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Abstract – Text-to-Image synthesis, image generation 

from text descriptions, has progressed with deep 

generative models. Yet, language and visual output 

alignment is still difficult due to ambiguity and 

semantic complexity. The review discusses recent 

approaches that improve semantic alignment with 

better text encoders, generative architectures, and 

alignment methods. Methods such as CLIP 

embedding’s, LLM adapters, and semantically 

conditioned diffusion models are discussed. Models 

like AttnGan, Stable Diffusion, and OmniDiffusion are 

compared, along with main datasets, metrics, and 

open challenges. 

Index terms – Text-to-Image synthesis, semantic 

understanding, generative models, diffusion, language 

models, multimodal alignment. 

INTRODUCTION 

Text-to-image synthesis is the task of finding images 

from natural language descriptions, falling at the 

crossroads of computer vision and natural language 

processing. It enables various applications, such as AI-

augmented creativity, accessibility, and content creation. 

Previous methods—particularly those using Generative 

Adversarial Networks (GANs)—prioritized finding 

visually realistic images but not semantically accurate 

ones, usually conflating sentences such as "a red bird with 

black wings" and "a black bird with red wings" [1] [2]. 

The space has since been improved with the advent of 

vision-language corresponding models such as CLIP, 

which align the text and image modalities in the same 

embedding space [3]. Innovations like Latent Diffusion 

Models (LDMs) and autoregressive models such as 

DALL·E 3 have also furthered the capacity to produce 

fine-grained semantics and intricate compositions [4] [3]. 

This work presents a specific review of these advances, 

highlighting semantic awareness—how models deduce, 

encode, and decode linguistic meaning into visually 

sensible outputs. 

 

LITERATURE REVIEW 

Text-to-image synthesis has witnessed dramatic 

change, driven by the marriage of generative modeling 

and advanced semantic alignment methods. This part 

summarizes landmark contributions, mapping 

advancements from attention-based GANs to cutting-edge 

diffusion models combined with large language models 

(LLMs) and adaptive modular frameworks. 

A. Attention-Based GANs: 

One of the earliest seminal works in this area is 

AttnGAN [5], which uses a char-CNN-RNN text encoder 

and a stacked GAN generator. It presents a word-level 

attention mechanism that allows for fine-grained 

correspondence between textual hints and image regions. 

While AttnGAN achieves a fairly high Fréchet Inception 

Distance (FID) of 23.5, it was the first to introduce 

attention-driven generation in this field. 

Based on this idea, DM-GAN [11] incorporates a 

dynamic memory module within the generative process. 

This module improves image features by selectively 

paying attention to uncertain textual areas at synthesis 

time, leading to enhanced image-text correspondence and 

an FID of 20.6. 

B. Contrastive and Semantic Learning in GANs: 

XMC-GAN [2] improves semantic fidelity by 

adding contrastive losses between image-caption pairs 

using CLIP embedding’s to close the semantic gap. The 

model has a reduced FID of 19.8, highlighting the 

advantages of cross-modal pretraining and contrastive 

alignment. 

In parallel, SD-GAN [7] uses a Siamese network structure 

and Semantic Conditional Batch Normalization (SCBN) 

to enhance paraphrasing robustness. The BiLSTM-based 

encoder and two-pathway architecture provide stable 
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generation over linguistic variations, reducing the FID to 

17.4. 

C. Latent Diffusion and Modular Frameworks: 

The coming of Stable Diffusion [4] was a 

paradigm shift with the use of Latent Diffusion Models 

(LDMs) conditioned on CLIP embedding’s. Acting in 

latent space allows high-quality and efficient generation 

of images, with FID equal to 15.2. Its modular and open-

source architecture has catalyzed industry and research 

adoption. 

D. LLM-Driven Diffusion Models: 

OmniDiffusion [1] is a major breakthrough in 

integrating a T5-based LLM trained with adapter modules 

into a diffusion framework. The architecture is robust at 

understanding long-form and multilingual inputs, 

attaining an FID of 12.3 and demonstrating the 

importance of more profound linguistic understanding in 

image generation. 

SD-XL [6] extends the Stable Diffusion architecture with 

an XL Adapter and a U-Net++ backbone, improving 

compositional accuracy and high-resolution generation. 

The model shows a higher FID of 11.7, resulting from 

improved prompt conditioning and structural 

improvements. 

E. Adaptive Expert-Based Approaches: 

The cutting-edge RAPHAEL model [8] integrates 

CLIP, LLMs, and a Mixture-of-Experts (MoE) diffusion 

model. It leverages semantic routing to adaptively choose 

expert routes depending on prompt difficulty, allowing for 

scalable and flexible image creation. RAPHAEL realizes 

the highest FID to date at 11.2, showing the strength of 

modular, expert-controlled designs. 

I.  Scope and Contributions 

The primary contributions of this review are: 

 Survey of semantic-aware text encoding 

techniques. 

 Architectural review of generative 

architecture. 

 Semantic alignment strategy discussion. 

 Survey of evaluation datasets and metrics. 

 Comparison and open problems. 

II.  Text Encoding and Semantic Representation 

One of the principal pillars of good text-to-image 

generation is the degree to which a system can represent 

natural-language input as dense, descriptive semantic 

representations. These need to capture both the surface 

meaning (syntax and word-level information) and the 

underlying intent or context (semantics, common-sense 

relationships). Encoding approaches have progressed 

from early recurrent networks to advanced transformer-

based models that rely on large-scale pertaining between 

vision and language modalities. 

A. CLIP- Based Encoders 

CLIP (Contrastive Language–Image 

Pre-training) [4]is now the foundation of 

numerous contemporary text-to-image models 

owing to its dual-modality learning paradigm. 

It learns image and text embedding’s jointly by 

optimizing a contrastive loss over a massive 

image-caption corpus. The next encoder- most 

often a pre-trained transformer model on a 

diverse set of internet-sourced captions- is a 

fixed length embedding aligned with visual 

features form a ResNet or ViT image encoder. 

This joint embedding space facilitates zero-shot 

image classifications, retrieval, and, more 

applicably, text-to-image conditioning. CLIP’s 

architecture dos impose some constraints:  

 Fixed Token Limit: CLIP only encodes 

the first 77 tokens, which restricts its 

capacity to handle long-form, 

descriptive inputs. 

 Monolingual Bias: While trained on 

multifarious text, CLIP performs best in 

English and does not have strong 

multilingual generalization. 

 Shortage of Deep Semantics: CLIP 

embedding’s tend to favor patterns of 

co-occurrences rather than 

compositional semantics, and this can 

cause literal but shallowly semantic 

generations. 

      In spite of these limitations, models such as Stable 

Diffusion [4]and SD-XL [6] use CLIP as a backbone 

because of its high alignment scores and latent diffusion 

pipeline compatibility. 

B. LLM-Powered Adapters 

To counteract the stiffness of CLIP-

based encoders, recent work has investigated the 

incorporation of Large Language Models 

(LLMs) as a source of dense semantic 

representations. Tan et al. [1] presented 

OmniDiffusion, a three-stage architecture where 

a pertained LLM (e.g., T5 or GPT) produces text 

embedding’s, which are fed through a 

lightweight projection module—termed an 

adapter—to realign them with CLIP's visual 

latent space. 

The advantages of this strategy are: 

 Multilingual support: LLMs pre-trained 

on multilingual datasets are capable of 

processing multiple languages, dialects, 

and cultured allusions. 

 Extended prompting: As opposed to 

CLIP, LLMs take long and 

sophisticated inputs (e.g., dialogues, 

directions, or paragraphs). 

 Contextual Richness: LLMs 

embedding’s capture higher-order 

semantics, so it becomes feasible to 

understand abstract or metaphorical 

prompts (e.g., “a solitary castle under 

existential skies”). 

Adapters are effective bridges that circumvent 

retraining the entire diffusion model. They add 

little overhead and can be adapted on task-

specific datasets, allowing domain adaptions and 
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personalization without compromising 

generalization. 

 

C. Siamese and Contrastive Text Embedding’s:  

Yin et al. [7] and others suggest 

employing Siamese networks with contrastive 

tasks to impose explicitly semantic consistency 

between paraphrased or semantically equivalent 

prompts. In such configurations, two identical 

encoders are used to process two variant 

descriptions of one image, e.g., “a man on a red 

motorcycle” and “a person is riding a crimson 

bike,” and the embedding’s are induced to be 

near in latent space. 

This has a number of benefits: 

 Prompt Robustness to Variations 

 Generation Invariant to Paraphrase 

 Enhanced Discrimination 

This embedding’s are commonly combined with 

semantic-conditioned normalization or 

discriminations that ensure alignment across 

input modalities to form the foundation of 

architectures such as SD-GAN [7]. 

III.  Generative Architectures 

The generative foundations in text-to-image synthesis 

decides the model’s capacity to convert semantic 

embedding’s into high-fidelity, coherent images. 

Architectural design over the years has shifted from 

GAN-based models centered around realism, to diffusion-

based models prioritizing precision and stability, and 

lately, to hybrid pipelines blending strengths from more 

than one paradigm. This section discusses important 

categories: GANs, diffusion models, and hybrid 

approaches. 

A. GAN-Based Models 

Generative Adversarial Networks (GANs) 

[9] were some of the first architectures to be 

used for text-to-image synthesis. A GAN 

comprises a generator that generates fake images 

and a discriminator that learns to distinguish 

between real and fake samples. The generator, 

conditioned on text, takes in both text 

embedding’s and noise, generating images 

consistent with the semantic hints. 

1. AttnGAN: This was the first model that 

incorporated word-level attention 

mechanisms, enabling the generator to 

attend to certain words when generating 

various regions of an image. It employed a 

multi-stage generation framework, 

improving coarse to fine-grained outputs. 

Advantages: Improved object localization, 

explainable attention maps. 

Disadvantages: Restricted resolution (e.g., 

256*256), comparatively unstable training. 

2. DM-GAN [8]: Enhance AttenGAN with a 

dynamic memory module that stores and 

recovers sematic features during refinement 

processes. The memory enables the 

generator to re-strongly emphasize 

important textual details lost during initial 

generation. 

Innovation: Memory gating improves 

semantic coherence during refinement. 

Limitation: Memory overhead and increased 

training time. 

3. XMC-GAN (Contrastive GAN) [2]: the 

model uses contrastive losses between 

image-image and caption-caption pairs, 

forcing images produced form paraphrased 

prompts to be semantically close. 

Strength: Greater semantic alignment 

compared to conventional GANs 

Challenge: Difficulty of contrastive training 

and stability in multi-model optimization. 

B. Diffusion-Based Models 

Diffusion models are a newer generation of 

generative models that generate images by 

iteratively by denoising Gaussian noise, with 

guidance from conditioning inputs like text 

embeddings. 

1. DDPMs (Denoising Diffusion Probabilistic 

Models) [10]: These models invert a 

stationary Markov process that 

progressively adds noise to an image. While 

accurate, they are computationally costly 

because of the lengthy sampling chains 

(typically 1000+ steps). 

Pros: High image quality, stable training. 

Cons: slow inference and costly compute 

requirements. 

2. Latent Diffusion Models (LDMs) [4]: These 

save computation by working in latent space 

that is compressed (with auto encoders such 

as VQ-GAN). Generation is done in latent 

space and then decoded to pixel space. 

Efficiency: Orders of magnitude faster than 

pixel-space diffusion. 

Integration: Can be conditioned easily with 

CLIP or LLM- based embedding’s. 

3. Stable Diffusion [4]: One of the most 

commonly used LDMs, integrating CLIP 

C. Hybrid and Emerging Models 

Since GANs and diffusion models both possess 

strengths and limitations, there have been 

various emerging models which hybridize 

characteristics of both to design more solid 

systems. 

1. DALL-E 3 [3] an OpenAI hybrid pipeline 

employing autoregressive decoding for 

coarse image layout and diffusion sampling 

for fine-tuning. Deep Integration with LLMs 

such as GPT-4 allows conversational 

prompting and edit ability. 
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Key Benefit: Strong alignment with human 

language; support for image editing. 

Use Case: Interactive generation and 

semantic editing. 

2. Stable Diffusion XL (SD-XL) [6]: 

Augments stable Diffusion with a bigger 

CLIP encoder, several conditioning 

pathways, and architectural improvements. 

It produces state-of-the-art resolution and 

realism and allows for longer prompts. 

Advantages: Flexible conditioning, better 

compositionality 

Disadvantages: Increased model size and 

training requirement. 

3. RAPHAEL [8]: Adds a mixture-of-Experts 

(MoE) mechanism to diffusion pipelines, 

allowing for specialized modules to process 

various aspects of image synthesis, e.g., 

texture, object layout, and style. 

Innovation: Scalable capacity with expert 

modularity 

Research Frontier: Requires expert routing 

mechanisms and balanced training. 

These generative strategies each reflect trade-offs 

between realism, semantic control, training complexity, 

and inference speed. Table 1 below outlines side-by-side 

the different architecture types and their mechanisms for 

semantic integration. 

IV.  Semantic Alignment Techniques 

 Semantic alignment refers to ensuring that the 

generated image faithfully reflects the meaning of the 

input text prompt- no just visually, but conceptually and 

contextually. Even high-quality images can fail to convey 

the correct semantics if the model lacks an understanding 

of linguistic nuances, especially under paraphrased, long-

form, or multilingual prompts. This section examines key 

strategies developed to improve alignment between text 

and visual outputs in text-to-image synthesis models. 

 

A. Adapter-Based Alignment 

Adapter modules are lightweight neural layers 

introduced between pre-trained large language 

models (LLMs) and the image synthesis 

backbone. Their role is to map rich language 

embedding’s (e.g., from T5 or GPT variants) into 

the conditioning space compatible with visual 

generation frameworks such as Stable Diffusion. 

 OmniDiffusion [1] is  a prime example: 

it replaces CLIP’s limited text encoder 

with a full LLM, followed by an adapter 

that projects high-dimensional textual 

representations into CLIP’s latent visual 

space. 

 Adapters offer modular extensibility, 

enabling fine-tuning on domain-specific 

data (e.g., medical, multilingual) 

without retraining the base model. 

 Benefits: 

 Extend beyond CLIP’s 77-

token limit. 

 Retain context from longer, 

structured prompts. 

 Support for multiple languages 

and fine-grained modifiers. 

 Limitations: 

 Alignment relies on adapter 

calibration, which can drift if 

not carefully tuned 

B. Semantic-Conditioned Batch Normalization 

(SCBN) 

Semantic-conditioned normalization techniques 

incorporate text features directly into the 

intermediate stages of the image synthesis 

process via modulated normalization layers. 

 SCBN (Semantic- Conditioned Batch 

Normalization) modifies batch norm 

layers so that the scale (γ) and Shift (β) 

parameters are functions of textual 

embedding’s. 

 First proposed in [7], this technique 

allows the generator to dynamically 

alter image features (e.g., texture, 

colour, object presence) in response to 

linguistic content. 

 Later variations include Instance Norm 

(AdaIN) or Layer Norm adaptations, 

enabling per-sample modulation. 

 Advantages:  

 Improved semantic style 

transfers from text to image. 

 Fine-grained, localized control 

over visual details (e.g., bird 

colour, object position). 

 Applications: 

 Used in SD-GAN [7] and other 

GAN-based pipelines where 

alignment is challenging under 

high visual variation. 

 Trade-offs: 

 Requires carefully tuned 

normalization schemes to 

prevent mode collapse or 

visual artefacts. 

 

C. Contrastive Learning for Semantic Consistency 

Contrastive learning aims to bring 

semantically similar items closer in embedding 

space while pushing dissimilar ones apart. In 

text-to-image generation, this technique helps 

ensure consistent image outputs for semantically 

equivalent prompts. 

 XMC-GAN [2] introduced caption–

caption and image–image contrastive 

losses, treating paraphrased captions or 

generated images from the same prompt 

as positive pairs. 
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 Later models (e.g., SD-GAN [7]) 

applied Siamese networks to learn 

consistent representations across diverse 

input prompts, using shared weights and 

contrastive losses. 

 Implementations: 

 Use cosine similarity or 

InfoNCE loss between 

text/image embedding’s. 

 Enforce invariance under 

paraphrasing or rewording. 

 Benefits: 

 Increases robustness to 

linguistic variation. 

 Reduces generation 

inconsistency from prompt 

phrasing differences. 

 Limitations: 

 Requires large datasets of 

paraphrased text–image pairs. 

 Contrastive learning may 

interfere with adversarial 

losses if not balanced properly. 

II.  Datasets and Evaluation Metrics 

Robust evaluation of text-to-image generation models 

requires diverse, high-quality datasets and reliable metrics 

that reflect both visual fidelity and semantic alignment. 

However, most existing metrics focus more on image 

quality than on semantic alignment. However, most 

existing metrics focus more on image quality than on 

semantic accuracy, and datasets often vary in complexity, 

domain coverage, and annotation richness. This section 

provides a detailed overview of commonly used datasets 

and evaluation protocols. 

A. Common Datasets 

1. CUB-200-2011 [12]: 

 Domain: Fine-grained bird species 

 Images: ~ 11,800 images of 200 

bird species 

 Captions:  10 per image, human-

annotated 

 Use Case: Fine-grained attribute 

generation (e.g., wing colour, beak 

length) 

 Limitations: Domain-specific, lacks 

scene diversity 

2. MS-COCO (Microsoft Common Objects in 

Context) [13] : 

 Domain: Everyday scenes with 

multiple objects 

 Images: ~330,000 images, 80 

object categories 

 Captions: 5 per image, open-

vocabulary descriptions 

 Use Case: General-purpose 

generation and captioning 

 Advantages: Rich scene diversity, 

multiple captions enable 

paraphrasing tests 

3. Laion-5B [4]: 

 Domain: Broad, web-scraped 

images and captions 

 Size: Over 5 billion image-text 

pairs 

 Language Support: Multilingual 

 Use Case: Large-scale pertaining 

for models like Stable Diffusion 

 Benefits: Scale enables robust 

generalization 

 Caveats: Noisy annotations, 

inconsistent caption quality, 

biases 

4. Other Specialized Datasets: 

 FashionGen (clothing-focused), 

Oxford-102 Flowers, PaintSkills 

(fine-grained skill control) 

 Useful for domain adaptation and 

task-specific tuning 

B. Evaluation Metrics 

While high-resolution, realistic images are important, true 

success in text-to-image generation hinges on how well 

the image reflects the input prompt. Here are key metrics: 

1. FID (Fréchet Inception Distance) [14]: 

 Measures distance between distributions 

of real and generated image features 

 Lower is better; FID < 15 often 

considered high quality 

 Strength: Sensitive to realism and 

diversity 

 Limitation: Not language-aware; 

doesn’t assess semantic correctness 

2. IS (Inception Score) [15]: 

 Captures both confidence and diversity 

of generated images using a pretrained 

classifier 

 Higher is better; but performance can be 

inflated by generic-looking outputs 

 Weakness: No grounding in text; 

doesn’t evaluate text-image match 

3. R-precision [5]: 

 Measures retrieval accuracy of 

matching the correct caption from a 

pool of candidates given a generated 

image 

 Reflects how well the image aligns with 

its intended text 

 Limitation: Can be misleading if 

captions are too similar or ambiguous 

4. CLIP-Score [16]: 

 Uses CLIP embeddings to compute 

cosine similarity between text and 

image representations 

 Reference-free evaluation: doesn’t need 

ground truth images 

 Advantages: Correlates well with 

human judgment, scalable 
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 Weakness: Inherits CLIP’s biases; may 

favor literal matches over conceptual 

understanding 

5. Human Evaluation: 

 Human annotators assess generated 

images for relevance, aesthetics, and 

coherence 

 Most reliable, but expensive and slow 

 Often used as the gold standard in large-

scale model comparisons (e.g., DALL·E 

3, Midjourney) 

VI. Comparative Analysis  

Comparing text-to-image generation models involves 

understanding trade-offs between architectural design, 

semantic alignment techniques, computational efficiency, 

and output quality. This section presents a structured 

analysis of key methods, highlighting how semantic 

understanding contributes to improved generation 

performance. 

A. Method Comparison Overview 

The following table synthesizes critical attributes of 

representative models based on encoder type, generation 

architecture, semantic alignment strategy, and FID score 

(where available).  

Table . Comparative Summary of Key Text-to-Image 

Generation Models 

Method Text 

Encode

r 

Generato

r Type 

Semantic 

Strategy 

FI

D ↓ 

AttnGAN  char-

CNN-

RNN 

Stacked 

GAN 

Word-level 

attention 

23.

5 

DM-GAN  RNN + 

Memor

y 

Module 

GAN Dynamic 

memory 

refinement 

20.

6 

XMC-GAN  CLIP GAN Contrastiv

e caption–

image loss 

19.

8 

SD-GAN  BiLST

M + 

SCBN 

Siamese 

GAN 

Siamese 

net + 

semantic 

BN 

17.

4 

Stable 

Diffusion  

CLIP Latent 

Diffusion 

CLIP 

conditionin

g 

15.

2 

OmniDiffusi

on  

LLM 

(T5) + 

Adapter 

Diffusion Adapter-

based 

LLM 

alignment 

12.

3 

SD-XL  CLIP + 

XL 

Adapter 

LDM (U-

Net++ 

XL) 

Enhanced 

prompt 

conditionin

g 

11.

7 

RAPHAEL  CLIP + 

LLM + 

MoE 

MoE 

Diffusion 

Mixture-

of-Experts 

+ semantic 

routing 

11.

2 

Note: FID values vary based on dataset and evaluation 

protocols; shown here for comparison using MS-COCO 

unless otherwise stated. 

B. Semantic Fidelity vs. Image Realism 

The best-performing models (e.g., SD-XL, RAPHAEL) 

excel at both semantic accuracy and visual realism. Their 

success is attributed to: 

 Rich text encoders (CLIP + LLM fusion) 

 Fine-grained conditioning mechanisms (e.g., 

adapters, normalization) 

 Scalable diffusion processes with architectural 

enhancements 

Meanwhile, older GAN-based systems lag in capturing 

abstract or complex scenes, despite faster inference. 

VII. Challenges and future Directions 

 Despite remarkable progress in text-to-image 

generation, several persistent challenges hinder its full 

potential, especially regarding semantic understanding, 

controllability, and scalability. This section highlights 

major research hurdles and outlines promising directions 

for future investigation. 

 

1. Long-Form and Multilingual Prompts 

Challenge: Most models are limited by text 

encoders like CLIP, which support a maximum of 77 

tokens and are primarily trained on English datasets. This 

constraint restricts the system’s ability to handle 

descriptive, narrative, or multilingual prompts. 

Future Direction: 

 Integration of LLMs (e.g., T5, GPT) 

with cross-lingual capabilities allows 

support for extended and multilingual 

prompts. 

 Adapter-based alignment modules [1] 

can bridge the semantic gap between 

long-text embedding’s and image-

generating modules without retraining 

the entire pipeline. 

 Building multilingual datasets (e.g., 

LAION-X) with aligned captions is also 

essential. 

 

 

 

2. Fine-Grained Attribute Control 

Challenge: Generating specific attributes (e.g., "a 

red apple on a blue plate under sunlight") or modifying 

parts of an image (e.g., changing only the background) is 

difficult for many models. Current conditioning 

techniques struggle with localized control. 
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Future Direction: 

 Use of segmentation-aware guidance, spatial 

attention, and region-based masks can improve 

localized generation. 

 Incorporation of language-guided editing and 

interactive user inputs can enable real-time 

refinement (e.g., inpainting or outpainting with 

prompt updates). 

 Layered or compositional generation approaches 

(e.g., ControlNet) are promising for structured 

control. 

 

3. Evaluation Standardization 

Challenge: Existing evaluation metrics like FID 

and IS primarily measure image realism and diversity, but 

do not fully capture semantic alignment or task relevance. 

Human evaluations are costly and inconsistent. 

Future Direction: 

 Development of reference-free, text-

image alignment metrics (e.g., CLIP-

Score [16]) that better reflect human 

judgments. 

 Task-specific benchmarks (e.g., story-

to-comic generation, logo synthesis) 

could enable more targeted evaluations. 

 Hybrid protocols combining automated 

and crowdsourced assessments could 

provide scalable, robust evaluations. 

4. Ethical and Bias Considerations 

Challenge: Models trained on web-scale datasets 

often inherit and amplify social, gender, or racial biases. 

They may also generate offensive or misleading content if 

not properly controlled. 

Future Direction: 

 Curating diverse, balanced training datasets and 

integrating bias detection tools in the pipeline. 

 Implementing prompt filters, content safety 

classifiers, and user consent layers before 

synthesis. 

 Explainable AI techniques can improve 

transparency and traceability of model decisions. 

5. Resource Efficiency 

Challenge: High-performing models (e.g., SD-XL, 

RAPHAEL) require massive compute for training and 

inference, making them inaccessible to smaller labs or 

real-time applications. 

Future Direction: 

 Model distillation, quantization, and sparsity-

based pruning can reduce size and latency. 

 Designing modular and adaptive architectures 

that activate only necessary submodules per 

prompt (e.g., MoE in RAPHAEL [8]). 

 Leveraging edge-compatible inference solutions 

for deployment on mobile and low-power 

devices. 

Summary of Open Research Areas: 

Challenge Research Needs 

Prompt length and 

language 

Multilingual LLM adapters, cross-

lingual pretraining 

Fine-grained control Interactive editing, semantic 

masking, region-level attention 

Evaluation CLIP-based scores, human-aligned 

and task-aware metrics 

Ethical synthesis Dataset filtering, bias audits, 

explainability 

Computational 

scalability 

Distillation, low-rank 

optimization, mixture-of-experts 

routing 

VIII. Challenges and future Directions 

 Text-to-image synthesis has developed 

substantially, from initial GAN-based approaches that 

yielded low-resolution and semantically constrained 

results to diffusion models that can produce high-quality 

and contextually rich images. Of central importance 

among these developments is semantic understanding’s 

integration, which allows more precise alignment between 

sophisticated linguistic input and generated visual output. 

 This review emphasized the significance of 

semantic alignment and representation, exemplifying 

techniques like CLIP-based encoders, LLM-integrated 

architectures such as OmniDiffusion, and adapter models 

that enable efficient multimodal fusion with fewer 

retraining needs. Latent diffusion models (LDMs) have 

become prevalent architecture because of their scalability 

and output quality, whereas hybrid systems like DALL-E 

3 illustrate the strengths of blending semantic 

conditioning with autoregressive and diffusion methods. 

 In spite of all these developments, issues persist 

in processing long prompts, providing fine-grained 

control, guaranteeing ethical content generation, and 

constructing standardized semantic evaluation metrics. 

Tighter LLM integration, modular controllable 

architectures, human-aligned evaluation procedures, and 

responsible deployment methodologies need to be the 

focus of future studies. Semantic understanding will 

remain the foundation for constructing reliable, creative, 

and intelligent generative systems. 
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