
www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505900 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h784

Comment Analysis Chrome Extension for You

Tube

1*Gandharv Rudra, 2Aseem Saini,3Keshav ,4Sanjay Kumar Singh,

1 Final year BTech Student,2 Final Year BTech Student,3 Final Year BTech Student,4Professor, USAR

1Department of Artificial Intelligence and Machine Learning,

1 USAR, GGSIP University, Delhi, India

Abstract: This project focuses on the application of MLOps principles in developing a sentiment analysis

system for YouTube comments, delivered through a Chrome Extension interface. The objective is to automate

the process of collecting, analysing, and visualizing user sentiments from YouTube videos using a machine

learning pipeline that integrates seamlessly with a real-world deployment setup. At the core, a pre-trained

machine learning model is employed to classify comments into positive, negative, or neutral categories. The

model, along with the TF-IDF vectorizer and preprocessing logic, is versioned and tracked using ML Flow,

ensuring reproducibility and traceability throughout the development lifecycle. The dataset and model

artifacts are managed using DVC (Data Version Control), enabling efficient storage and collaboration. For

storage and deployment readiness, the model and metadata are synced to an AWS S3 bucket, allowing easy

integration during inference, the backend is built using Flask, exposing RESTful API endpoints to receive

comments, perform predictions, and return analytical insights including a sentiment pie chart, word cloud,

and trend graph. These endpoints are consumed by the frontend Chrome Extension, which acts as a

lightweight client to display insights in real time, While deployment is pending, the planned strategy involves

containerizing the backend using Docker and deploying it on an EC2 instance, enabling scalable and

accessible access to the model via API, this project is a practical demonstration of applying the MLOps

lifecycle in a real-world application, covering model training, versioning, pipeline management, artifact

tracking, and deployment preparation. It offers a blueprint for integrating machine learning models into

production environments with reliability and scalability.

Key Words – Data versioning, Natural Language Processing, Sentiment Analysis, MLOps, Browser

Extension, Flask.

1. INTRODUCTION

YouTube is one of the largest content-sharing platforms globally, engaging millions of users who actively

participate through likes, shares, and especially comments on videos. These comments often contain a wealth

of unstructured information that reflects the audience's sentiments, preferences, and reactions to the content.

For content creators, businesses, and researchers, analyzing this data can offer significant insights that inform

decision-making, strategy development, and content improvement. However, the volume of comments on

popular videos can reach thousands or even millions, making manual analysis not only impractical but also

inefficient and error-prone.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505900 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h785

To address this challenge, the project proposes a YouTube Comment Analysis system in the form of a Chrome

extension. The primary goal of this system is to automatically classify comments into three sentiment

categories: positive, negative, or neutral. In addition to sentiment prediction, the extension will provide users

with analytical visualizations such as sentiment distribution through pie charts, average comment length,

unique commenter statistics, and trend graphs showing sentiment over time. A word cloud will also be

generated to highlight the most frequently used terms in the comments.

The frontend of the extension is developed using JavaScript and HTML, enabling seamless integration with

the YouTube interface and offering a user-friendly experience. The backend is powered by a Flask application

that handles machine learning inference and serves dynamic visual outputs. Communication between the

frontend and backend is facilitated through API calls, ensuring real-time interaction and response delivery.

What sets this project apart is the inclusion of a full MLOps (Machine Learning Operations) pipeline. The

system is designed not just as a standalone tool but as a deployable, maintainable, and scalable machine

learning application. Tools like DVC (Data Version Control) are used to track dataset and model versioning,

ensuring reproducibility. MLflow is employed for tracking experiments, managing model lifecycle, and

monitoring performance. The backend model and infrastructure will be containerized using Docker for

consistent deployment across environments. The deployment plan involves pushing the Docker image to

AWS ECR (Elastic Container Registry) and running the service on an EC2 instance, thereby simulating a

production-ready deployment pipeline.

By combining machine learning with MLOps principles, the project emphasizes not just the predictive

capabilities of the model but also the reliability, scalability, and maintainability of the entire application

lifecycle. This approach ensures that future enhancements—such as retraining the model with new data or

scaling the service to accommodate higher loads—can be implemented smoothly and systematically.

2. RESEARCH GAP

Despite significant advancements in artificial intelligence and sentiment analysis in the realm of social media

platforms such as Reddit and YouTube. However, the availability of easy-to-use tools for non-technical users

that analyse YouTube comments directly in-browser remains limited. Our proposed extension fills this gap

by providing an accessible, browser-native tool for comment analysis tailored to YouTube.

1) Time-Consuming and Inefficient: Manually reading and categorizing thousands of comments on a

video is impractical and slows down decision-making for content creators and marketers.

2) Subjectivity and Inconsistency: Human-based sentiment analysis is prone to bias and inconsistency,

leading to inaccurate insights about audience perception.

3) Lack of Visualization: Raw comments do not provide structured insights, making it difficult to

analyse sentiment trends and engagement levels over time.

4) Scalability Issues: As video content grows, so does the volume of comments, making it impossible

to process them efficiently without automation.

5) Limited Accessibility to Insights: Non-technical users lack tools to extract meaningful information

from comments, restricting data-driven content strategies.

Trend Tracking: Monitors how sentiment changes over time, helping influencers identify how different

content affects audience perception.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505900 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h786

Additional Comment Analysis Features:

Word Cloud Visualization: Generates a word cloud showcasing the most frequently used words and phrases

in the comments. Helps quickly identify trending topics, keywords, or recurring themes.

Average Comment Length: Calculates and displays the average length of comments, indicating the depth

of audience engagement.

Average Comment Score: Calculates and displays the average comment score by summing up all the

comments.

3. REVIEW OF RELATED WORK

Several sentiment analysis of social networks are performed such as YouTube and Reddit.

These researches affect comments, Reddit and other metadata collected from social networking sites from

profile of users of public events and analysed to get significant and interesting insights about usage of social

network by mass of individuals. The work most closely associated with ours is by Siersdorfer et al. They

analyzed quite 6 million comments collected from 67,000 YouTube videos to identify the connection between

comments, views, comment ratings and topic categories. The authors show promising leads to predicting the

comment ratings of latest unrated comments by building prediction models using the already rated comments.

Pang, Lee and Vaithyanathan perform sentiment analysis on 2053 movie reviews collected from the web

Movie Database (IMDb). They examined the hypothesis that sentiment analysis are often treated as a special

case of topic-based text classification. Their work depicted that standard machine learning techniques such

as Naive Bayes or Support Vector Machines (SVMs) outperform manual classification techniques that

involve human intervention.

However, the accuracy of sentiment classification falls in need of the accuracy of ordinary topic-based text

categorization that uses such machine learning techniques. They reported that the simultaneous presence of

positive and negative expressions (thwarted expectations) within the reviews make it difficult for the machine

learning techniques to accurately predict the emotions.

Content Acquisition and Web Scraping

Data is collected using two primary sources: the YouTube Data API and web scraping techniques. The

YouTube API provides structured access to video comments, while additional contextual data is enriched by

Reddit dataset enhancing diversity and depth of training dataset.

ML Models for Content Processing

In machine learning we often combine different algorithms to get better and optimize results. Our main goal

is to minimize loss function for which, one of the famous algorithm is XGBoost (Extreme boosting)

technique which works by building an ensemble of decision trees sequentially where each new tree corrects

the errors made by the previous one. It uses advanced optimization techniques and regularization methods

that reduce overfitting and improve model performance.

LightGBM is an open-source high-performance framework developed by Microsoft. It is an ensemble

learning framework that uses gradient boosting method which constructs a strong learner by sequentially

adding weak learners in a gradient descent manner.

It’s designed for efficiency, scalability and high accuracy particularly with large datasets. It uses decision

trees that grow efficiently by minimizing memory usage and optimizing training time.

This enables LightGBM to outperform other frameworks in both speed and accuracy.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505900 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h787

4. System Architecture

The architecture of the Chrome extension is modular, ensuring scalability and ease of integration.

The key components are:

 Frontend Interface: Embedded within the YouTube UI, this interface provides buttons and visual

elements to trigger comment analysis and display results.

 Background Script: Manages communication between the extension's components and external

APIs.

This is the core component of the Chrome extension responsible for coordinating and managing

communication between the various parts of the extension and external services. Specifically, it acts as an

intermediary that listens for events or actions triggered by the user interface (like a button click), and then

performs tasks such as fetching data from the YouTube API or sending preprocessed comments to the

sentiment analysis model. It also handles messaging between content scripts (which interact with the

YouTube page directly)

 Data Processor: Handles all stages of textual preprocessing including data cleaning, tokenization,

stop-word removal, stemming, and lemmatization. It also manages essential Natural Language Processing

(NLP) tasks such as language detection, part-of-speech tagging, and syntactic parsing. This module is

responsible for running the sentiment classification pipeline using two advanced gradient boosting

algorithms—XGBoost and LightGBM. XGBoost is used for its robustness and high accuracy on sparse data,

while LightGBM offers faster training speed and lower memory consumption. Together, they ensure the

system can classify comments into categories like Positive, Negative, Neutral, or Spam with high efficiency

and reliability across large-scale datasets.

 Categorisation: Identifying the comments on YouTube video through extension and categorizing the

comments into Positive, Neutral and Negative with scores 1,0, -1 respectively.

 Visualization Module: Generates real-time word clouds, bar graphs, and sentiment distribution pie

charts.

 Storage Module: Utilizes browser local storage or optional cloud storage to maintain a history of

comment data and analysis.

 Web Interface: Browser extension offers a control panel. Separate sections for different

visualisations and comments sentiment analysis, which enables user to engage on board.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505900 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h788

5. METHODOLOGY

The analytical pipeline implemented in the extension includes:

MODEL BUILDING

Content Acquisition and Web Scraping: Comments are collected using two primary sources: the YouTube

Data API and web scraping techniques. The YouTube API provides structured access to video comments,

while additional contextual data is enriched by scraping Reddit discussions related to specific YouTube

videos. Reddit threads often offer deeper discourse, humor, and critiques that complement YouTube comment

data, making them valuable for improving model training and overall sentiment diversity. This multi-source

approach ensures that our model generalizes better and captures a wider array of opinions and linguistic

styles.

Text Preprocessing: Includes cleaning, tokenization, lowercasing, stop-word removal, stemming, and

lemmatization.

 Cleaning: Removing unwanted characters, symbols, punctuation, or formatting issues.

 Tokenization: Splitting text into individual words or meaningful chunks (tokens).

 Lowercasing: Converting all characters to lowercase to maintain consistency and avoid duplicate

tokens.

 Stop-word Removal: Eliminating common words (like “the”, “is”, “and”) that carry little semantic

meaning, special care is taken to retain crucial negation words such as "not," "no," and "neither," which are

essential for accurately identifying negative sentiment. This ensures that the sentiment analysis process does

not misinterpret the tone of comments that rely heavily on negation

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505900 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h789

 Stemming: Reducing words to their root forms (e.g., “running” → “run”), often by chopping off

suffixes.

 Lemmatization: Similar to stemming but more accurate, as it considers the word’s meaning and part

of speech to find the dictionary form (e.g., “better” → “good”).

These steps help standardize and simplify text data, making it easier for machine learning models to interpret

and process it effectively.

Sentiment Classification: Comments are fed into trained XGBoost and LightGBM models that classify

them as Positive, Negative, Neutral, or Spam. These gradient boosting models are known for their high

performance in classification tasks.

XGBoost uses a regularized learning objective, which helps prevent overfitting and handles sparse data well.

It builds additive decision trees sequentially and is highly customizable.

LightGBM, in contrast, utilizes a histogram-based algorithm and leaf-wise tree growth strategy, making it

faster and more memory-efficient while maintaining high accuracy, especially on large-scale datasets. It can

handle large datasets with a lower memory footprint and has faster training speed than other boosting

algorithms.

Topic and Keyword Extraction: Frequent keywords and phrases are extracted for display via dynamic word

clouds. These visualizations automatically update as new comment data is analysed, offering an intuitive way

to explore user interest and trending topics. Word clouds serve as a powerful method to highlight prominent

themes, helping users instantly grasp dominant sentiments and discussion areas.

Relevance Filtering: Machine learning classifiers filter out spam or irrelevant content, ensuring that only

meaningful comments are visualized and analysed. The relevance filter is built upon supervised models

trained on labelled datasets comprising both legitimate and spam comments, enabling high-precision

filtering. This preprocessing phase ensures that the visualizations and sentiment analyses reflect authentic

user feedback, thereby increasing the reliability of interpretations and reducing noise in data-driven decision-

making processes.

Correction Of Discrepancies: Including empty entries, duplicates, and inconsistent labels.

Experimentation with Preprocessing Techniques using MLflow

To identify the most effective preprocessing strategy, MLflow was utilized for experiment tracking and model

optimization. Several experiments were logged using MLflow to systematically evaluate combinations of

tokenization strategies, n-gram ranges, and vocabulary sizes.

Key parameters evaluated included:

Text Vectorization Technique: Multiple tokenization methods were compared, and TF- IDF (Term

Frequency-Inverse Document Frequency) emerged as the most effective in capturing contextual importance

and word relevance within the comments.

Vocabulary Size (max_ features): Experimentation was conducted with various feature sizes, and it was

determined that limiting the vocabulary to 10,000 words provided the optimal trade-off between model

complexity and performance.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505900 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h790

N-gram Range: To incorporate local context and word sequences, different n-gram configurations were

tested. The trigram model (capturing sequences of three words) performed best, particularly in identifying

nuanced sentiment expressions.

Also, the data had less number of data points for negative class. To tackle that oversampling was performed

using Adasyn.

Fig 1: Compares the three n-grams with TD-IDF and Count Vectorizer

Model Selection and Hyperparameter Optimization

Following the identification of the most effective text preprocessing pipeline (TF-IDF vectorization with a

trigram configuration and a vocabulary size of 10,000), the next step was to determine the best-performing

machine learning model for the sentiment classification task.

Three advanced ensemble-based classifiers were selected:

XGBoost (Extreme Gradient Boosting)

LightGBM (Light Gradient Boosting Machine)

Each of these models is well-known for its performance on structured/tabular data and has proven

effectiveness in text classification tasks when paired with engineered features like TF- IDF.

To ensure a fair and thorough comparison, hyperparameter optimization was carried out using Optuna, a

powerful Bayesian optimization library. Hyperopt allowed for an efficient and intelligent search across the

hyperparameter space, reducing the time and computational resources required compared to traditional grid

search or random search techniques.The best run for each model was logged and compared.

Key Hyperparameters Tuned:

For XGBoost: learning rate, maximum depth, number of estimators, max depth, and regularization

parameters.

For LightGBM: number of leaves, learning rate, max depth.

MLOps Workflow Integration

To ensure the scalability, reliability, and continuous improvement of the YouTube Comment Analysis

Chrome Extension, the integration of a robust MLOps (Machine Learning Operations) workflow is essential.

MLOps bridges the gap between machine learning development and operations, enabling seamless

collaboration, automation, and deployment.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505900 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h791

The following components are integrated into the MLOps pipeline:

Continuous Integration and Continuous Deployment (CI/CD) Pipelines for Model Updates

CI/CD pipelines automate the entire lifecycle of the machine learning models, from code integration to

deployment. Whenever a new model version or improvement is committed to the repository, automated

testing and validation processes are triggered. These pipelines ensure that changes do not introduce bugs or

performance regressions. Tools such as GitHub Actions, Jenkins, or GitLab CI are employed to implement

these pipelines, streamlining development and ensuring consistency across environments.

Automation of Model Training, Testing, and Deployment

The model training process is scheduled or triggered by events such as new data arrival or performance

degradation detection. Automated scripts preprocess the data, retrain models (XGBoost and LightGBM),

evaluate them against benchmarks, and deploy the best-performing model into production. This eliminates

the need for manual intervention, reduces errors, and enables rapid iteration. Automated testing includes unit

tests for preprocessing steps, validation on hold-out datasets, and model performance comparison using

metrics like accuracy, precision, recall, and F1-score.

Monitoring and Version Control for Continuous Improvement

Post deployment monitoring ensures that the model maintains its performance in real-world scenarios. Tools

like Prometheus, Grafana, and custom logging systems track key performance indicators (KPIs) such as

prediction latency, model confidence scores, drift detection, and user feedback trends. Version control of both

the code and model artifacts (using platforms like DVC or MLflow) enables traceability and rollback in case

of performance issues. This also facilitates reproducibility and auditing, which are critical for maintaining

trust and compliance.

Data and Pipeline Versioning with DVC

To manage data dependencies, pipeline stages, and outputs, DVC (Data Version Control) was used. DVC

allowed version control for datasets and models, enabling reproducible ML pipelines that could be tracked

and reverted easily.

The pipeline included the following stages:

Data Partitioning: Split the dataset into training, validation, and test sets, ensuring balanced class

distributions.

Data Preprocessing: Applied text cleaning and TF-IDF vectorization using the best- found

configuration (trigram n-grams, max features = 10,000).

Model Building: Trained selected models (Random Forest, XGBoost, LightGBM) using hyperparameter

tuning via Hyperopt.

Model Evaluation: Generated evaluation metrics (accuracy, F1-score) and visual artifacts like confusion

matrices.

Model Registry: Registered finalized models for deployment using MLflow and version- controlled storage.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505900 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h792

Experiment Tracking with MLflow

MLflow was integrated across all stages to enable comprehensive tracking of:

 Experiments and model run.

 Hyperparameters and preprocessing configurations.

 Performance metrics and model artifacts.

 Model registry.

By implementing this MLOps framework, the YouTube Comment Analysis system becomes not only more

robust and scalable but also easier to maintain and enhance over time.

Building the Chrome Plugin

1. Develop a Chrome extension to fetch YouTube comments

This involves creating a browser extension using HTML, CSS, and JavaScript that integrates directly into

the YouTube video page. The extension uses YouTube’s DOM structure or YouTube Data API to extract

visible comments in real-time. It adds a user-friendly interface (such as a button or side panel) for users to

initiate the analysis process without leaving the page. Permissions and manifest files are configured to ensure

secure and smooth browser integration.

2. Connect the extension to a Flask backend for sentiment analysis

Once comments are fetched, the extension sends them to a Flask backend via HTTP requests (usually POST).

The backend handles all data preprocessing and runs the sentiment analysis using trained XGBoost and

LightGBM models. The server returns categorized sentiment data (e.g., Positive, Negative, Neutral, Spam)

and other relevant metrics. This decoupled architecture allows for scalable updates and model improvements

without changing the extension code.

3. Display insights using charts, sentiment breakdowns, and comment statistics

The returned sentiment data is rendered visually on the extension UI using JavaScript libraries like Chart.js

or D3.js. Charts include pie charts for sentiment distribution, bar graphs for comment frequency, and word

clouds for keyword trends. Additional statistics such as total comments analyzed, number of spam comments,

or most frequent words help users interpret engagement patterns quickly and intuitively. This makes complex

sentiment data accessible and actionable for creators, researchers, and analysts.

DEPLOYMENT OF PLUGIN

1. Deploy the Flask API on cloud servers

The Flask-based backend, responsible for handling comment processing and sentiment analysis, is hosted on

a cloud platform such as AWS. This deployment ensures high availability, scalability, and secure access to

the API endpoints. Containerization tools like Docker can be used for consistent deployment environments,

and auto-scaling options can handle varying user loads effectively.

2. Ensure seamless communication between the extension and the backend

The Chrome extension communicates with the cloud-hosted Flask API via secure HTTP requests (e.g.,

RESTful POST/GET). CORS (Cross-Origin Resource Sharing) policies are configured properly to allow the

browser extension to interact with the server without security issues. Consistent response structures and error-

handling mechanisms are implemented to ensure smooth and reliable data exchange between the frontend

and backend components.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505900 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h793

3. Dockerizing the Application

The first step in our deployment plan is to containerize the Flask backend using Docker. This ensures that

the application, along with its dependencies and environment, can run uniformly across various systems.

A Dockerfile will be created to define the build environment and dependencies.

The Flask application will be encapsulated in a Docker container and tested locally to confirm proper

functionality.

4. Pushing to AWS Elastic Container Registry (ECR)

Once the backend is successfully containerized, the Docker image will be uploaded to Amazon Elastic

Container Registry (ECR) — a secure, scalable container image repository provided by AWS.

 Using AWS CLI, we will authenticate Docker with AWS and push the image to a private ECR

repository.

 This allows us to manage versioning and access controls for our application container. Running the

Application on AWS EC2

After uploading the image to ECR, the next step will be to deploy the application on an Amazon EC2 instance.

 The EC2 instance will be configured with Docker.

 We will pull the Docker image from ECR and run the container, exposing the necessary port for API

communication.

6. IMPLEMENTATION

Data Acquisition and Preprocessing

Content Processing Agent Implementation

For the processing agent, we implemented multiple summarization approaches

Extractive Summarization:

 Text Rank algorithm implementation for baseline summarization

 TF-IDF based extraction for comparison purposes

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505900 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h794

MODEL IMPLEMENTATION

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505900 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h795

FRONTEND IMPLEMENTATION

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505900 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h796

7. RESULTS

The implementation and evaluation of our Comment Analyser Extension yielded several notable findings

across multiple dimensions

PERFORMANCE METRICS

DATASET ACCURACY PRECISION

(-1,0,1)

RECALL

(-1,0,1)

F1 SCORE

(-1,0,1)

TRAINING 0.93 0.91,0.88,0.98 0.90,0.98,0.90 0.91,0.93,0.94

TEST 0.87 0.81,0.84,0.92 0.78,0.97,0.83 0.79,0.90,0.83

 Training Set shows high performance with an accuracy of 93%, indicating the model learns well on

the data it was trained on.

 Test Set performance drops to 87%, which is still strong, but suggests slight overfitting.

 Class 0 (Neutral) consistently shows the highest recall, especially on the test set (0.97), meaning the

model is very good at identifying neutral comments.

 Class -1 (Negative) has the lowest recall on the test set (0.78), indicating room for improvement in

identifying negative sentiment.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505900 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h797

System Screenshots

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505900 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h798

The sentiment analysis model classified YouTube comments into positive, negative, or neutral categories

with a high accuracy. It was integrated with a Flask backend and a Chrome extension, allowing real-time

analysis and visualization through charts and word clouds. MLOps tools like DVC and MLflow were used

for version control, pipeline management, and experiment tracking, ensuring reproducibility and scalability.

Dockerization is complete, and deployment on AWS is planned. The project successfully showcases the

effectiveness of combining ML and MLOps in a practical application.

8. CONCLUSION

This project provides an efficient, automated solution for analyzing YouTube comments, helping users gain

insights into audience sentiment. By leveraging machine learning, the system eliminates the need for

manual comment analysis, making it a valuable tool for content creators, marketers, and researchers.

The integration of MLOps ensures that the model remains up-to-date, scalable, and reliable, allowing for

continuous improvements in accuracy and efficiency. The Chrome plugin makes sentiment analysis

accessible and user-friendly, enabling real-time feedback analysis without requiring technical expertise.

By combining sentiment analysis, data visualization, and MLOps, this project bridges the gap between raw

audience feedback and actionable insights, empowering users to make informed decisions based on audience

reactions.

REFRENCES
[1] Chen, T., & Guestrin, C. (2016).XGBoost: A Scalable Tree Boosting System.Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

[2] Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., ... & Liu, T. Y. (2017).LightGBM: A Highly

Efficient Gradient Boosting Decision Tree.Proceedings of the 31st International Conference on Neural

Information Processing Systems.

[3] Hutto, C. J., & Gilbert, E. (2014).VADER: A Parsimonious Rule-Based Model for Sentiment Analysis of

Social Media Text.Proceedings of the International AAAI Conference on Web and Social Media (ICWSM).

[5] Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019).BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding.Proceedings of NAACL-HLT.

[6] Bird, S., Klein, E., & Loper, E. (2009).Natural Language Processing with Python: Analyzing Text with

the Natural Language Toolkit.O’Reilly Media.

[7] Google Developers.YouTube Data API v3.

http://www.ijcrt.org/

www.ijcrt.org © 2025 IJCRT | Volume 13, Issue 5 May 2025 | ISSN: 2320-2882

IJCRT2505900 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org h799

[8] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, É.

(2011).Scikit-learn: Machine Learning in Python.Journal of Machine Learning Research, 12, 2825–2830.

http://www.ijcrt.org/

