inefficient and error-prone. 
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To address this challenge, the project proposes a YouTube Comment Analysis system in the form of a Chrome 

extension.  The primary goal of this system is to automatically classify comments into three sentiment 

categories: positive, negative, or neutral. In addition to sentiment prediction, the extension will provide users 

with analytical visualizations such as sentiment distribution through pie charts, average comment length, 

unique commenter statistics, and trend graphs showing sentiment over time. A word cloud will also be 

generated to highlight the most frequently used terms in the comments. 

The frontend of the extension is developed using JavaScript and HTML, enabling seamless integration with 

the YouTube interface and offering a user-friendly experience. The backend is powered by a Flask application 

that handles machine learning inference and serves dynamic visual outputs. Communication between the 

frontend and backend is facilitated through API calls, ensuring real-time interaction and response delivery. 

What sets this project apart is the inclusion of a full MLOps (Machine Learning Operations) pipeline. The 

system is designed not just as a standalone tool but as a deployable, maintainable, and scalable machine 

learning application. Tools like DVC (Data Version Control) are used to track dataset and model versioning, 

ensuring reproducibility. MLflow is employed for tracking experiments, managing model lifecycle, and 

monitoring performance. The backend model and infrastructure will be containerized using Docker for 

consistent deployment across environments. The deployment plan involves pushing the Docker image to 

AWS ECR (Elastic Container Registry) and running the service on an EC2 instance, thereby simulating a 

production-ready deployment pipeline. 

By combining machine learning with MLOps principles, the project emphasizes not just the predictive 

capabilities of the model but also the reliability, scalability, and maintainability of the entire application 

lifecycle. This approach ensures that future enhancements—such as retraining the model with new data or 

scaling the service to accommodate higher loads—can be implemented smoothly and systematically. 

 

2. RESEARCH GAP 

Despite significant advancements in artificial intelligence and sentiment analysis in the realm of social media 

platforms such as Reddit and YouTube. However, the availability of easy-to-use tools for non-technical users 

that analyse YouTube comments directly in-browser remains limited. Our proposed extension fills this gap 

by providing an accessible, browser-native tool for comment analysis tailored to YouTube. 

 

1) Time-Consuming and Inefficient: Manually reading and categorizing thousands of comments on a 

video is impractical and slows down decision-making for content creators and marketers. 

 

2) Subjectivity and Inconsistency: Human-based sentiment analysis is prone to bias and inconsistency, 

leading to inaccurate insights about audience perception. 

 

 

3) Lack of Visualization: Raw comments do not provide structured insights, making it difficult to 

analyse sentiment trends and engagement levels over time. 

 

4) Scalability Issues: As video content grows, so does the volume of comments, making it impossible 

to process them efficiently without automation. 

 

 

5) Limited Accessibility to Insights: Non-technical users lack tools to extract meaningful information 

from comments, restricting data-driven content strategies. 

Trend Tracking: Monitors how sentiment changes over time, helping influencers identify how different 

content affects audience perception. 
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Additional Comment Analysis Features: 

Word Cloud Visualization: Generates a word cloud showcasing the most frequently used words and phrases 

in the comments. Helps quickly identify trending topics, keywords, or recurring themes. 

Average Comment Length: Calculates and displays the average length of comments, indicating the depth 

of audience engagement. 

Average Comment Score:  Calculates and displays the average comment score by summing up all the 

comments. 

 

3. REVIEW OF RELATED WORK 

Several sentiment analysis of social networks are performed such as YouTube and Reddit. 

These researches affect comments, Reddit and other metadata collected from social networking sites from 

profile of users of public events and analysed to get significant and interesting insights about usage of social 

network by mass of individuals. The work most closely associated with ours is by Siersdorfer et al. They 

analyzed quite 6 million comments collected from 67,000 YouTube videos to identify the connection between 

comments, views, comment ratings and topic categories. The authors show promising leads to predicting the 

comment ratings of latest unrated comments by building prediction models using the already rated comments. 

Pang, Lee and Vaithyanathan perform sentiment analysis on 2053 movie reviews collected from the web 

Movie Database (IMDb). They examined the hypothesis that sentiment analysis are often treated as a special 

case of topic-based text classification. Their work depicted that standard machine learning techniques such 

as Naive Bayes or Support Vector Machines (SVMs) outperform manual classification techniques that 

involve human intervention. 

However, the accuracy of sentiment classification falls in need of the accuracy of ordinary topic-based text 

categorization that uses such machine learning techniques. They reported that the simultaneous presence of 

positive and negative expressions (thwarted expectations) within the reviews make it difficult for the machine 

learning techniques to accurately predict the emotions. 

 

Content Acquisition and Web Scraping 

Data is collected using two primary sources: the YouTube Data API and web scraping techniques. The 

YouTube API provides structured access to video comments, while additional contextual data is enriched by 

Reddit dataset enhancing diversity and depth of training dataset. 

 

ML Models for Content Processing 

In machine learning we often combine different algorithms to get better and optimize results. Our main goal 

is to minimize loss function for which, one of the famous algorithm is XGBoost (Extreme boosting) 

technique which works by building an ensemble of decision trees sequentially where each new tree corrects 

the errors made by the previous one. It uses advanced optimization techniques and regularization methods 

that reduce overfitting and improve model performance. 

 

LightGBM is an open-source high-performance framework developed by Microsoft. It is an ensemble 

learning framework that uses gradient boosting method which constructs a strong learner by sequentially 

adding weak learners in a gradient descent manner. 

It’s designed for efficiency, scalability and high accuracy particularly with large datasets. It uses decision 

trees that grow efficiently by minimizing memory usage and optimizing training time. 

This enables LightGBM to outperform other frameworks in both speed and accuracy. 
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4. System Architecture 

The architecture of the Chrome extension is modular, ensuring scalability and ease of integration. 

The key components are: 

 Frontend Interface: Embedded within the YouTube UI, this interface provides buttons and visual 

elements to trigger comment analysis and display results. 

 Background Script: Manages communication between the extension's components and external 

APIs. 

This is the core component of the Chrome extension responsible for coordinating and managing 

communication between the various parts of the extension and external services. Specifically, it acts as an 

intermediary that listens for events or actions triggered by the user interface (like a button click), and then 

performs tasks such as fetching data from the YouTube API or sending preprocessed comments to the 

sentiment analysis model. It also handles messaging between content scripts (which interact with the 

YouTube page directly) 

 Data Processor: Handles all stages of textual preprocessing including data cleaning, tokenization, 

stop-word removal, stemming, and lemmatization. It also manages essential Natural Language Processing 

(NLP) tasks such as language detection, part-of-speech tagging, and syntactic parsing. This module is 

responsible for running the sentiment classification pipeline using two advanced gradient boosting 

algorithms—XGBoost and LightGBM. XGBoost is used for its robustness and high accuracy on sparse data, 

while LightGBM offers faster training speed and lower memory consumption. Together, they ensure the 

system can classify comments into categories like Positive, Negative, Neutral, or Spam with high efficiency 

and reliability across large-scale datasets. 

 Categorisation: Identifying the comments on YouTube video through extension and categorizing the 

comments into Positive, Neutral and Negative with scores 1,0, -1 respectively. 

 Visualization Module: Generates real-time word clouds, bar graphs, and sentiment distribution pie 

charts. 

 Storage Module: Utilizes browser local storage or optional cloud storage to maintain a history of 

comment data and analysis. 

 Web Interface:  Browser extension offers a control panel. Separate sections for different 

visualisations and comments sentiment analysis, which enables user to engage on board. 
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5. METHODOLOGY 

The analytical pipeline implemented in the extension includes: 

MODEL BUILDING 

Content Acquisition and Web Scraping: Comments are collected using two primary sources: the YouTube 

Data API and web scraping techniques. The YouTube API provides structured access to video comments, 

while additional contextual data is enriched by scraping Reddit discussions related to specific YouTube 

videos. Reddit threads often offer deeper discourse, humor, and critiques that complement YouTube comment 

data, making them valuable for improving model training and overall sentiment diversity. This multi-source 

approach ensures that our model generalizes better and captures a wider array of opinions and linguistic 

styles. 

 

Text Preprocessing: Includes cleaning, tokenization, lowercasing, stop-word removal, stemming, and 

lemmatization. 

 Cleaning: Removing unwanted characters, symbols, punctuation, or formatting issues. 

 Tokenization: Splitting text into individual words or meaningful chunks (tokens). 

 Lowercasing: Converting all characters to lowercase to maintain consistency and avoid duplicate 

tokens. 

 Stop-word Removal: Eliminating common words (like “the”, “is”, “and”) that carry little semantic 

meaning, special care is taken to retain crucial negation words such as "not," "no," and "neither," which are 

essential for accurately identifying negative sentiment. This ensures that the sentiment analysis process does 

not misinterpret the tone of comments that rely heavily on negation 
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 Stemming: Reducing words to their root forms (e.g., “running” → “run”), often by chopping off 

suffixes. 

 Lemmatization: Similar to stemming but more accurate, as it considers the word’s meaning and part 

of speech to find the dictionary form (e.g., “better” → “good”). 

 

These steps help standardize and simplify text data, making it easier for machine learning models to interpret 

and process it effectively. 

 

Sentiment Classification: Comments are fed into trained XGBoost and LightGBM models that classify 

them as Positive, Negative, Neutral, or Spam. These gradient boosting models are known for their high 

performance in classification tasks. 

XGBoost uses a regularized learning objective, which helps prevent overfitting and handles sparse data well. 

It builds additive decision trees sequentially and is highly customizable. 

LightGBM, in contrast, utilizes a histogram-based algorithm and leaf-wise tree growth strategy, making it 

faster and more memory-efficient while maintaining high accuracy, especially on large-scale datasets. It can 

handle large datasets with a lower memory footprint and has faster training speed than other boosting 

algorithms. 

Topic and Keyword Extraction: Frequent keywords and phrases are extracted for display via dynamic word 

clouds. These visualizations automatically update as new comment data is analysed, offering an intuitive way 

to explore user interest and trending topics. Word clouds serve as a powerful method to highlight prominent 

themes, helping users instantly grasp dominant sentiments and discussion areas. 

 

Relevance Filtering: Machine learning classifiers filter out spam or irrelevant content, ensuring that only 

meaningful comments are visualized and analysed. The relevance filter is built upon supervised models 

trained on labelled datasets comprising both legitimate and spam comments, enabling high-precision 

filtering. This preprocessing phase ensures that the visualizations and sentiment analyses reflect authentic 

user feedback, thereby increasing the reliability of interpretations and reducing noise in data-driven decision-

making processes. 

Correction Of Discrepancies: Including empty entries, duplicates, and inconsistent labels. 

 

 

 

 

Experimentation with Preprocessing Techniques using MLflow 

To identify the most effective preprocessing strategy, MLflow was utilized for experiment tracking and model 

optimization. Several experiments were logged using MLflow to systematically evaluate combinations of 

tokenization strategies, n-gram ranges, and vocabulary sizes. 

Key parameters evaluated included: 

Text Vectorization Technique: Multiple tokenization methods were compared, and TF- IDF (Term 

Frequency-Inverse Document Frequency) emerged as the most effective in capturing contextual importance 

and word relevance within the comments. 

Vocabulary Size (max_ features): Experimentation was conducted with various feature sizes, and it was 

determined that limiting the vocabulary to 10,000 words provided the optimal trade-off between model 

complexity and performance. 
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N-gram Range:  To incorporate local context and word sequences, different n-gram configurations were 

tested. The trigram model (capturing sequences of three words) performed best, particularly in identifying 

nuanced sentiment expressions. 

Also, the data had less number of data points for negative class. To tackle that oversampling was performed 

using Adasyn. 

 
 

Fig 1: Compares the three n-grams with TD-IDF and Count Vectorizer 

 

Model Selection and Hyperparameter Optimization 

Following the identification of the most effective text preprocessing pipeline (TF-IDF vectorization with a 

trigram configuration and a vocabulary size of 10,000), the next step was to determine the best-performing 

machine learning model for the sentiment classification task. 

Three advanced ensemble-based classifiers were selected: 

XGBoost (Extreme Gradient Boosting) 

LightGBM (Light Gradient Boosting Machine) 

Each of these models is well-known for its performance on structured/tabular data and has proven 

effectiveness in text classification tasks when paired with engineered features like TF- IDF. 

To ensure a fair and thorough comparison, hyperparameter optimization was carried out using Optuna, a 

powerful Bayesian optimization library.  Hyperopt allowed for an efficient and intelligent search across the 

hyperparameter space, reducing the time and computational resources required compared to traditional grid 

search or random search techniques.The best run for each model was logged and compared. 

Key Hyperparameters Tuned: 

For XGBoost: learning rate, maximum depth, number of estimators, max depth, and regularization                 

parameters. 

For LightGBM: number of leaves, learning rate, max depth. 

 

MLOps Workflow Integration 

To ensure the scalability, reliability, and continuous improvement of the YouTube Comment Analysis 

Chrome Extension, the integration of a robust MLOps (Machine Learning Operations) workflow is essential. 

MLOps bridges the gap between machine learning development and operations, enabling seamless 

collaboration, automation, and deployment. 
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The following components are integrated into the MLOps pipeline: 

 

Continuous Integration and Continuous Deployment (CI/CD) Pipelines for Model Updates 

 

CI/CD pipelines automate the entire lifecycle of the machine learning models, from code integration to 

deployment. Whenever a new model version or improvement is committed to the repository, automated 

testing and validation processes are triggered. These pipelines ensure that changes do not introduce bugs or 

performance regressions. Tools such as GitHub Actions, Jenkins, or GitLab CI are employed to implement 

these pipelines, streamlining development and ensuring consistency across environments. 

Automation of Model Training, Testing, and Deployment 

 

The model training process is scheduled or triggered by events such as new data arrival or performance 

degradation detection. Automated scripts preprocess the data, retrain models (XGBoost and LightGBM), 

evaluate them against benchmarks, and deploy the best-performing model into production. This eliminates 

the need for manual intervention, reduces errors, and enables rapid iteration. Automated testing includes unit 

tests for preprocessing steps, validation on hold-out datasets, and model performance comparison using 

metrics like accuracy, precision, recall, and F1-score. 

Monitoring and Version Control for Continuous Improvement 

Post deployment monitoring ensures that the model maintains its performance in real-world scenarios. Tools 

like Prometheus, Grafana, and custom logging systems track key performance indicators (KPIs) such as 

prediction latency, model confidence scores, drift detection, and user feedback trends. Version control of both 

the code and model artifacts (using platforms like DVC or MLflow) enables traceability and rollback in case 

of performance issues. This also facilitates reproducibility and auditing, which are critical for maintaining 

trust and compliance. 

Data and Pipeline Versioning with DVC 

To manage data dependencies, pipeline stages, and outputs, DVC (Data Version Control) was used. DVC 

allowed version control for datasets and models, enabling reproducible ML pipelines that could be tracked 

and reverted easily. 

The pipeline included the following stages: 

Data Partitioning:  Split the dataset into training, validation, and test sets, ensuring balanced class 

distributions. 

Data Preprocessing: Applied text cleaning and TF-IDF vectorization using the best- found             

configuration (trigram n-grams, max features = 10,000). 

Model Building: Trained selected models (Random Forest, XGBoost, LightGBM) using hyperparameter 

tuning via Hyperopt. 

Model Evaluation: Generated evaluation metrics (accuracy, F1-score) and visual artifacts like confusion 

matrices. 

Model Registry: Registered finalized models for deployment using MLflow and version- controlled storage. 
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Experiment Tracking with MLflow 

MLflow was integrated across all stages to enable comprehensive tracking of: 

 Experiments and model run. 

 Hyperparameters and preprocessing configurations. 

 Performance metrics and model artifacts. 

 Model registry. 

By implementing this MLOps framework, the YouTube Comment Analysis system becomes not only more 

robust and scalable but also easier to maintain and enhance over time. 

 

Building the Chrome Plugin 

1. Develop a Chrome extension to fetch YouTube comments 

This involves creating a browser extension using HTML, CSS, and JavaScript that integrates directly into 

the YouTube video page. The extension uses YouTube’s DOM structure or YouTube Data API to extract 

visible comments in real-time. It adds a user-friendly interface (such as a button or side panel) for users to 

initiate the analysis process without leaving the page. Permissions and manifest files are configured to ensure 

secure and smooth browser integration. 

2. Connect the extension to a Flask backend for sentiment analysis 

Once comments are fetched, the extension sends them to a Flask backend via HTTP requests (usually POST). 

The backend handles all data preprocessing and runs the sentiment analysis using trained XGBoost and 

LightGBM models. The server returns categorized sentiment data (e.g., Positive, Negative, Neutral, Spam) 

and other relevant metrics. This decoupled architecture allows for scalable updates and model improvements 

without changing the extension code. 

 

3. Display insights using charts, sentiment breakdowns, and comment statistics 

The returned sentiment data is rendered visually on the extension UI using JavaScript libraries like Chart.js 

or D3.js. Charts include pie charts for sentiment distribution, bar graphs for comment frequency, and word 

clouds for keyword trends. Additional statistics such as total comments analyzed, number of spam comments, 

or most frequent words help users interpret engagement patterns quickly and intuitively. This makes complex 

sentiment data accessible and actionable for creators, researchers, and analysts. 

 

DEPLOYMENT OF PLUGIN 

1. Deploy the Flask API on cloud servers 

The Flask-based backend, responsible for handling comment processing and sentiment analysis, is hosted on 

a cloud platform such as AWS. This deployment ensures high availability, scalability, and secure access to 

the API endpoints. Containerization tools like Docker can be used for consistent deployment environments, 

and auto-scaling options can handle varying user loads effectively. 

 

2. Ensure seamless communication between the extension and the backend 

The Chrome extension communicates with the cloud-hosted Flask API via secure HTTP requests (e.g., 

RESTful POST/GET). CORS (Cross-Origin Resource Sharing) policies are configured properly to allow the 

browser extension to interact with the server without security issues. Consistent response structures and error-

handling mechanisms are implemented to ensure smooth and reliable data exchange between the frontend 

and backend components. 
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3. Dockerizing the Application 

The first step in our deployment plan is to containerize the Flask backend using Docker. This ensures that 

the application, along with its dependencies and environment, can run uniformly across various systems. 

A Dockerfile will be created to define the build environment and dependencies. 

The Flask application will be encapsulated in a Docker container and tested locally to confirm proper          

functionality. 

4. Pushing to AWS Elastic Container Registry (ECR) 

Once the backend is successfully containerized, the Docker image will be uploaded to Amazon Elastic 

Container Registry (ECR) — a secure, scalable container image repository provided by AWS. 

 Using AWS CLI, we will authenticate Docker with AWS and push the image to a private ECR 

repository. 

 This allows us to manage versioning and access controls for our application container. Running the 

Application on AWS EC2 

After uploading the image to ECR, the next step will be to deploy the application on an Amazon EC2 instance. 

 The EC2 instance will be configured with Docker. 

 We will pull the Docker image from ECR and run the container, exposing the necessary port for API 

communication. 

 

6. IMPLEMENTATION 

Data Acquisition and Preprocessing 

 

 

Content Processing Agent Implementation 

For the processing agent, we implemented multiple summarization approaches 

 

Extractive Summarization: 

 Text Rank algorithm implementation for baseline summarization                                                                       

  TF-IDF based extraction for comparison purposes 
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MODEL IMPLEMENTATION 
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FRONTEND IMPLEMENTATION 
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7. RESULTS 

The implementation and evaluation of our Comment Analyser Extension yielded several notable findings 

across multiple dimensions 

 

PERFORMANCE METRICS 

 

DATASET ACCURACY PRECISION 

(-1,0,1) 

RECALL 

(-1,0,1) 

F1 SCORE 

(-1,0,1) 

TRAINING 0.93 0.91,0.88,0.98 0.90,0.98,0.90 0.91,0.93,0.94 

TEST 0.87 0.81,0.84,0.92 0.78,0.97,0.83 0.79,0.90,0.83 

 

 Training Set shows high performance with an accuracy of 93%, indicating the model learns well on 

the data it was trained on. 

 Test Set performance drops to 87%, which is still strong, but suggests slight overfitting. 

 Class 0 (Neutral) consistently shows the highest recall, especially on the test set (0.97), meaning the 

model is very good at identifying neutral comments. 

 Class -1 (Negative) has the lowest recall on the test set (0.78), indicating room for improvement in 

identifying negative sentiment. 
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System Screenshots 
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The sentiment analysis model classified YouTube comments into positive, negative, or neutral categories 

with a high accuracy. It was integrated with a Flask backend and a Chrome extension, allowing real-time 

analysis and visualization through charts and word clouds. MLOps tools like DVC and MLflow were used 

for version control, pipeline management, and experiment tracking, ensuring reproducibility and scalability. 

Dockerization is complete, and deployment on AWS is planned. The project successfully showcases the 

effectiveness of combining ML and MLOps in a practical application. 

 

 

8. CONCLUSION 

 
This project provides an efficient, automated solution for analyzing YouTube comments, helping users  gain  

insights  into  audience  sentiment.  By  leveraging  machine  learning,  the  system eliminates the need for 

manual comment analysis, making it a valuable tool for content creators, marketers, and researchers. 

 

The integration of MLOps ensures that the model remains up-to-date, scalable, and reliable, allowing for 

continuous improvements in accuracy and efficiency. The Chrome plugin makes sentiment analysis 

accessible and user-friendly, enabling real-time feedback analysis without requiring technical expertise. 

By combining sentiment analysis, data visualization, and MLOps, this project bridges the gap between raw 

audience feedback and actionable insights, empowering users to make informed decisions based on audience 

reactions. 
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